The driver is based on the denali driver from the linux kernel Signed-off-by: Enrico Jorns <ejo@xxxxxxxxxxxxxx> --- drivers/mtd/nand/Kconfig | 26 + drivers/mtd/nand/Makefile | 3 + drivers/mtd/nand/denali.h | 499 ++++++++++++ drivers/mtd/nand/nand_denali.c | 1559 +++++++++++++++++++++++++++++++++++++ drivers/mtd/nand/nand_denali_dt.c | 101 +++ 5 files changed, 2188 insertions(+) create mode 100644 drivers/mtd/nand/denali.h create mode 100644 drivers/mtd/nand/nand_denali.c create mode 100644 drivers/mtd/nand/nand_denali_dt.c diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index a75540b..ff26584 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -140,4 +140,30 @@ config MTD_NAND_NOMADIK help Driver for the NAND flash controller on the Nomadik, with ECC. +config MTD_NAND_DENALI + tristate "Support Denali NAND controller" + depends on HAS_DMA + help + Enable support for the Denali NAND controller. This should be + combined with either the PCI or platform drivers to provide device + registration. + +config MTD_NAND_DENALI_DT + tristate "Support Denali NAND controller as a DT device" + depends on HAVE_CLK && MTD_NAND_DENALI + help + Enable the driver for NAND flash on platforms using a Denali NAND + controller as a DT device. + +if MTD_NAND_DENALI + +config MTD_NAND_DENALI_TIMING_MODE + int "Overrides default ONFI timing mode." + default -1 + range -1 5 + help + -1 indicates use default timings + +endif + endif diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index a0b3198..8809238 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -16,3 +16,6 @@ obj-$(CONFIG_NAND_ATMEL) += atmel_nand.o obj-$(CONFIG_NAND_S3C24XX) += nand_s3c24xx.o pbl-$(CONFIG_NAND_S3C24XX) += nand_s3c24xx.o obj-$(CONFIG_NAND_MXS) += nand_mxs.o +obj-$(CONFIG_MTD_NAND_DENALI) += nand_denali.o +obj-$(CONFIG_MTD_NAND_DENALI_DT) += nand_denali_dt.o + diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/denali.h new file mode 100644 index 0000000..f5511c9 --- /dev/null +++ b/drivers/mtd/nand/denali.h @@ -0,0 +1,499 @@ +/* + * NAND Flash Controller Device Driver + * Copyright (c) 2009 - 2010, Intel Corporation and its suppliers. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + * + */ + +#ifndef __DENALI_H__ +#define __DENALI_H__ + +#include <linux/mtd/nand.h> + +#define DEVICE_RESET 0x0 +#define DEVICE_RESET__BANK0 0x0001 +#define DEVICE_RESET__BANK1 0x0002 +#define DEVICE_RESET__BANK2 0x0004 +#define DEVICE_RESET__BANK3 0x0008 + +#define TRANSFER_SPARE_REG 0x10 +#define TRANSFER_SPARE_REG__FLAG 0x0001 + +#define LOAD_WAIT_CNT 0x20 +#define LOAD_WAIT_CNT__VALUE 0xffff + +#define PROGRAM_WAIT_CNT 0x30 +#define PROGRAM_WAIT_CNT__VALUE 0xffff + +#define ERASE_WAIT_CNT 0x40 +#define ERASE_WAIT_CNT__VALUE 0xffff + +#define INT_MON_CYCCNT 0x50 +#define INT_MON_CYCCNT__VALUE 0xffff + +#define RB_PIN_ENABLED 0x60 +#define RB_PIN_ENABLED__BANK0 0x0001 +#define RB_PIN_ENABLED__BANK1 0x0002 +#define RB_PIN_ENABLED__BANK2 0x0004 +#define RB_PIN_ENABLED__BANK3 0x0008 + +#define MULTIPLANE_OPERATION 0x70 +#define MULTIPLANE_OPERATION__FLAG 0x0001 + +#define MULTIPLANE_READ_ENABLE 0x80 +#define MULTIPLANE_READ_ENABLE__FLAG 0x0001 + +#define COPYBACK_DISABLE 0x90 +#define COPYBACK_DISABLE__FLAG 0x0001 + +#define CACHE_WRITE_ENABLE 0xa0 +#define CACHE_WRITE_ENABLE__FLAG 0x0001 + +#define CACHE_READ_ENABLE 0xb0 +#define CACHE_READ_ENABLE__FLAG 0x0001 + +#define PREFETCH_MODE 0xc0 +#define PREFETCH_MODE__PREFETCH_EN 0x0001 +#define PREFETCH_MODE__PREFETCH_BURST_LENGTH 0xfff0 + +#define CHIP_ENABLE_DONT_CARE 0xd0 +#define CHIP_EN_DONT_CARE__FLAG 0x01 + +#define ECC_ENABLE 0xe0 +#define ECC_ENABLE__FLAG 0x0001 + +#define GLOBAL_INT_ENABLE 0xf0 +#define GLOBAL_INT_EN_FLAG 0x01 + +#define WE_2_RE 0x100 +#define WE_2_RE__VALUE 0x003f + +#define ADDR_2_DATA 0x110 +#define ADDR_2_DATA__VALUE 0x003f + +#define RE_2_WE 0x120 +#define RE_2_WE__VALUE 0x003f + +#define ACC_CLKS 0x130 +#define ACC_CLKS__VALUE 0x000f + +#define NUMBER_OF_PLANES 0x140 +#define NUMBER_OF_PLANES__VALUE 0x0007 + +#define PAGES_PER_BLOCK 0x150 +#define PAGES_PER_BLOCK__VALUE 0xffff + +#define DEVICE_WIDTH 0x160 +#define DEVICE_WIDTH__VALUE 0x0003 + +#define DEVICE_MAIN_AREA_SIZE 0x170 +#define DEVICE_MAIN_AREA_SIZE__VALUE 0xffff + +#define DEVICE_SPARE_AREA_SIZE 0x180 +#define DEVICE_SPARE_AREA_SIZE__VALUE 0xffff + +#define TWO_ROW_ADDR_CYCLES 0x190 +#define TWO_ROW_ADDR_CYCLES__FLAG 0x0001 + +#define MULTIPLANE_ADDR_RESTRICT 0x1a0 +#define MULTIPLANE_ADDR_RESTRICT__FLAG 0x0001 + +#define ECC_CORRECTION 0x1b0 +#define ECC_CORRECTION__VALUE 0x001f + +#define READ_MODE 0x1c0 +#define READ_MODE__VALUE 0x000f + +#define WRITE_MODE 0x1d0 +#define WRITE_MODE__VALUE 0x000f + +#define COPYBACK_MODE 0x1e0 +#define COPYBACK_MODE__VALUE 0x000f + +#define RDWR_EN_LO_CNT 0x1f0 +#define RDWR_EN_LO_CNT__VALUE 0x001f + +#define RDWR_EN_HI_CNT 0x200 +#define RDWR_EN_HI_CNT__VALUE 0x001f + +#define MAX_RD_DELAY 0x210 +#define MAX_RD_DELAY__VALUE 0x000f + +#define CS_SETUP_CNT 0x220 +#define CS_SETUP_CNT__VALUE 0x001f + +#define SPARE_AREA_SKIP_BYTES 0x230 +#define SPARE_AREA_SKIP_BYTES__VALUE 0x003f + +#define SPARE_AREA_MARKER 0x240 +#define SPARE_AREA_MARKER__VALUE 0xffff + +#define DEVICES_CONNECTED 0x250 +#define DEVICES_CONNECTED__VALUE 0x0007 + +#define DIE_MASK 0x260 +#define DIE_MASK__VALUE 0x00ff + +#define FIRST_BLOCK_OF_NEXT_PLANE 0x270 +#define FIRST_BLOCK_OF_NEXT_PLANE__VALUE 0xffff + +#define WRITE_PROTECT 0x280 +#define WRITE_PROTECT__FLAG 0x0001 + +#define RE_2_RE 0x290 +#define RE_2_RE__VALUE 0x003f + +#define MANUFACTURER_ID 0x300 +#define MANUFACTURER_ID__VALUE 0x00ff + +#define DEVICE_ID 0x310 +#define DEVICE_ID__VALUE 0x00ff + +#define DEVICE_PARAM_0 0x320 +#define DEVICE_PARAM_0__VALUE 0x00ff + +#define DEVICE_PARAM_1 0x330 +#define DEVICE_PARAM_1__VALUE 0x00ff + +#define DEVICE_PARAM_2 0x340 +#define DEVICE_PARAM_2__VALUE 0x00ff + +#define LOGICAL_PAGE_DATA_SIZE 0x350 +#define LOGICAL_PAGE_DATA_SIZE__VALUE 0xffff + +#define LOGICAL_PAGE_SPARE_SIZE 0x360 +#define LOGICAL_PAGE_SPARE_SIZE__VALUE 0xffff + +#define REVISION 0x370 +#define REVISION__VALUE 0xffff + +#define ONFI_DEVICE_FEATURES 0x380 +#define ONFI_DEVICE_FEATURES__VALUE 0x003f + +#define ONFI_OPTIONAL_COMMANDS 0x390 +#define ONFI_OPTIONAL_COMMANDS__VALUE 0x003f + +#define ONFI_TIMING_MODE 0x3a0 +#define ONFI_TIMING_MODE__VALUE 0x003f + +#define ONFI_PGM_CACHE_TIMING_MODE 0x3b0 +#define ONFI_PGM_CACHE_TIMING_MODE__VALUE 0x003f + +#define ONFI_DEVICE_NO_OF_LUNS 0x3c0 +#define ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS 0x00ff +#define ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE 0x0100 + +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L 0x3d0 +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE 0xffff + +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U 0x3e0 +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE 0xffff + +#define FEATURES 0x3f0 +#define FEATURES__N_BANKS 0x0003 +#define FEATURES__ECC_MAX_ERR 0x003c +#define FEATURES__DMA 0x0040 +#define FEATURES__CMD_DMA 0x0080 +#define FEATURES__PARTITION 0x0100 +#define FEATURES__XDMA_SIDEBAND 0x0200 +#define FEATURES__GPREG 0x0400 +#define FEATURES__INDEX_ADDR 0x0800 + +#define TRANSFER_MODE 0x400 +#define TRANSFER_MODE__VALUE 0x0003 + +#define INTR_STATUS(__bank) (0x410 + ((__bank) * 0x50)) +#define INTR_EN(__bank) (0x420 + ((__bank) * 0x50)) + +/* + * Some versions of the IP have the ECC fixup handled in hardware. In this + * configuration we only get interrupted when the error is uncorrectable. + * Unfortunately this bit replaces INTR_STATUS__ECC_TRANSACTION_DONE from the + * old IP. + * taken from patch by Jamie Iles <jamie at jamieiles.com> + * support hardware with internal ECC fixup + */ +#define INTR_STATUS__ECC_UNCOR_ERR 0x0001 + +#define INTR_STATUS__ECC_TRANSACTION_DONE 0x0001 +#define INTR_STATUS__ECC_ERR 0x0002 +#define INTR_STATUS__DMA_CMD_COMP 0x0004 +#define INTR_STATUS__TIME_OUT 0x0008 +#define INTR_STATUS__PROGRAM_FAIL 0x0010 +#define INTR_STATUS__ERASE_FAIL 0x0020 +#define INTR_STATUS__LOAD_COMP 0x0040 +#define INTR_STATUS__PROGRAM_COMP 0x0080 +#define INTR_STATUS__ERASE_COMP 0x0100 +#define INTR_STATUS__PIPE_CPYBCK_CMD_COMP 0x0200 +#define INTR_STATUS__LOCKED_BLK 0x0400 +#define INTR_STATUS__UNSUP_CMD 0x0800 +#define INTR_STATUS__INT_ACT 0x1000 +#define INTR_STATUS__RST_COMP 0x2000 +#define INTR_STATUS__PIPE_CMD_ERR 0x4000 +#define INTR_STATUS__PAGE_XFER_INC 0x8000 + +#define INTR_EN__ECC_TRANSACTION_DONE 0x0001 +#define INTR_EN__ECC_ERR 0x0002 +#define INTR_EN__DMA_CMD_COMP 0x0004 +#define INTR_EN__TIME_OUT 0x0008 +#define INTR_EN__PROGRAM_FAIL 0x0010 +#define INTR_EN__ERASE_FAIL 0x0020 +#define INTR_EN__LOAD_COMP 0x0040 +#define INTR_EN__PROGRAM_COMP 0x0080 +#define INTR_EN__ERASE_COMP 0x0100 +#define INTR_EN__PIPE_CPYBCK_CMD_COMP 0x0200 +#define INTR_EN__LOCKED_BLK 0x0400 +#define INTR_EN__UNSUP_CMD 0x0800 +#define INTR_EN__INT_ACT 0x1000 +#define INTR_EN__RST_COMP 0x2000 +#define INTR_EN__PIPE_CMD_ERR 0x4000 +#define INTR_EN__PAGE_XFER_INC 0x8000 + +#define PAGE_CNT(__bank) (0x430 + ((__bank) * 0x50)) +#define ERR_PAGE_ADDR(__bank) (0x440 + ((__bank) * 0x50)) +#define ERR_BLOCK_ADDR(__bank) (0x450 + ((__bank) * 0x50)) + +#define DATA_INTR 0x550 +#define DATA_INTR__WRITE_SPACE_AV 0x0001 +#define DATA_INTR__READ_DATA_AV 0x0002 + +#define DATA_INTR_EN 0x560 +#define DATA_INTR_EN__WRITE_SPACE_AV 0x0001 +#define DATA_INTR_EN__READ_DATA_AV 0x0002 + +#define GPREG_0 0x570 +#define GPREG_0__VALUE 0xffff + +#define GPREG_1 0x580 +#define GPREG_1__VALUE 0xffff + +#define GPREG_2 0x590 +#define GPREG_2__VALUE 0xffff + +#define GPREG_3 0x5a0 +#define GPREG_3__VALUE 0xffff + +#define ECC_THRESHOLD 0x600 +#define ECC_THRESHOLD__VALUE 0x03ff + +#define ECC_ERROR_BLOCK_ADDRESS 0x610 +#define ECC_ERROR_BLOCK_ADDRESS__VALUE 0xffff + +#define ECC_ERROR_PAGE_ADDRESS 0x620 +#define ECC_ERROR_PAGE_ADDRESS__VALUE 0x0fff +#define ECC_ERROR_PAGE_ADDRESS__BANK 0xf000 + +#define ECC_ERROR_ADDRESS 0x630 +#define ECC_ERROR_ADDRESS__OFFSET 0x0fff +#define ECC_ERROR_ADDRESS__SECTOR_NR 0xf000 + +#define ERR_CORRECTION_INFO 0x640 +#define ERR_CORRECTION_INFO__BYTEMASK 0x00ff +#define ERR_CORRECTION_INFO__DEVICE_NR 0x0f00 +#define ERR_CORRECTION_INFO__ERROR_TYPE 0x4000 +#define ERR_CORRECTION_INFO__LAST_ERR_INFO 0x8000 + +#define DMA_ENABLE 0x700 +#define DMA_ENABLE__FLAG 0x0001 + +#define IGNORE_ECC_DONE 0x710 +#define IGNORE_ECC_DONE__FLAG 0x0001 + +#define DMA_INTR 0x720 +#define DMA_INTR__TARGET_ERROR 0x0001 +#define DMA_INTR__DESC_COMP_CHANNEL0 0x0002 +#define DMA_INTR__DESC_COMP_CHANNEL1 0x0004 +#define DMA_INTR__DESC_COMP_CHANNEL2 0x0008 +#define DMA_INTR__DESC_COMP_CHANNEL3 0x0010 +#define DMA_INTR__MEMCOPY_DESC_COMP 0x0020 + +#define DMA_INTR_EN 0x730 +#define DMA_INTR_EN__TARGET_ERROR 0x0001 +#define DMA_INTR_EN__DESC_COMP_CHANNEL0 0x0002 +#define DMA_INTR_EN__DESC_COMP_CHANNEL1 0x0004 +#define DMA_INTR_EN__DESC_COMP_CHANNEL2 0x0008 +#define DMA_INTR_EN__DESC_COMP_CHANNEL3 0x0010 +#define DMA_INTR_EN__MEMCOPY_DESC_COMP 0x0020 + +#define TARGET_ERR_ADDR_LO 0x740 +#define TARGET_ERR_ADDR_LO__VALUE 0xffff + +#define TARGET_ERR_ADDR_HI 0x750 +#define TARGET_ERR_ADDR_HI__VALUE 0xffff + +#define CHNL_ACTIVE 0x760 +#define CHNL_ACTIVE__CHANNEL0 0x0001 +#define CHNL_ACTIVE__CHANNEL1 0x0002 +#define CHNL_ACTIVE__CHANNEL2 0x0004 +#define CHNL_ACTIVE__CHANNEL3 0x0008 + +#define FLASH_BURST_LENGTH 0x770 +#define CHIP_INTERLEAVE_ENABLE_AND_ALLOW_INT_READS 0X780 +#define NO_OF_BLOCKS_PER_LUN 0X790 +#define LUN_STATUS_CMD 0X7A0 + +#define ACTIVE_SRC_ID 0x800 +#define ACTIVE_SRC_ID__VALUE 0x00ff + +#define PTN_INTR 0x810 +#define PTN_INTR__CONFIG_ERROR 0x0001 +#define PTN_INTR__ACCESS_ERROR_BANK0 0x0002 +#define PTN_INTR__ACCESS_ERROR_BANK1 0x0004 +#define PTN_INTR__ACCESS_ERROR_BANK2 0x0008 +#define PTN_INTR__ACCESS_ERROR_BANK3 0x0010 +#define PTN_INTR__REG_ACCESS_ERROR 0x0020 + +#define PTN_INTR_EN 0x820 +#define PTN_INTR_EN__CONFIG_ERROR 0x0001 +#define PTN_INTR_EN__ACCESS_ERROR_BANK0 0x0002 +#define PTN_INTR_EN__ACCESS_ERROR_BANK1 0x0004 +#define PTN_INTR_EN__ACCESS_ERROR_BANK2 0x0008 +#define PTN_INTR_EN__ACCESS_ERROR_BANK3 0x0010 +#define PTN_INTR_EN__REG_ACCESS_ERROR 0x0020 + +#define PERM_SRC_ID(__bank) (0x830 + ((__bank) * 0x40)) +#define PERM_SRC_ID__SRCID 0x00ff +#define PERM_SRC_ID__DIRECT_ACCESS_ACTIVE 0x0800 +#define PERM_SRC_ID__WRITE_ACTIVE 0x2000 +#define PERM_SRC_ID__READ_ACTIVE 0x4000 +#define PERM_SRC_ID__PARTITION_VALID 0x8000 + +#define MIN_BLK_ADDR(__bank) (0x840 + ((__bank) * 0x40)) +#define MIN_BLK_ADDR__VALUE 0xffff + +#define MAX_BLK_ADDR(__bank) (0x850 + ((__bank) * 0x40)) +#define MAX_BLK_ADDR__VALUE 0xffff + +#define MIN_MAX_BANK(__bank) (0x860 + ((__bank) * 0x40)) +#define MIN_MAX_BANK__MIN_VALUE 0x0003 +#define MIN_MAX_BANK__MAX_VALUE 0x000c + + +/* ffsdefs.h */ +#define CLEAR 0 /*use this to clear a field instead of "fail"*/ +#define SET 1 /*use this to set a field instead of "pass"*/ +#define FAIL 1 /*failed flag*/ +#define PASS 0 /*success flag*/ +#define ERR -1 /*error flag*/ + +/* lld.h */ +#define GOOD_BLOCK 0 +#define DEFECTIVE_BLOCK 1 +#define READ_ERROR 2 + +#define CLK_X 5 +#define CLK_MULTI 4 + +/* spectraswconfig.h */ +#define CMD_DMA 0 + +#define SPECTRA_PARTITION_ID 0 +/**** Block Table and Reserved Block Parameters *****/ +#define SPECTRA_START_BLOCK 3 +#define NUM_FREE_BLOCKS_GATE 30 + +/* KBV - Updated to LNW scratch register address */ +#define SCRATCH_REG_ADDR CONFIG_MTD_NAND_DENALI_SCRATCH_REG_ADDR +#define SCRATCH_REG_SIZE 64 + +#define GLOB_HWCTL_DEFAULT_BLKS 2048 + +#define SUPPORT_15BITECC 1 +#define SUPPORT_8BITECC 1 + +#define CUSTOM_CONF_PARAMS 0 + +#define ONFI_BLOOM_TIME 1 +#define MODE5_WORKAROUND 0 + + +#define MODE_00 0x00000000 +#define MODE_01 0x04000000 +#define MODE_10 0x08000000 +#define MODE_11 0x0C000000 + + +#define DATA_TRANSFER_MODE 0 +#define PROTECTION_PER_BLOCK 1 +#define LOAD_WAIT_COUNT 2 +#define PROGRAM_WAIT_COUNT 3 +#define ERASE_WAIT_COUNT 4 +#define INT_MONITOR_CYCLE_COUNT 5 +#define READ_BUSY_PIN_ENABLED 6 +#define MULTIPLANE_OPERATION_SUPPORT 7 +#define PRE_FETCH_MODE 8 +#define CE_DONT_CARE_SUPPORT 9 +#define COPYBACK_SUPPORT 10 +#define CACHE_WRITE_SUPPORT 11 +#define CACHE_READ_SUPPORT 12 +#define NUM_PAGES_IN_BLOCK 13 +#define ECC_ENABLE_SELECT 14 +#define WRITE_ENABLE_2_READ_ENABLE 15 +#define ADDRESS_2_DATA 16 +#define READ_ENABLE_2_WRITE_ENABLE 17 +#define TWO_ROW_ADDRESS_CYCLES 18 +#define MULTIPLANE_ADDRESS_RESTRICT 19 +#define ACC_CLOCKS 20 +#define READ_WRITE_ENABLE_LOW_COUNT 21 +#define READ_WRITE_ENABLE_HIGH_COUNT 22 + +#define ECC_SECTOR_SIZE 512 + +struct nand_buf { + int head; + int tail; + uint8_t *buf; + dma_addr_t dma_buf; +}; + +#define INTEL_CE4100 1 +#define INTEL_MRST 2 +#define DT 3 + +struct denali_nand_info { + struct mtd_info mtd; + struct nand_chip nand; + int flash_bank; /* currently selected chip */ + int status; + int platform; + struct nand_buf buf; + struct device_d *dev; + int total_used_banks; + uint32_t block; /* stored for future use */ + uint32_t page; + void __iomem *flash_reg; /* Mapped io reg base address */ + void __iomem *flash_mem; /* Mapped io reg base address */ + + /* elements used by ISR */ + //struct completion complete; + spinlock_t irq_lock; + uint32_t irq_status; + int irq_debug_array[32]; + int idx; + int irq; + + uint32_t devnum; /* represent how many nands connected */ + uint32_t fwblks; /* represent how many blocks FW used */ + uint32_t totalblks; + uint32_t blksperchip; + uint32_t bbtskipbytes; + uint32_t max_banks; + bool have_hw_ecc_fixup; +}; + +extern int denali_init(struct denali_nand_info *denali); +extern void denali_remove(struct denali_nand_info *denali); + +#endif /* __DENALI_H__ */ diff --git a/drivers/mtd/nand/nand_denali.c b/drivers/mtd/nand/nand_denali.c new file mode 100644 index 0000000..f2d9cb7 --- /dev/null +++ b/drivers/mtd/nand/nand_denali.c @@ -0,0 +1,1559 @@ +/* + * NAND Flash Controller Device Driver + * Copyright © 2009-2010, Intel Corporation and its suppliers. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + * + */ + +#include <common.h> +#include <dma.h> +#include <driver.h> +#include <malloc.h> +#include <init.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <mach/generic.h> +#include <io.h> +#include <of_mtd.h> +#include <errno.h> +#include <asm/io.h> +#include "denali.h" + +#define NAND_DEFAULT_TIMINGS -1 + +static int onfi_timing_mode = CONFIG_MTD_NAND_DENALI_TIMING_MODE; + +#define DENALI_NAND_NAME "denali-nand" + +/* + * We define a macro here that combines all interrupts this driver uses into + * a single constant value, for convenience. + */ +#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \ + INTR_STATUS__ECC_TRANSACTION_DONE | \ + INTR_STATUS__ECC_ERR | \ + INTR_STATUS__PROGRAM_FAIL | \ + INTR_STATUS__LOAD_COMP | \ + INTR_STATUS__PROGRAM_COMP | \ + INTR_STATUS__TIME_OUT | \ + INTR_STATUS__ERASE_FAIL | \ + INTR_STATUS__RST_COMP | \ + INTR_STATUS__ERASE_COMP | \ + INTR_STATUS__ECC_UNCOR_ERR) +/* And here we use a variable for interrupt mask, bcs we want to + * change the irq mask during init. That is, we want to enable R/B + * interrupt during init, but not at other times */ +static uint32_t denali_irq_mask = DENALI_IRQ_ALL; + + +/* + * indicates whether or not the internal value for the flash bank is + * valid or not + */ +#define CHIP_SELECT_INVALID -1 + +#define SUPPORT_8BITECC 1 + +/* + * This macro divides two integers and rounds fractional values up + * to the nearest integer value. + */ +#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y))) + +/* + * this macro allows us to convert from an MTD structure to our own + * device context (denali) structure. + */ +#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd) + +/* + * These constants are defined by the driver to enable common driver + * configuration options. + */ +#define SPARE_ACCESS 0x41 +#define MAIN_ACCESS 0x42 +#define MAIN_SPARE_ACCESS 0x43 +#define PIPELINE_ACCESS 0x2000 + +#define DENALI_READ 0 +#define DENALI_WRITE 0x100 + +/* types of device accesses. We can issue commands and get status */ +#define COMMAND_CYCLE 0 +#define ADDR_CYCLE 1 +#define STATUS_CYCLE 2 + +/* + * this is a helper macro that allows us to + * format the bank into the proper bits for the controller + */ +#define BANK(x) ((x) << 24) + +/* forward declarations */ +static void clear_interrupts(struct denali_nand_info *denali); +static uint32_t wait_for_irq(struct denali_nand_info *denali, + uint32_t irq_mask); +static void denali_irq_enable(struct denali_nand_info *denali, + uint32_t int_mask); +static uint32_t read_interrupt_status(struct denali_nand_info *denali); + +/* + * Certain operations for the denali NAND controller use an indexed mode to + * read/write data. The operation is performed by writing the address value + * of the command to the device memory followed by the data. This function + * abstracts this common operation. + */ +static void index_addr(struct denali_nand_info *denali, + uint32_t address, uint32_t data) +{ + iowrite32(address, denali->flash_mem); + iowrite32(data, denali->flash_mem + 0x10); +} + +/* Perform an indexed read of the device */ +static void index_addr_read_data(struct denali_nand_info *denali, + uint32_t address, uint32_t *pdata) +{ + iowrite32(address, denali->flash_mem); + *pdata = ioread32(denali->flash_mem + 0x10); +} + +/* + * We need to buffer some data for some of the NAND core routines. + * The operations manage buffering that data. + */ +static void reset_buf(struct denali_nand_info *denali) +{ + denali->buf.head = denali->buf.tail = 0; +} + +static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte) +{ + denali->buf.buf[denali->buf.tail++] = byte; +} + +/* reads the status of the device */ +static void read_status(struct denali_nand_info *denali) +{ + uint32_t cmd; + + /* initialize the data buffer to store status */ + reset_buf(denali); + + cmd = ioread32(denali->flash_reg + WRITE_PROTECT); + if (cmd) + write_byte_to_buf(denali, NAND_STATUS_WP); + else + write_byte_to_buf(denali, 0); +} + +/* resets a specific device connected to the core */ +static void reset_bank(struct denali_nand_info *denali) +{ + iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET); + + /* wait for completion */ + while (ioread32(denali->flash_reg + DEVICE_RESET) & (1 << denali->flash_bank)) + barrier(); +} + +/* Reset the flash controller */ +static uint16_t denali_nand_reset(struct denali_nand_info *denali) +{ + int i; + + dev_dbg(denali->dev, "%s, Line %d, Function: %s\n", + __FILE__, __LINE__, __func__); + + for (i = 0; i < denali->max_banks; i++) + iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, + denali->flash_reg + INTR_STATUS(i)); + + for (i = 0; i < denali->max_banks; i++) { + iowrite32(1 << i, denali->flash_reg + DEVICE_RESET); + while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) & + (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT))) + /* cpu_relax(); */ + barrier(); + if (ioread32(denali->flash_reg + INTR_STATUS(i)) & + INTR_STATUS__TIME_OUT) + dev_dbg(denali->dev, + "NAND Reset operation timed out on bank %d\n", i); + } + + for (i = 0; i < denali->max_banks; i++) + iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, + denali->flash_reg + INTR_STATUS(i)); + + return PASS; +} + +/* + * this routine calculates the ONFI timing values for a given mode and + * programs the clocking register accordingly. The mode is determined by + * the get_onfi_nand_para routine. + */ +static void nand_onfi_timing_set(struct denali_nand_info *denali, + uint16_t mode) +{ + uint16_t Trea[6] = {40, 30, 25, 20, 20, 16}; + uint16_t Trp[6] = {50, 25, 17, 15, 12, 10}; + uint16_t Treh[6] = {30, 15, 15, 10, 10, 7}; + uint16_t Trc[6] = {100, 50, 35, 30, 25, 20}; + uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15}; + uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5}; + uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25}; + uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70}; + uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100}; + uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100}; + uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60}; + uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15}; + + uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid; + uint16_t dv_window = 0; + uint16_t en_lo, en_hi; + uint16_t acc_clks; + uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt; + + dev_dbg(denali->dev, "%s, Line %d, Function: %s\n", + __FILE__, __LINE__, __func__); + + en_lo = CEIL_DIV(Trp[mode], CLK_X); + en_hi = CEIL_DIV(Treh[mode], CLK_X); +#if ONFI_BLOOM_TIME + if ((en_hi * CLK_X) < (Treh[mode] + 2)) + en_hi++; +#endif + + if ((en_lo + en_hi) * CLK_X < Trc[mode]) + en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X); + + if ((en_lo + en_hi) < CLK_MULTI) + en_lo += CLK_MULTI - en_lo - en_hi; + + while (dv_window < 8) { + data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode]; + + data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode]; + + data_invalid = data_invalid_rhoh < data_invalid_rloh ? + data_invalid_rhoh : data_invalid_rloh; + + dv_window = data_invalid - Trea[mode]; + + if (dv_window < 8) + en_lo++; + } + + acc_clks = CEIL_DIV(Trea[mode], CLK_X); + + while (acc_clks * CLK_X - Trea[mode] < 3) + acc_clks++; + + if (data_invalid - acc_clks * CLK_X < 2) + dev_warn(denali->dev, "%s, Line %d: Warning!\n", + __FILE__, __LINE__); + + addr_2_data = CEIL_DIV(Tadl[mode], CLK_X); + re_2_we = CEIL_DIV(Trhw[mode], CLK_X); + re_2_re = CEIL_DIV(Trhz[mode], CLK_X); + we_2_re = CEIL_DIV(Twhr[mode], CLK_X); + cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X); + if (cs_cnt == 0) + cs_cnt = 1; + + if (Tcea[mode]) { + while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode]) + cs_cnt++; + } + +#if MODE5_WORKAROUND + if (mode == 5) + acc_clks = 5; +#endif + + /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */ + if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 && + ioread32(denali->flash_reg + DEVICE_ID) == 0x88) + acc_clks = 6; + + iowrite32(acc_clks, denali->flash_reg + ACC_CLKS); + iowrite32(re_2_we, denali->flash_reg + RE_2_WE); + iowrite32(re_2_re, denali->flash_reg + RE_2_RE); + iowrite32(we_2_re, denali->flash_reg + WE_2_RE); + iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA); + iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT); + iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT); + iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT); +} + +/* queries the NAND device to see what ONFI modes it supports. */ +static uint16_t get_onfi_nand_para(struct denali_nand_info *denali) +{ + int i; + + /* + * we needn't to do a reset here because driver has already + * reset all the banks before + */ + if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) & + ONFI_TIMING_MODE__VALUE)) + return FAIL; + + for (i = 5; i > 0; i--) { + if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & + (0x01 << i)) + break; + } + + nand_onfi_timing_set(denali, i); + + /* + * By now, all the ONFI devices we know support the page cache + * rw feature. So here we enable the pipeline_rw_ahead feature + */ + /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */ + /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */ + + return PASS; +} + +static void get_samsung_nand_para(struct denali_nand_info *denali, + uint8_t device_id) +{ + if (device_id == 0xd3) { /* Samsung K9WAG08U1A */ + /* Set timing register values according to datasheet */ + iowrite32(5, denali->flash_reg + ACC_CLKS); + iowrite32(20, denali->flash_reg + RE_2_WE); + iowrite32(12, denali->flash_reg + WE_2_RE); + iowrite32(14, denali->flash_reg + ADDR_2_DATA); + iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT); + iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT); + iowrite32(2, denali->flash_reg + CS_SETUP_CNT); + } +} + +static void get_toshiba_nand_para(struct denali_nand_info *denali) +{ + uint32_t tmp; + + /* + * Workaround to fix a controller bug which reports a wrong + * spare area size for some kind of Toshiba NAND device + */ + if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && + (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) { + iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); + tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) * + ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE); + iowrite32(tmp, + denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); +#if SUPPORT_15BITECC + iowrite32(15, denali->flash_reg + ECC_CORRECTION); +#elif SUPPORT_8BITECC + iowrite32(8, denali->flash_reg + ECC_CORRECTION); +#endif + } +} + +static void get_hynix_nand_para(struct denali_nand_info *denali, + uint8_t device_id) +{ + uint32_t main_size, spare_size; + + switch (device_id) { + case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */ + case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */ + iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK); + iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); + iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); + main_size = 4096 * + ioread32(denali->flash_reg + DEVICES_CONNECTED); + spare_size = 224 * + ioread32(denali->flash_reg + DEVICES_CONNECTED); + iowrite32(main_size, + denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); + iowrite32(spare_size, + denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); + iowrite32(0, denali->flash_reg + DEVICE_WIDTH); +#if SUPPORT_15BITECC + iowrite32(15, denali->flash_reg + ECC_CORRECTION); +#elif SUPPORT_8BITECC + iowrite32(8, denali->flash_reg + ECC_CORRECTION); +#endif + break; + default: + dev_warn(denali->dev, + "Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n" + "Will use default parameter values instead.\n", + device_id); + } +} + +/* + * determines how many NAND chips are connected to the controller. Note for + * Intel CE4100 devices we don't support more than one device. + */ +static void find_valid_banks(struct denali_nand_info *denali) +{ + uint32_t id[denali->max_banks]; + int i; + + denali->total_used_banks = 1; + for (i = 0; i < denali->max_banks; i++) { + index_addr(denali, MODE_11 | (i << 24) | 0, 0x90); + index_addr(denali, MODE_11 | (i << 24) | 1, 0); + index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]); + + dev_dbg(denali->dev, + "Return 1st ID for bank[%d]: %x\n", i, id[i]); + + if (i == 0) { + if (!(id[i] & 0x0ff)) + break; /* WTF? */ + } else { + if ((id[i] & 0x0ff) == (id[0] & 0x0ff)) + denali->total_used_banks++; + else + break; + } + } + + if (denali->platform == INTEL_CE4100) { + /* + * Platform limitations of the CE4100 device limit + * users to a single chip solution for NAND. + * Multichip support is not enabled. + */ + if (denali->total_used_banks != 1) { + dev_err(denali->dev, + "Sorry, Intel CE4100 only supports a single NAND device.\n"); + BUG(); + } + } + dev_dbg(denali->dev, + "denali->total_used_banks: %d\n", denali->total_used_banks); +} + +/* + * Use the configuration feature register to determine the maximum number of + * banks that the hardware supports. + */ +static void detect_max_banks(struct denali_nand_info *denali) +{ + uint32_t features = ioread32(denali->flash_reg + FEATURES); + + denali->max_banks = 2 << (features & FEATURES__N_BANKS); +} + +static void detect_partition_feature(struct denali_nand_info *denali) +{ + /* + * For MRST platform, denali->fwblks represent the + * number of blocks firmware is taken, + * FW is in protect partition and MTD driver has no + * permission to access it. So let driver know how many + * blocks it can't touch. + */ + if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) { + if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) & + PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) { + denali->fwblks = + ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) & + MIN_MAX_BANK__MIN_VALUE) * + denali->blksperchip) + + + (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) & + MIN_BLK_ADDR__VALUE); + } else { + denali->fwblks = SPECTRA_START_BLOCK; + } + } else { + denali->fwblks = SPECTRA_START_BLOCK; + } +} + +static uint16_t denali_nand_timing_set(struct denali_nand_info *denali) +{ + uint16_t status = PASS; + uint32_t id_bytes[8], addr; + uint8_t maf_id, device_id; + int i; + + dev_dbg(denali->dev, "%s, Line %d, Function: %s\n", + __FILE__, __LINE__, __func__); + + /* + * Use read id method to get device ID and other params. + * For some NAND chips, controller can't report the correct + * device ID by reading from DEVICE_ID register + */ + addr = MODE_11 | BANK(denali->flash_bank); + index_addr(denali, addr | 0, 0x90); + index_addr(denali, addr | 1, 0); + for (i = 0; i < 8; i++) + index_addr_read_data(denali, addr | 2, &id_bytes[i]); + maf_id = id_bytes[0]; + device_id = id_bytes[1]; + + if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) & + ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */ + if (FAIL == get_onfi_nand_para(denali)) + return FAIL; + } else if (maf_id == 0xEC) { /* Samsung NAND */ + get_samsung_nand_para(denali, device_id); + } else if (maf_id == 0x98) { /* Toshiba NAND */ + get_toshiba_nand_para(denali); + } else if (maf_id == 0xAD) { /* Hynix NAND */ + get_hynix_nand_para(denali, device_id); + } + + dev_info(denali->dev, + "Dump timing register values:\n" + "acc_clks: %d, re_2_we: %d, re_2_re: %d\n" + "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n" + "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n", + ioread32(denali->flash_reg + ACC_CLKS), + ioread32(denali->flash_reg + RE_2_WE), + ioread32(denali->flash_reg + RE_2_RE), + ioread32(denali->flash_reg + WE_2_RE), + ioread32(denali->flash_reg + ADDR_2_DATA), + ioread32(denali->flash_reg + RDWR_EN_LO_CNT), + ioread32(denali->flash_reg + RDWR_EN_HI_CNT), + ioread32(denali->flash_reg + CS_SETUP_CNT)); + + find_valid_banks(denali); + + detect_partition_feature(denali); + + /* + * If the user specified to override the default timings + * with a specific ONFI mode, we apply those changes here. + */ + if (onfi_timing_mode != NAND_DEFAULT_TIMINGS) + nand_onfi_timing_set(denali, onfi_timing_mode); + + return status; +} + +static void denali_set_intr_modes(struct denali_nand_info *denali, + uint16_t INT_ENABLE) +{ + dev_dbg(denali->dev, "%s, Line %d, Function: %s\n", + __FILE__, __LINE__, __func__); + + if (INT_ENABLE) + iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE); + else + iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE); +} + +/* + * validation function to verify that the controlling software is making + * a valid request + */ +static inline bool is_flash_bank_valid(int flash_bank) +{ + return flash_bank >= 0 && flash_bank < 4; +} + + +static void denali_irq_init(struct denali_nand_info *denali) +{ + uint32_t int_mask; + int i; + + /* Disable global interrupts */ + denali_set_intr_modes(denali, false); + + int_mask = DENALI_IRQ_ALL; + + /* Clear all status bits */ + for (i = 0; i < denali->max_banks; ++i) + iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i)); + + denali_irq_enable(denali, int_mask); +} + + +static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali) +{ + denali_set_intr_modes(denali, false); +} + +static void denali_irq_enable(struct denali_nand_info *denali, + uint32_t int_mask) +{ + int i; + + for (i = 0; i < denali->max_banks; ++i) + iowrite32(int_mask, denali->flash_reg + INTR_EN(i)); +} + +/* Interrupts are cleared by writing a 1 to the appropriate status bit */ +static inline void clear_interrupt(struct denali_nand_info *denali, + uint32_t irq_mask) +{ + uint32_t intr_status_reg; + + intr_status_reg = INTR_STATUS(denali->flash_bank); + + iowrite32(irq_mask, denali->flash_reg + intr_status_reg); +} + +static void clear_interrupts(struct denali_nand_info *denali) +{ + uint32_t status; + + status = read_interrupt_status(denali); + clear_interrupt(denali, status); + + denali->irq_status = 0x0; +} + +static uint32_t read_interrupt_status(struct denali_nand_info *denali) +{ + uint32_t intr_status_reg; + + intr_status_reg = INTR_STATUS(denali->flash_bank); + + return ioread32(denali->flash_reg + intr_status_reg); +} + +static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask) +{ + unsigned long comp_res = 1000; + uint32_t intr_status = 0; + + do { + intr_status = read_interrupt_status(denali); + if (intr_status & irq_mask) { + /* our interrupt was detected */ + break; + } + udelay(1); + comp_res--; + } while (comp_res != 0); + + if (comp_res == 0) { + /* timeout */ + intr_status = 0; + dev_dbg(denali->dev, "timeout occurred, status = 0x%x, mask = 0x%x\n", + intr_status, irq_mask); + } + return intr_status; +} + +/* + * This helper function setups the registers for ECC and whether or not + * the spare area will be transferred. + */ +static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en, + bool transfer_spare) +{ + int ecc_en_flag, transfer_spare_flag; + + /* set ECC, transfer spare bits if needed */ + ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; + transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; + + /* Enable spare area/ECC per user's request. */ + iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE); + iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG); +} + +/* + * sends a pipeline command operation to the controller. See the Denali NAND + * controller's user guide for more information (section 4.2.3.6). + */ +static int denali_send_pipeline_cmd(struct denali_nand_info *denali, + bool ecc_en, bool transfer_spare, + int access_type, int op) +{ + int status = PASS; + uint32_t page_count = 1; + uint32_t addr, cmd, irq_status, irq_mask; + + if (op == DENALI_READ) + irq_mask = INTR_STATUS__LOAD_COMP; + else if (op == DENALI_WRITE) + irq_mask = 0; + else + BUG(); + + setup_ecc_for_xfer(denali, ecc_en, transfer_spare); + + clear_interrupts(denali); + + addr = BANK(denali->flash_bank) | denali->page; + + if (op == DENALI_WRITE && access_type != SPARE_ACCESS) { + cmd = MODE_01 | addr; + iowrite32(cmd, denali->flash_mem); + } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) { + /* read spare area */ + cmd = MODE_10 | addr; + index_addr(denali, cmd, access_type); + + cmd = MODE_01 | addr; + iowrite32(cmd, denali->flash_mem); + } else if (op == DENALI_READ) { + /* setup page read request for access type */ + cmd = MODE_10 | addr; + index_addr(denali, cmd, access_type); + + /* + * page 33 of the NAND controller spec indicates we should not + * use the pipeline commands in Spare area only mode. + * So we don't. + */ + if (access_type == SPARE_ACCESS) { + cmd = MODE_01 | addr; + iowrite32(cmd, denali->flash_mem); + } else { + index_addr(denali, cmd, + PIPELINE_ACCESS | op | page_count); + + /* + * wait for command to be accepted + * can always use status0 bit as the + * mask is identical for each bank. + */ + irq_status = wait_for_irq(denali, irq_mask); + + if (irq_status == 0) { + dev_err(denali->dev, + "cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n", + cmd, denali->page, addr); + status = FAIL; + } else { + cmd = MODE_01 | addr; + iowrite32(cmd, denali->flash_mem); + } + } + } + return status; +} + +/* helper function that simply writes a buffer to the flash */ +static int write_data_to_flash_mem(struct denali_nand_info *denali, + const uint8_t *buf, int len) +{ + uint32_t *buf32; + int i; + + /* + * verify that the len is a multiple of 4. + * see comment in read_data_from_flash_mem() + */ + BUG_ON((len % 4) != 0); + + /* write the data to the flash memory */ + buf32 = (uint32_t *)buf; + for (i = 0; i < len / 4; i++) + iowrite32(*buf32++, denali->flash_mem + 0x10); + return i * 4; /* intent is to return the number of bytes read */ +} + +/* helper function that simply reads a buffer from the flash */ +static int read_data_from_flash_mem(struct denali_nand_info *denali, + uint8_t *buf, int len) +{ + uint32_t *buf32; + int i; + + /* + * we assume that len will be a multiple of 4, if not it would be nice + * to know about it ASAP rather than have random failures... + * This assumption is based on the fact that this function is designed + * to be used to read flash pages, which are typically multiples of 4. + */ + BUG_ON((len % 4) != 0); + + /* transfer the data from the flash */ + buf32 = (uint32_t *)buf; + for (i = 0; i < len / 4; i++) + *buf32++ = ioread32(denali->flash_mem + 0x10); + return i * 4; /* intent is to return the number of bytes read */ +} + +/* writes OOB data to the device */ +static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + uint32_t irq_status; + uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP | + INTR_STATUS__PROGRAM_FAIL; + int status = 0; + + denali->page = page; + + if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS, + DENALI_WRITE) == PASS) { + write_data_to_flash_mem(denali, buf, mtd->oobsize); + + /* wait for operation to complete */ + irq_status = wait_for_irq(denali, irq_mask); + + if (irq_status == 0) { + dev_err(denali->dev, "OOB write failed\n"); + status = -EIO; + } + + /* set the device back to MAIN_ACCESS */ + { + uint32_t addr; + uint32_t cmd; + addr = BANK(denali->flash_bank) | denali->page; + cmd = MODE_10 | addr; + index_addr(denali, (uint32_t)cmd, MAIN_ACCESS); + } + + } else { + dev_err(denali->dev, "unable to send pipeline command\n"); + status = -EIO; + } + return status; +} + +/* reads OOB data from the device */ +static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + uint32_t irq_mask = INTR_STATUS__LOAD_COMP; + uint32_t irq_status, addr, cmd; + + denali->page = page; + + if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, + DENALI_READ) == PASS) { + read_data_from_flash_mem(denali, buf, mtd->oobsize); + + /* + * wait for command to be accepted + * can always use status0 bit as the + * mask is identical for each bank. + */ + irq_status = wait_for_irq(denali, irq_mask); + + if (irq_status == 0) + dev_err(denali->dev, "page on OOB timeout %d\n", + denali->page); + + /* + * We set the device back to MAIN_ACCESS here as I observed + * instability with the controller if you do a block erase + * and the last transaction was a SPARE_ACCESS. Block erase + * is reliable (according to the MTD test infrastructure) + * if you are in MAIN_ACCESS. + */ + addr = BANK(denali->flash_bank) | denali->page; + cmd = MODE_10 | addr; + index_addr(denali, cmd, MAIN_ACCESS); + } +} + +/* + * this function examines buffers to see if they contain data that + * indicate that the buffer is part of an erased region of flash. + */ +static bool is_erased(uint8_t *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + if (buf[i] != 0xFF) + return false; + return true; +} +#define ECC_SECTOR_SIZE 512 + +#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12) +#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET)) +#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK) +#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE)) +#define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8) +#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO) + +static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf, + uint32_t irq_status, unsigned int *max_bitflips) +{ + bool check_erased_page = false; + unsigned int bitflips = 0; + + if (denali->have_hw_ecc_fixup && + (irq_status & INTR_STATUS__ECC_UNCOR_ERR)) { + clear_interrupts(denali); + denali_set_intr_modes(denali, true); + check_erased_page = true; + } else if (irq_status & INTR_STATUS__ECC_ERR) { + /* read the ECC errors. we'll ignore them for now */ + uint32_t err_address, err_correction_info, err_byte, + err_sector, err_device, err_correction_value; + denali_set_intr_modes(denali, false); + + do { + err_address = ioread32(denali->flash_reg + + ECC_ERROR_ADDRESS); + err_sector = ECC_SECTOR(err_address); + err_byte = ECC_BYTE(err_address); + + err_correction_info = ioread32(denali->flash_reg + + ERR_CORRECTION_INFO); + err_correction_value = + ECC_CORRECTION_VALUE(err_correction_info); + err_device = ECC_ERR_DEVICE(err_correction_info); + + if (ECC_ERROR_CORRECTABLE(err_correction_info)) { + /* + * If err_byte is larger than ECC_SECTOR_SIZE, + * means error happened in OOB, so we ignore + * it. It's no need for us to correct it + * err_device is represented the NAND error + * bits are happened in if there are more + * than one NAND connected. + */ + if (err_byte < ECC_SECTOR_SIZE) { + int offset; + + offset = (err_sector * + ECC_SECTOR_SIZE + + err_byte) * + denali->devnum + + err_device; + /* correct the ECC error */ + buf[offset] ^= err_correction_value; + denali->mtd.ecc_stats.corrected++; + bitflips++; + } + } else { + /* + * if the error is not correctable, need to + * look at the page to see if it is an erased + * page. if so, then it's not a real ECC error + */ + check_erased_page = true; + } + } while (!ECC_LAST_ERR(err_correction_info)); + /* + * Once handle all ecc errors, controller will trigger + * a ECC_TRANSACTION_DONE interrupt, so here just wait + * for a while for this interrupt + */ + while (!(read_interrupt_status(denali) & + INTR_STATUS__ECC_TRANSACTION_DONE)) + /* cpu_relax(); */ + barrier(); + clear_interrupts(denali); + denali_set_intr_modes(denali, true); + } + *max_bitflips = bitflips; + return check_erased_page; +} + +/* programs the controller to either enable/disable DMA transfers */ +static void denali_enable_dma(struct denali_nand_info *denali, bool en) +{ + iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE); + ioread32(denali->flash_reg + DMA_ENABLE); +} + +/* setups the HW to perform the data DMA */ +static void denali_setup_dma(struct denali_nand_info *denali, int op) +{ + uint32_t mode; + const int page_count = 1; + uint32_t addr = (unsigned long)denali->buf.buf; + + mode = MODE_10 | BANK(denali->flash_bank); + + /* DMA is a four step process */ + + /* 1. setup transfer type and # of pages */ + index_addr(denali, mode | denali->page, 0x2000 | op | page_count); + + /* 2. set memory high address bits 23:8 */ + index_addr(denali, mode | ((addr >> 16) << 8), 0x2200); + + /* 3. set memory low address bits 23:8 */ + index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300); + + /* 4. interrupt when complete, burst len = 64 bytes */ + index_addr(denali, mode | 0x14000, 0x2400); +} + +/* + * writes a page. user specifies type, and this function handles the + * configuration details. + */ +static int write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, bool raw_xfer) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + dma_addr_t addr = (unsigned long)denali->buf.buf; + size_t size = denali->mtd.writesize + denali->mtd.oobsize; + uint32_t irq_status; + uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP | + INTR_STATUS__PROGRAM_FAIL; + + /* + * if it is a raw xfer, we want to disable ecc and send the spare area. + * !raw_xfer - enable ecc + * raw_xfer - transfer spare + */ + setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer); + + /* copy buffer into DMA buffer */ + memcpy(denali->buf.buf, buf, mtd->writesize); + + if (raw_xfer) { + /* transfer the data to the spare area */ + memcpy(denali->buf.buf + mtd->writesize, + chip->oob_poi, + mtd->oobsize); + } + + dma_sync_single_for_device(addr, size, DMA_TO_DEVICE); + + clear_interrupts(denali); + denali_enable_dma(denali, true); + + denali_setup_dma(denali, DENALI_WRITE); + + /* wait for operation to complete */ + irq_status = wait_for_irq(denali, irq_mask); + + if (irq_status == 0) { + dev_err(denali->dev, "timeout on write_page (type = %d)\n", + raw_xfer); + denali->status = NAND_STATUS_FAIL; + } + + denali_enable_dma(denali, false); + dma_sync_single_for_cpu(addr, size, DMA_TO_DEVICE); + + return 0; +} + +/* NAND core entry points */ + +/* + * this is the callback that the NAND core calls to write a page. Since + * writing a page with ECC or without is similar, all the work is done + * by write_page above. + */ +static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) +{ + /* + * for regular page writes, we let HW handle all the ECC + * data written to the device. + */ + return write_page(mtd, chip, buf, false); +} + +/* + * This is the callback that the NAND core calls to write a page without ECC. + * raw access is similar to ECC page writes, so all the work is done in the + * write_page() function above. + */ +static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required) +{ + /* + * for raw page writes, we want to disable ECC and simply write + * whatever data is in the buffer. + */ + return write_page(mtd, chip, buf, true); +} + +static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + return write_oob_data(mtd, chip->oob_poi, page); +} + +static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + read_oob_data(mtd, chip->oob_poi, page); + + return 0; +} + +static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + unsigned int max_bitflips = 0; + struct denali_nand_info *denali = mtd_to_denali(mtd); + + dma_addr_t addr = (unsigned long)denali->buf.buf; + size_t size = denali->mtd.writesize + denali->mtd.oobsize; + + uint32_t irq_status; + uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE | + INTR_STATUS__ECC_ERR; + bool check_erased_page = false; + + if (page != denali->page) { + dev_err(denali->dev, + "IN %s: page %d is not equal to denali->page %d", + __func__, page, denali->page); + BUG(); + } + + setup_ecc_for_xfer(denali, true, false); + + denali_enable_dma(denali, true); + dma_sync_single_for_device(addr, size, DMA_FROM_DEVICE); + + clear_interrupts(denali); + denali_setup_dma(denali, DENALI_READ); + + /* wait for operation to complete */ + irq_status = wait_for_irq(denali, irq_mask); + + dma_sync_single_for_cpu(addr, size, DMA_FROM_DEVICE); + + memcpy(buf, denali->buf.buf, mtd->writesize); + + check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips); + denali_enable_dma(denali, false); + + if (check_erased_page) { + if (denali->have_hw_ecc_fixup) { + /* When we have hw ecc fixup, don't check oob. + * That code below looks jacked up anyway. I mean, + * look at it, wtf? */ + if (!is_erased(buf, denali->mtd.writesize)) + denali->mtd.ecc_stats.failed++; + } else { + read_oob_data(&denali->mtd, chip->oob_poi, + denali->page); + + /* check ECC failures that may have occurred on + * erased pages */ + if (check_erased_page) { + if (!is_erased(buf, denali->mtd.writesize)) + denali->mtd.ecc_stats.failed++; + if (!is_erased(buf, denali->mtd.oobsize)) + denali->mtd.ecc_stats.failed++; + } + } + } + return max_bitflips; +} + +static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + dma_addr_t addr = (unsigned long)denali->buf.buf; + size_t size = denali->mtd.writesize + denali->mtd.oobsize; + uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP; + + if (page != denali->page) { + dev_err(denali->dev, + "IN %s: page %d is not equal to denali->page %d", + __func__, page, denali->page); + BUG(); + } + + setup_ecc_for_xfer(denali, false, true); + denali_enable_dma(denali, true); + + dma_sync_single_for_device(addr, size, DMA_FROM_DEVICE); + + clear_interrupts(denali); + denali_setup_dma(denali, DENALI_READ); + + /* wait for operation to complete */ + wait_for_irq(denali, irq_mask); + + dma_sync_single_for_cpu(addr, size, DMA_FROM_DEVICE); + + denali_enable_dma(denali, false); + + memcpy(buf, denali->buf.buf, mtd->writesize); + memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize); + + return 0; +} + +static uint8_t denali_read_byte(struct mtd_info *mtd) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + uint8_t result = 0xff; + + if (denali->buf.head < denali->buf.tail) + result = denali->buf.buf[denali->buf.head++]; + + return result; +} + +static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + int i; + for (i = 0; i < len; i++) + buf[i] = denali_read_byte(mtd); +} + +static void denali_select_chip(struct mtd_info *mtd, int chip) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + + denali->flash_bank = chip; +} + +static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + int status = denali->status; + + denali->status = 0; + + return status; +} + +static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, + int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + uint32_t addr, id; + uint32_t pages_per_block; + uint32_t block; + int i; + + switch (cmd) { + case NAND_CMD_PAGEPROG: + break; + case NAND_CMD_STATUS: + read_status(denali); + break; + case NAND_CMD_READID: + reset_buf(denali); + /* + * sometimes ManufactureId read from register is not right + * e.g. some of Micron MT29F32G08QAA MLC NAND chips + * So here we send READID cmd to NAND insteand + */ + addr = MODE_11 | BANK(denali->flash_bank); + index_addr(denali, addr | 0, 0x90); + index_addr(denali, addr | 1, 0); + for (i = 0; i < 8; i++) { + index_addr_read_data(denali, addr | 2, &id); + write_byte_to_buf(denali, id); + } + break; + case NAND_CMD_PARAM: + reset_buf(denali); + + /* turn on R/B interrupt */ + denali_set_intr_modes(denali, false); + denali_irq_mask = DENALI_IRQ_ALL | INTR_STATUS__INT_ACT; + clear_interrupts(denali); + denali_irq_enable(denali, denali_irq_mask); + denali_set_intr_modes(denali, true); + + addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); + index_addr(denali, (uint32_t)addr | 0, cmd); + index_addr(denali, (uint32_t)addr | 1, col & 0xFF); + /* Wait tR time... */ + udelay(25); + /* And then wait for R/B interrupt */ + wait_for_irq(denali, INTR_STATUS__INT_ACT); + + /* turn off R/B interrupt now */ + denali_irq_mask = DENALI_IRQ_ALL; + denali_set_intr_modes(denali, false); + denali_irq_enable(denali, denali_irq_mask); + denali_set_intr_modes(denali, true); + + for (i = 0; i < 256; i++) { + index_addr_read_data(denali, + (uint32_t)addr | 2, + &id); + write_byte_to_buf(denali, id); + } + break; + case NAND_CMD_READ0: + case NAND_CMD_SEQIN: + denali->page = page; + break; + case NAND_CMD_RESET: + reset_bank(denali); + break; + case NAND_CMD_READOOB: + /* TODO: Read OOB data */ + break; + case NAND_CMD_UNLOCK1: + pages_per_block = mtd->erasesize / mtd->writesize; + block = page / pages_per_block; + addr = (uint32_t)MODE_10 | (block * pages_per_block); + index_addr(denali, addr, 0x10); + break; + case NAND_CMD_UNLOCK2: + pages_per_block = mtd->erasesize / mtd->writesize; + block = (page+pages_per_block-1) / pages_per_block; + addr = (uint32_t)MODE_10 | (block * pages_per_block); + index_addr(denali, addr, 0x11); + break; + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + addr = MODE_10 | BANK(denali->flash_bank) | page; + index_addr(denali, addr, 0x1); + break; + default: + pr_err(": unsupported command received 0x%x\n", cmd); + break; + } +} +/* end NAND core entry points */ + +/* Initialization code to bring the device up to a known good state */ +static void denali_hw_init(struct denali_nand_info *denali) +{ + /* + * tell driver how many bit controller will skip before + * writing ECC code in OOB, this register may be already + * set by firmware. So we read this value out. + * if this value is 0, just let it be. + */ + denali->bbtskipbytes = ioread32(denali->flash_reg + + SPARE_AREA_SKIP_BYTES); + detect_max_banks(denali); + denali_nand_reset(denali); + iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED); + iowrite32(CHIP_EN_DONT_CARE__FLAG, + denali->flash_reg + CHIP_ENABLE_DONT_CARE); + + iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER); + + /* Should set value for these registers when init */ + iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); + iowrite32(1, denali->flash_reg + ECC_ENABLE); + denali_nand_timing_set(denali); + denali_irq_init(denali); +} + +/* + * Althogh controller spec said SLC ECC is forceb to be 4bit, + * but denali controller in MRST only support 15bit and 8bit ECC + * correction + */ +#define ECC_8BITS 14 +static struct nand_ecclayout nand_8bit_oob = { + .eccbytes = 14, +}; + +#define ECC_15BITS 26 +static struct nand_ecclayout nand_15bit_oob = { + .eccbytes = 26, +}; + +/* initialize driver data structures */ +static void denali_drv_init(struct denali_nand_info *denali) +{ + denali->idx = 0; + + /* indicate that MTD has not selected a valid bank yet */ + denali->flash_bank = CHIP_SELECT_INVALID; + + /* initialize our irq_status variable to indicate no interrupts */ + denali->irq_status = 0; +} + +int denali_init(struct denali_nand_info *denali) +{ + int ret = 0; + uint32_t val; + + if (denali->platform == INTEL_CE4100) { + /* + * Due to a silicon limitation, we can only support + * ONFI timing mode 1 and below. + */ + if (onfi_timing_mode < -1 || onfi_timing_mode > 1) { + pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n"); + return -EINVAL; + } + } + + /* allocate a temporary buffer for nand_scan_ident() */ + denali->buf.buf = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL); + if (!denali->buf.buf) + return -ENOMEM; + + denali->mtd.parent = denali->dev; + denali_hw_init(denali); + denali_drv_init(denali); + + denali_set_intr_modes(denali, true); + denali->mtd.name = "denali-nand"; + denali->mtd.priv = &denali->nand; + + /* register the driver with the NAND core subsystem */ + denali->nand.read_buf = denali_read_buf; + denali->nand.select_chip = denali_select_chip; + denali->nand.cmdfunc = denali_cmdfunc; + denali->nand.read_byte = denali_read_byte; + denali->nand.waitfunc = denali_waitfunc; + + /* + * scan for NAND devices attached to the controller + * this is the first stage in a two step process to register + * with the nand subsystem + */ + if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) { + ret = -ENXIO; + goto failed_req_irq; + } + + /* allocate the right size buffer now */ + kfree(denali->buf.buf); + denali->buf.buf = kzalloc(denali->mtd.writesize + denali->mtd.oobsize, + GFP_KERNEL); + if (!denali->buf.buf) { + ret = -ENOMEM; + goto failed_req_irq; + } + + /* + * support for multi nand + * MTD known nothing about multi nand, so we should tell it + * the real pagesize and anything necessery + */ + denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED); + denali->nand.chipsize <<= (denali->devnum - 1); + denali->nand.page_shift += (denali->devnum - 1); + denali->nand.pagemask = (denali->nand.chipsize >> + denali->nand.page_shift) - 1; + denali->nand.bbt_erase_shift += (denali->devnum - 1); + denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift; + denali->nand.chip_shift += (denali->devnum - 1); + denali->mtd.writesize <<= (denali->devnum - 1); + denali->mtd.oobsize <<= (denali->devnum - 1); + denali->mtd.erasesize <<= (denali->devnum - 1); + denali->mtd.size = denali->nand.numchips * denali->nand.chipsize; + denali->bbtskipbytes *= denali->devnum; + + /* + * second stage of the NAND scan + * this stage requires information regarding ECC and + * bad block management. + */ + + /* Bad block table description is set by nand framework, + see nand_bbt.c */ + + denali->nand.bbt_options |= NAND_BBT_USE_FLASH; + denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME; + if (denali->have_hw_ecc_fixup) { + /* We have OOB support, so allow scan of BBT + and leave the OOB alone */ + denali->nand.bbt_options |= NAND_BBT_NO_OOB; + } else { + /* skip the scan for now until we have OOB read and write support */ + denali->nand.options |= NAND_SKIP_BBTSCAN; + } + + /* no subpage writes on denali */ + denali->nand.options |= NAND_NO_SUBPAGE_WRITE; + + /* + * Denali Controller only support 15bit and 8bit ECC in MRST, + * so just let controller do 15bit ECC for MLC and 8bit ECC for + * SLC if possible. + * */ + if (!nand_is_slc(&denali->nand) && + (denali->mtd.oobsize > (denali->bbtskipbytes + + ECC_15BITS * (denali->mtd.writesize / + ECC_SECTOR_SIZE)))) { + /* if MLC OOB size is large enough, use 15bit ECC*/ + denali->nand.ecc.strength = 15; + denali->nand.ecc.layout = &nand_15bit_oob; + denali->nand.ecc.bytes = ECC_15BITS; + iowrite32(15, denali->flash_reg + ECC_CORRECTION); + } else if (denali->mtd.oobsize < (denali->bbtskipbytes + + ECC_8BITS * (denali->mtd.writesize / + ECC_SECTOR_SIZE))) { + pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes"); + goto failed_req_irq; + } else { + denali->nand.ecc.strength = 8; + denali->nand.ecc.layout = &nand_8bit_oob; + denali->nand.ecc.bytes = ECC_8BITS; + iowrite32(8, denali->flash_reg + ECC_CORRECTION); + } + + denali->nand.ecc.bytes *= denali->devnum; + denali->nand.ecc.strength *= denali->devnum; + denali->nand.ecc.layout->eccbytes *= + denali->mtd.writesize / ECC_SECTOR_SIZE; + denali->nand.ecc.layout->oobfree[0].offset = + denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes; + denali->nand.ecc.layout->oobfree[0].length = + denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes - + denali->bbtskipbytes; + + /* + * Let driver know the total blocks number and how many blocks + * contained by each nand chip. blksperchip will help driver to + * know how many blocks is taken by FW. + */ + denali->totalblks = denali->mtd.size >> denali->nand.phys_erase_shift; + denali->blksperchip = denali->totalblks / denali->nand.numchips; + + /* override the default read operations */ + denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum; + denali->nand.ecc.read_page = denali_read_page; + denali->nand.ecc.read_page_raw = denali_read_page_raw; + denali->nand.ecc.write_page = denali_write_page; + denali->nand.ecc.write_page_raw = denali_write_page_raw; + denali->nand.ecc.read_oob = denali_read_oob; + denali->nand.ecc.write_oob = denali_write_oob; + + /* Occasionally the controller is in SPARE or MAIN+SPARE + mode upon startup, and we want it to be MAIN only */ + val = ioread32(denali->flash_reg + TRANSFER_MODE); + if (val != 0) { + int i; + dev_dbg(denali->dev, + "setting TRANSFER_MODE (%08x) back to MAIN only\n", val); + /* put all banks in MAIN mode, no SPARE */ + iowrite32(0, denali->flash_reg + TRANSFER_SPARE_REG); + for (i = 0; i < 4; i++) + index_addr(denali, MODE_10 | BANK(i) | 1, + MAIN_ACCESS); + } + + if (nand_scan_tail(&denali->mtd)) { + ret = -ENXIO; + goto failed_req_irq; + } + + return add_mtd_nand_device(&denali->mtd, "nand"); + +failed_req_irq: + denali_irq_cleanup(denali->irq, denali); + + return ret; +} +EXPORT_SYMBOL(denali_init); + + +MODULE_AUTHOR("Intel Corporation"); +MODULE_DESCRIPTION(""); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/nand_denali_dt.c b/drivers/mtd/nand/nand_denali_dt.c new file mode 100644 index 0000000..09eb110 --- /dev/null +++ b/drivers/mtd/nand/nand_denali_dt.c @@ -0,0 +1,101 @@ +/* + * NAND Flash Controller Device Driver for DT + * + * Copyright © 2011, Picochip. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + */ + +#include <common.h> +#include <driver.h> +#include <malloc.h> +#include <init.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <mach/generic.h> +#include <io.h> +#include <of_mtd.h> +#include <errno.h> + +#include <linux/clk.h> + + +#include "denali.h" + +struct denali_dt { + struct denali_nand_info denali; + struct clk *clk; +}; + + +static int denali_dt_probe(struct device_d *ofdev) +{ + struct denali_dt *dt; + struct denali_nand_info *denali; + int ret; + + if (!IS_ENABLED(CONFIG_OFDEVICE)) + return 1; + + dt = kzalloc(sizeof(*dt), GFP_KERNEL); + if (!dt) + return -ENOMEM; + denali = &dt->denali; + + denali->platform = DT; + denali->dev = ofdev; + + denali->flash_mem = dev_request_mem_region(ofdev, 0); + if (IS_ERR(denali->flash_mem)) + return PTR_ERR(denali->flash_mem); + denali->flash_reg = dev_request_mem_region(ofdev, 1); + if (IS_ERR(denali->flash_reg)) + return PTR_ERR(denali->flash_reg); + + dt->clk = clk_get(ofdev, NULL); + if (IS_ERR(dt->clk)) { + dev_err(ofdev, "no clk available\n"); + return PTR_ERR(dt->clk); + } + clk_enable(dt->clk); + + denali->have_hw_ecc_fixup = of_property_read_bool(ofdev->device_node, + "have-hw-ecc-fixup"); + + ret = denali_init(denali); + if (ret) + goto out_disable_clk; + + return 0; + +out_disable_clk: + clk_disable(dt->clk); + + return ret; +} + +static __maybe_unused struct of_device_id denali_nand_compatible[] = { + { + .compatible = "denali,denali-nand-dt" + }, { + /* sentinel */ + } +}; + +static struct driver_d denali_dt_driver = { + .name = "denali-nand-dt", + .probe = denali_dt_probe, + .of_compatible = DRV_OF_COMPAT(denali_nand_compatible) +}; +device_platform_driver(denali_dt_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Jamie Iles"); +MODULE_DESCRIPTION("DT driver for Denali NAND controller"); -- 2.5.1 _______________________________________________ barebox mailing list barebox@xxxxxxxxxxxxxxxxxxx http://lists.infradead.org/mailman/listinfo/barebox