************************************************************** GVP/USGS Weekly Volcanic Activity Report June 28- July 4 2006 ************************************************************** From: Sally Kuhn <KUHNS@xxxxxx> GVP/USGS Weekly Volcanic Activity Report 28 June- 4 July 2006 http://www.volcano.si.edu/reports/usgs/ New Activity/Unrest: | Batu Tara, Indonesia | Bulusan, Philippines | Soufriere Hills, Montserrat Ongoing Activity: | Fuego, Guatemala | Karangetang, Indonesia | Karymsky, Russia | Kilauea, USA | Merapi, Indonesia | Santa María, Guatemala | Semeru, Indonesia | St. Helens, USA | Suwanose-jima, Japan | Tungurahua, Ecuador | Ubinas, Perú New Activity/Unrest BATU TARA Lesser Sunda Islands, Indonesia 7.792°S, 123.579°E; summit elev. 748 m Based on a pilot report, the Darwin VAAC reported that an ash cloud from Batu Tara reached an altitude of 1.5 km (5,000 ft) a.s.l. and drifted NW. Ash was not identified on satellite imagery. Geologic Summary. The small isolated island of Batu Tara in the Flores Sea about 50 km north of Lomblen Island contains a scarp on the eastern side similar to the Sciara del Fuoco of Italy's Stromboli volcano. Vegetation covers the flanks of Batu Tara to within 50 m of the 748-m-high summit. Batu Tara lies north of the main volcanic arc and is noted for its potassic leucite-bearing basanitic and tephritic rocks. The only known historical eruption from Batu Tara, during 1847-52, produced explosions and a lava flow. Source: Darwin Volcanic Ash Advisory Center http://www.bom.gov.au/info/vaac/advisories.shtml Batu Tara Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=0604-26= BULUSAN Luzon, Philippines 12.770°N, 124.05°E; summit elev. 1,565 m Based on interpretations of seismic data, small explosions occurred at Bulusan on 28 and 29 June. No ashfall was reported. Geologic Summary. Luzon's southernmost volcano, Bulusan, was constructed within the 11-km-diameter dacitic Irosin caldera, which was formed more than 36,000 years ago. A broad, flat moat is located below the prominent SW caldera rim; the NE rim is buried by the andesitic Bulusan complex. Bulusan is flanked by several other large intracaldera lava domes and cones, including the prominent Mount Jormajan lava dome on the SW flank and Sharp Peak to the NE. The summit of Bulusan volcano is unvegetated and contains a 300-m wide, 50-m-deep crater. Three small craters are located on the SE flank. Many moderate explosive eruptions have been recorded at Bulusan since the mid-19th century. Source: Philippine Institute of Volcanology and Seismology http://www.phivolcs.dost.gov.ph/news/bulusan_bul_31May2006.html Bulusan Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=0703-01= SOUFRIÈRE HILLS Montserrat, West Indies 16.72°N, 62.18°W; summit elev. 1,052 m: All times are local (= UTC - 4 hours) Due to increased seismic activity at Soufriere Hills during approximately 24-29 June, the Alert Level was raised to 4 (on a scale of 0-5). On 30 June around 1300, the lava dome partially collapsed and produced pyroclastic flows to the E. According to the Washington VAAC, a pilot reported that an ash plume reached an altitude of 3 km (10,000 ft) a.s.l. and drifted NW. The VAAC also reported that the Montserrat Volcano Observatory indicated a second dome collapse occurred at 1830 on 30 June that also generated ash plumes to altitudes of 3 km (10,000 ft) a.s.l. Geologic Summary. The complex dominantly andesitic Soufrière Hills volcano occupies the southern half of the island of Montserrat. The summit area consists primarily of a series of lava domes emplaced along an ESE-trending zone. English's Crater, a 1-km-wide crater breached widely to the east, was formed during an eruption about 4000 years ago in which the summit collapsed, producing a large submarine debris avalanche. Block-and-ash flow and surge deposits associated with dome growth predominate in flank deposits at Soufrière Hills. Non-eruptive seismic swarms occurred at 30-year intervals in the 20th century, but with the exception of a 17th-century eruption that produced the Castle Peak lava dome, no historical eruptions were recorded on Montserrat until 1995. Long-term small-to-moderate ash eruptions beginning in that year were later accompanied by lava-dome growth and pyroclastic flows that forced evacuation of the southern half of the island and ultimately destroyed the capital city of Plymouth, causing major social and economic disruption. Source: Montserrat Volcano Observatory http://www.mvo.ms/, Washington Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/messages.html, Associated Press http://www.physorg.com/news70901467.html, Antigua Sun http://www.antiguasun.com/paper/?as=view&sun=131635109906292006&an=212446098906292006&ac=Local, Radio Jamaica http://www.radiojamaica.com/news/story.php?category=6&story=25911 Soufrière Hills Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1600-05= Ongoing Activity FUEGO Guatemala 14.47°N, 90.88°W; summit elev. 3,763 m On 29 June, INSIVUMEH reported that pyroclastic flows from Fuego traveled mainly SW along the Ceniza River and a lesser number moved SW along the Taniluyá River. According to a news report, on 29 June an ash plume reached a height of 2.2 km above the summit (19,500 ft a.s.l.) and drifted W. On 3 July, explosions propelled incandescent material hundreds of meters above the central crater (~13,000 ft a.s.l.). Avalanches traveled ~300-500 m SW along the Ceniza River. Geologic Summary. Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3,763-m-high Fuego and its twin volcano to the N, Acatenango. Construction of Meseta volcano continued until the late Pleistocene or early Holocene, after which growth of the modern Fuego volcano continued the southward migration of volcanism that began at Acatenango. Frequent vigorous historical eruptions have been recorded at Fuego since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows. The last major explosive eruption from Fuego took place in 1974, producing spectacular pyroclastic flows visible from Antigua. Sources: Instituto Nacional de Sismologia, Vulcanologia, Meterologia, e Hidrologia http://www.insivumeh.gob.gt/geofisica/boletin%20formato.htm, Associated Press http://www.forbes.com/entrepreneurs/feeds/ap/2006/06/29/ap2851118.html Fuego Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1402-09= KARANGETANG [Api Siau] Siau Island, Indonesia 2.47°N, 125.29°E; summit elev. 1,784 m According to the Darwin VAAC, a small eruption at Karangetang on 3 July produced an ash plume observed on satellite imagery that reached an altitude of 3.7 km (12,000 ft) a.s.l. Geologic Summary. Karangetang (also known as Api Siau) lies at the northern end of the island of Siau, N of Sulawesi. The 1,784-m-high stratovolcano contains five summit craters along a N-S line. One of Indonesia's most active volcanoes, Karangetang has had more than 40 recorded eruptions since 1675. Twentieth-century eruptions have included frequent explosions, sometimes accompanied by pyroclastic flows and lahars. Source: Darwin Volcanic Ash Advisory Center http://www.bom.gov.au/info/vaac/advisories.shtml Karangetang Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=0607-02= KARYMSKY Kamchatka Peninsula, Russia 54.05°N, 159.43°E; summit elev. 1,536 m Activity at Karymsky continued during 23-30 June, with 100-350 shallow earthquakes occurring daily. Based on interpretations of seismic data, ash plumes reached altitudes of 3.5 km (11,500 ft) a.s.l. According to the Tokyo VAAC, the Kamchatkan Experimental & Methodical Seismological Department (KEMSD) reported that on 1 and 3 July ash plumes reached altitudes of 3.7 km (12,000 ft) a.s.l. A thermal anomaly in the crater was observed during 24-27 June. Karymsky remained at Concern Color Code Orange <http://www.avo.alaska.edu/color_codes.php>. Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996. Sources: Kamchatkan Volcanic Eruption Response Team http://www.kscnet.ru/ivs/kvert/updates.shtml, Tokyo Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html Karymsky Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1000-13= KILAUEA Hawaii, USA 19.43°N, 155.29°W; summit elev. 1,222 m During 28 June-4 July, lava from Kilauea continued to flow off of a lava delta into the ocean at the East Lae`apuki entry. On 30 June, surface lava flows originating from the Campout lava tube were visible on the upper part of the Pulama pali fault scarp, which had not been the case since 8 February. Incandescence was visible from Drainhole vent in Pu`u `O`o's crater during most of the reporting period. Tremor remained at a very typical moderate level at Pu`u `O`o. Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world's most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed by lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. The latest Kilauea eruption began in January 1983 along the E rift zone. This long-term ongoing eruption from Pu`u `O`o-Kupaianaha has produced lava flows that have traveled 11-12 km from the vents to the sea, paving about 104 km2 of land on the S flank of Kilauea and building more than 200 hectares of new land. Source: US Geological Survey Hawaiian Volcano Observatory http://volcanoes.usgs.gov/update.html Kilauea information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1302-01- MERAPI central Java, Indonesia 7.542°S, 110.442°E; summit elev. 2,947 m According to CVGHM, pyroclastic flows and rockfalls at Merapi decreased in frequency and intensity during 28 June-4 July. Pyroclastic flows were observed during 28-30 June and reached a maximum distance of 3 km SE along the Gendol River. Gas plumes were observed during 28 June-1 July and reached a maximum height of 1 km above the summit (12,800 ft a.s.l.) on 28 June. Geologic Summary. Merapi, one of Indonesia's most active volcanoes, lies in one of the world's most densely populated areas and dominates the landscape immediately N of the major city of Yogyakarta. The steep-sided modern Merapi edifice, its upper part unvegetated due to frequent eruptive activity, was constructed to the SW of an arcuate scarp cutting the eroded older Batulawang volcano. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated and inhabited lands on the volcano's western-to-southern flanks and caused many fatalities during historical time. The volcano is the object of extensive monitoring efforts by the Merapi Volcano Observatory. Source: Center of Volcanology and Geological Hazard Mitigation (CVGHM) http://www.vsi.esdm.go.id/portal/html/index.php Merapi Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=0603-25= SANTA MARÍA Guatemala 14.756°N, 91.552°W; summit elev. 3,772 m According to the Washington VAAC, on 1 July small ash plumes from Santa María's Santiaguito lava-dome complex reached altitudes of 5.8 km (19,000 ft) a.s.l. and drifted SW. On 3 July, INSIVUMEH reported that an ash plume reached ~800 m above the summit (~15,000 ft a.s.l.). White "smoke" from an incandescent avalanche deposit was visible from the NE base of Caliente cone. Geologic Summary. Symmetrical, forest-covered Santa María volcano is one of a chain of large stratovolcanoes that rises dramatically above the Pacific coastal plain of Guatemala. The stratovolcano has a sharp-topped, conical profile that is cut on the SW flank by a large, 1-km-wide crater, which formed during a catastrophic eruption in 1902 and extends from just below the summit to the lower flank. The renowned Plinian eruption of 1902 followed a long repose period and devastated much of SW Guatemala. The large dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four westward-younging vents, accompanied by almost continuous minor explosions and periodic lava extrusion, larger explosions, pyroclastic flows, and lahars. Sources: Instituto Nacional de Sismologia, Vulcanologia, Meterologia, e Hidrologia http://www.insivumeh.gob.gt/geofisica/boletin%20formato.htm, Washington Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/messages.html Santa María Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1402-03= SEMERU Java, Indonesia 8.11°S, 112.92°E; summit elev. 3,676 m According to the Darwin VAAC, on 29 June a small plume from Semeru that was visible on satellite imagery drifted SE at an unknown altitude. Geologic Summary. Semeru is the highest volcano on Java and one of its most active. The symmetrical stratovolcano rises abruptly to 3,676 m above coastal plains to the S and lies at the southern end of a volcanic massif extending N to the Tengger caldera. Semeru has been in almost continuous eruption since 1967. Frequent small-to-moderate Vulcanian eruptions have accompanied intermittent lava dome extrusion, and periodic pyroclastic flows and lahars have damaged villages below the volcano. A major secondary lahar on 14 May 1981 caused more than 250 deaths and damaged 16 villages. Source: Darwin Volcanic Ash Advisory Center http://www.bom.gov.au/info/vaac/advisories.shtml Semeru Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=0603-30= ST. HELENS Washington, USA 46.20°N, 122.18°W; summit elev. 2,549 m During 28 June-4 July, the lava dome at Mount St. Helens continued to grow and produce small rockfalls. The volcano remained at Volcano Advisory (Alert Level 2); aviation color code Orange. Geologic Summary. Prior to 1980, Mount St. Helens formed a conical, youthful volcano sometimes known as the Fuji-san of America. During the 1980 eruption the upper 400 m of the summit was removed by slope failure, leaving a 2 x 3.5 km horseshoe-shaped crater now partially filled by a lava dome. Mount St. Helens was formed during nine eruptive periods beginning about 40-50,000 years ago, and has been the most active volcano in the Cascade Range during the Holocene. The modern edifice was constructed during the last 2,200 years, when the volcano produced basaltic as well as andesitic and dacitic products from summit and flank vents. Historical eruptions in the 19th century originated from the Goat Rocks area on the N flank, and were witnessed by early settlers. Source: US Geological Survey Cascades Volcano Observatory http://vulcan.wr.usgs.gov/Volcanoes/MSH/CurrentActivity/framework.html St. Helens Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1201-05- SUWANOSE-JIMA Ryukyu Islands, Japan 29.53°N, 129.72°E; summit elev. 799 m Based on information from JMA, the Tokyo VAAC reported on 30 June that a small plume from Suwanose-jima reached an altitude of 1.2 km (4,000 ft) a.s.l. and drifted NE. Geologic Summary. The 8-km-long, spindle-shaped island of Suwanose-jima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. Only about 50 persons live on the sparsely populated island. The summit of the volcano is truncated by a large breached crater extending to the sea on the E flank that was formed by edifice collapse. Suwanose-jima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from On-take, the NE summit crater, that began in 1949 and lasted nearly a half century. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, after which the island was uninhabited for around 70 years. The SW crater produced lava flows that reached the western coast in 1813, and lava flows reached the eastern coast of the island in 1884. Source: Tokyo Volcanic Ash Advisory Center http://www.ssd.noaa.gov/VAAC/OTH/JP/messages.html Suwanose-jima Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=0802-03= TUNGURAHUA Ecuador 1.47°S, 78.44°W; summit elev. 5,023 m During 28 June- 4 July, small-to-moderate explosions at Tungurahua produced plumes composed of gas, steam, and small amounts of ash that reached heights of 1.5 km above the summit (21,400 ft a.s.l.). Light ashfall was reported in nearby localities during 29 June-2 July. On 29 June, reports of ground movement coincided with an explosive eruption that generated blocks of incandescent material observed to roll 100 m down the W flank. Night-time incandescence was observed intermittently during the reporting period. Geologic Summary. The steep-sided Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador's capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have been restricted to the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano. Source: Instituto Geofísico-Escuela Poltécnica Nacional http://www.igepn.edu.ec/vulcanologia/tungurahua/actividad/informet.htm Tungurahua Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1502-08= UBINAS Perú 16.355°S, 70.903°W; summit elev. 5,672 m Based on pilot reports, ash clouds identified from Ubinas on 28 June reached altitudes of 6.7 km (22,000 ft) a.s.l. Geologic Summary. A small, 1.2-km-wide caldera that cuts the top of Ubinas, Peru's most active volcano, gives it a truncated appearance. Ubinas is the northernmost of three young volcanoes located along a regional structural lineament about 50 km behind the main volcanic front of Peru. The upper slopes of the stratovolcano, composed primarily of Pleistocene andesitic lava flows, steepen to nearly 45 degrees. The steep-walled, 150-m-deep summit caldera contains an ash cone with a 500-m-wide funnel-shaped vent that is 200 m deep. Debris-avalanche deposits from the collapse of the SE flank of Ubinas extend 10 km from the volcano. Widespread plinian pumice-fall deposits from Ubinas include some of Holocene age. Holocene lava flows are visible on the volcano's flanks, but historical activity, documented since the 16th century, has consisted of intermittent minor explosive eruptions. Source: Buenos Aires Volcanic Ash Advisory Center http://www.bom.gov.au/products/Volc_ash_recent.shtml Ubinas Information from the Global Volcanism Program http://www.volcano.si.edu/world/volcano.cfm?vnum=1504-02 ============================================================== To unsubscribe from the volcano list, send the message: signoff volcano to: listserv@xxxxxxx, or write to: volcano-request@xxxxxxxx To contribute to the volcano list, send your message to: volcano@xxxxxxxx Please do not send attachments. ==============================================================