[PATCH 3/9] lfe-filter: Cleanup and refactor

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



 - Remove imported dead code
 - Fix compiler warnings
 - Fix non-GCC compiler compilation (use more portable macros)
 - Change lr4 struct to include a biquad struct

Thanks to Alexander Patrakov for suggesting many of these changes.

Signed-off-by: David Henningsson <david.henningsson at canonical.com>
---
 src/pulsecore/filter/biquad.c    | 289 +++------------------------------------
 src/pulsecore/filter/biquad.h    |  14 +-
 src/pulsecore/filter/crossover.c | 194 ++------------------------
 src/pulsecore/filter/crossover.h |  51 +------
 4 files changed, 33 insertions(+), 515 deletions(-)

diff --git a/src/pulsecore/filter/biquad.c b/src/pulsecore/filter/biquad.c
index b28256d..7c21a29 100644
--- a/src/pulsecore/filter/biquad.c
+++ b/src/pulsecore/filter/biquad.c
@@ -8,20 +8,15 @@
  * found in the LICENSE.WEBKIT file.
  */
 
-#include <math.h>
-#include "biquad.h"
 
-#ifndef max
-#define max(a, b) ({ __typeof__(a) _a = (a);	\
-			__typeof__(b) _b = (b);	\
-			_a > _b ? _a : _b; })
+#ifdef HAVE_CONFIG_H
+#include <config.h>
 #endif
 
-#ifndef min
-#define min(a, b) ({ __typeof__(a) _a = (a);	\
-			__typeof__(b) _b = (b);	\
-			_a < _b ? _a : _b; })
-#endif
+#include <pulsecore/macro.h>
+
+#include <math.h>
+#include "biquad.h"
 
 #ifndef M_PI
 #define M_PI 3.14159265358979323846
@@ -38,19 +33,18 @@ static void set_coefficient(struct biquad *bq, double b0, double b1, double b2,
 	bq->a2 = a2 * a0_inv;
 }
 
-static void biquad_lowpass(struct biquad *bq, double cutoff, double resonance)
+static void biquad_lowpass(struct biquad *bq, double cutoff)
 {
 	/* Limit cutoff to 0 to 1. */
-	cutoff = max(0.0, min(cutoff, 1.0));
+	cutoff = PA_MIN(cutoff, 1.0);
+	cutoff = PA_MAX(0.0, cutoff);
 
-	if (cutoff == 1) {
+	if (cutoff >= 1.0) {
 		/* When cutoff is 1, the z-transform is 1. */
 		set_coefficient(bq, 1, 0, 0, 1, 0, 0);
 	} else if (cutoff > 0) {
 		/* Compute biquad coefficients for lowpass filter */
-		resonance = max(0.0, resonance); /* can't go negative */
-		double g = pow(10.0, 0.05 * resonance);
-		double d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2);
+		double d = sqrt(2);
 
 		double theta = M_PI * cutoff;
 		double sn = 0.5 * d * sin(theta);
@@ -73,19 +67,18 @@ static void biquad_lowpass(struct biquad *bq, double cutoff, double resonance)
 	}
 }
 
-static void biquad_highpass(struct biquad *bq, double cutoff, double resonance)
+static void biquad_highpass(struct biquad *bq, double cutoff)
 {
 	/* Limit cutoff to 0 to 1. */
-	cutoff = max(0.0, min(cutoff, 1.0));
+	cutoff = PA_MIN(cutoff, 1.0);
+	cutoff = PA_MAX(0.0, cutoff);
 
-	if (cutoff == 1) {
+	if (cutoff >= 1.0) {
 		/* The z-transform is 0. */
 		set_coefficient(bq, 0, 0, 0, 1, 0, 0);
 	} else if (cutoff > 0) {
 		/* Compute biquad coefficients for highpass filter */
-		resonance = max(0.0, resonance); /* can't go negative */
-		double g = pow(10.0, 0.05 * resonance);
-		double d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2);
+		double d = sqrt(2);
 
 		double theta = M_PI * cutoff;
 		double sn = 0.5 * d * sin(theta);
@@ -110,259 +103,15 @@ static void biquad_highpass(struct biquad *bq, double cutoff, double resonance)
 	}
 }
 
-static void biquad_bandpass(struct biquad *bq, double frequency, double Q)
-{
-	/* No negative frequencies allowed. */
-	frequency = max(0.0, frequency);
-
-	/* Don't let Q go negative, which causes an unstable filter. */
-	Q = max(0.0, Q);
-
-	if (frequency > 0 && frequency < 1) {
-		double w0 = M_PI * frequency;
-		if (Q > 0) {
-			double alpha = sin(w0) / (2 * Q);
-			double k = cos(w0);
-
-			double b0 = alpha;
-			double b1 = 0;
-			double b2 = -alpha;
-			double a0 = 1 + alpha;
-			double a1 = -2 * k;
-			double a2 = 1 - alpha;
-
-			set_coefficient(bq, b0, b1, b2, a0, a1, a2);
-		} else {
-			/* When Q = 0, the above formulas have problems. If we
-			 * look at the z-transform, we can see that the limit
-			 * as Q->0 is 1, so set the filter that way.
-			 */
-			set_coefficient(bq, 1, 0, 0, 1, 0, 0);
-		}
-	} else {
-		/* When the cutoff is zero, the z-transform approaches 0, if Q
-		 * > 0. When both Q and cutoff are zero, the z-transform is
-		 * pretty much undefined. What should we do in this case?
-		 * For now, just make the filter 0. When the cutoff is 1, the
-		 * z-transform also approaches 0.
-		 */
-		set_coefficient(bq, 0, 0, 0, 1, 0, 0);
-	}
-}
-
-static void biquad_lowshelf(struct biquad *bq, double frequency, double db_gain)
-{
-	/* Clip frequencies to between 0 and 1, inclusive. */
-	frequency = max(0.0, min(frequency, 1.0));
-
-	double A = pow(10.0, db_gain / 40);
-
-	if (frequency == 1) {
-		/* The z-transform is a constant gain. */
-		set_coefficient(bq, A * A, 0, 0, 1, 0, 0);
-	} else if (frequency > 0) {
-		double w0 = M_PI * frequency;
-		double S = 1; /* filter slope (1 is max value) */
-		double alpha = 0.5 * sin(w0) *
-			sqrt((A + 1 / A) * (1 / S - 1) + 2);
-		double k = cos(w0);
-		double k2 = 2 * sqrt(A) * alpha;
-		double a_plus_one = A + 1;
-		double a_minus_one = A - 1;
-
-		double b0 = A * (a_plus_one - a_minus_one * k + k2);
-		double b1 = 2 * A * (a_minus_one - a_plus_one * k);
-		double b2 = A * (a_plus_one - a_minus_one * k - k2);
-		double a0 = a_plus_one + a_minus_one * k + k2;
-		double a1 = -2 * (a_minus_one + a_plus_one * k);
-		double a2 = a_plus_one + a_minus_one * k - k2;
-
-		set_coefficient(bq, b0, b1, b2, a0, a1, a2);
-	} else {
-		/* When frequency is 0, the z-transform is 1. */
-		set_coefficient(bq, 1, 0, 0, 1, 0, 0);
-	}
-}
-
-static void biquad_highshelf(struct biquad *bq, double frequency,
-			     double db_gain)
+void biquad_set(struct biquad *bq, enum biquad_type type, double freq)
 {
-	/* Clip frequencies to between 0 and 1, inclusive. */
-	frequency = max(0.0, min(frequency, 1.0));
-
-	double A = pow(10.0, db_gain / 40);
-
-	if (frequency == 1) {
-		/* The z-transform is 1. */
-		set_coefficient(bq, 1, 0, 0, 1, 0, 0);
-	} else if (frequency > 0) {
-		double w0 = M_PI * frequency;
-		double S = 1; /* filter slope (1 is max value) */
-		double alpha = 0.5 * sin(w0) *
-			sqrt((A + 1 / A) * (1 / S - 1) + 2);
-		double k = cos(w0);
-		double k2 = 2 * sqrt(A) * alpha;
-		double a_plus_one = A + 1;
-		double a_minus_one = A - 1;
-
-		double b0 = A * (a_plus_one + a_minus_one * k + k2);
-		double b1 = -2 * A * (a_minus_one + a_plus_one * k);
-		double b2 = A * (a_plus_one + a_minus_one * k - k2);
-		double a0 = a_plus_one - a_minus_one * k + k2;
-		double a1 = 2 * (a_minus_one - a_plus_one * k);
-		double a2 = a_plus_one - a_minus_one * k - k2;
-
-		set_coefficient(bq, b0, b1, b2, a0, a1, a2);
-	} else {
-		/* When frequency = 0, the filter is just a gain, A^2. */
-		set_coefficient(bq, A * A, 0, 0, 1, 0, 0);
-	}
-}
-
-static void biquad_peaking(struct biquad *bq, double frequency, double Q,
-			   double db_gain)
-{
-	/* Clip frequencies to between 0 and 1, inclusive. */
-	frequency = max(0.0, min(frequency, 1.0));
-
-	/* Don't let Q go negative, which causes an unstable filter. */
-	Q = max(0.0, Q);
-
-	double A = pow(10.0, db_gain / 40);
-
-	if (frequency > 0 && frequency < 1) {
-		if (Q > 0) {
-			double w0 = M_PI * frequency;
-			double alpha = sin(w0) / (2 * Q);
-			double k = cos(w0);
-
-			double b0 = 1 + alpha * A;
-			double b1 = -2 * k;
-			double b2 = 1 - alpha * A;
-			double a0 = 1 + alpha / A;
-			double a1 = -2 * k;
-			double a2 = 1 - alpha / A;
-
-			set_coefficient(bq, b0, b1, b2, a0, a1, a2);
-		} else {
-			/* When Q = 0, the above formulas have problems. If we
-			 * look at the z-transform, we can see that the limit
-			 * as Q->0 is A^2, so set the filter that way.
-			 */
-			set_coefficient(bq, A * A, 0, 0, 1, 0, 0);
-		}
-	} else {
-		/* When frequency is 0 or 1, the z-transform is 1. */
-		set_coefficient(bq, 1, 0, 0, 1, 0, 0);
-	}
-}
-
-static void biquad_notch(struct biquad *bq, double frequency, double Q)
-{
-	/* Clip frequencies to between 0 and 1, inclusive. */
-	frequency = max(0.0, min(frequency, 1.0));
-
-	/* Don't let Q go negative, which causes an unstable filter. */
-	Q = max(0.0, Q);
-
-	if (frequency > 0 && frequency < 1) {
-		if (Q > 0) {
-			double w0 = M_PI * frequency;
-			double alpha = sin(w0) / (2 * Q);
-			double k = cos(w0);
-
-			double b0 = 1;
-			double b1 = -2 * k;
-			double b2 = 1;
-			double a0 = 1 + alpha;
-			double a1 = -2 * k;
-			double a2 = 1 - alpha;
-
-			set_coefficient(bq, b0, b1, b2, a0, a1, a2);
-		} else {
-			/* When Q = 0, the above formulas have problems. If we
-			 * look at the z-transform, we can see that the limit
-			 * as Q->0 is 0, so set the filter that way.
-			 */
-			set_coefficient(bq, 0, 0, 0, 1, 0, 0);
-		}
-	} else {
-		/* When frequency is 0 or 1, the z-transform is 1. */
-		set_coefficient(bq, 1, 0, 0, 1, 0, 0);
-	}
-}
-
-static void biquad_allpass(struct biquad *bq, double frequency, double Q)
-{
-	/* Clip frequencies to between 0 and 1, inclusive. */
-	frequency = max(0.0, min(frequency, 1.0));
-
-	/* Don't let Q go negative, which causes an unstable filter. */
-	Q = max(0.0, Q);
-
-	if (frequency > 0 && frequency < 1) {
-		if (Q > 0) {
-			double w0 = M_PI * frequency;
-			double alpha = sin(w0) / (2 * Q);
-			double k = cos(w0);
-
-			double b0 = 1 - alpha;
-			double b1 = -2 * k;
-			double b2 = 1 + alpha;
-			double a0 = 1 + alpha;
-			double a1 = -2 * k;
-			double a2 = 1 - alpha;
-
-			set_coefficient(bq, b0, b1, b2, a0, a1, a2);
-		} else {
-			/* When Q = 0, the above formulas have problems. If we
-			 * look at the z-transform, we can see that the limit
-			 * as Q->0 is -1, so set the filter that way.
-			 */
-			set_coefficient(bq, -1, 0, 0, 1, 0, 0);
-		}
-	} else {
-		/* When frequency is 0 or 1, the z-transform is 1. */
-		set_coefficient(bq, 1, 0, 0, 1, 0, 0);
-	}
-}
-
-void biquad_set(struct biquad *bq, enum biquad_type type, double freq, double Q,
-		double gain)
-{
-	/* Default is an identity filter. Also clear history values. */
-	set_coefficient(bq, 1, 0, 0, 1, 0, 0);
-	bq->x1 = 0;
-	bq->x2 = 0;
-	bq->y1 = 0;
-	bq->y2 = 0;
 
 	switch (type) {
 	case BQ_LOWPASS:
-		biquad_lowpass(bq, freq, Q);
+		biquad_lowpass(bq, freq);
 		break;
 	case BQ_HIGHPASS:
-		biquad_highpass(bq, freq, Q);
-		break;
-	case BQ_BANDPASS:
-		biquad_bandpass(bq, freq, Q);
-		break;
-	case BQ_LOWSHELF:
-		biquad_lowshelf(bq, freq, gain);
-		break;
-	case BQ_HIGHSHELF:
-		biquad_highshelf(bq, freq, gain);
-		break;
-	case BQ_PEAKING:
-		biquad_peaking(bq, freq, Q, gain);
-		break;
-	case BQ_NOTCH:
-		biquad_notch(bq, freq, Q);
-		break;
-	case BQ_ALLPASS:
-		biquad_allpass(bq, freq, Q);
-		break;
-	case BQ_NONE:
+		biquad_highpass(bq, freq);
 		break;
 	}
 }
diff --git a/src/pulsecore/filter/biquad.h b/src/pulsecore/filter/biquad.h
index c584aa9..bb8f2fb 100644
--- a/src/pulsecore/filter/biquad.h
+++ b/src/pulsecore/filter/biquad.h
@@ -21,21 +21,12 @@ extern "C" {
 struct biquad {
 	float b0, b1, b2;
 	float a1, a2;
-	float x1, x2;
-	float y1, y2;
 };
 
 /* The type of the biquad filters */
 enum biquad_type {
-	BQ_NONE,
 	BQ_LOWPASS,
 	BQ_HIGHPASS,
-	BQ_BANDPASS,
-	BQ_LOWSHELF,
-	BQ_HIGHSHELF,
-	BQ_PEAKING,
-	BQ_NOTCH,
-	BQ_ALLPASS
 };
 
 /* Initialize a biquad filter parameters from its type and parameters.
@@ -44,11 +35,8 @@ enum biquad_type {
  *    type - The type of the biquad filter.
  *    frequency - The value should be in the range [0, 1]. It is relative to
  *        half of the sampling rate.
- *    Q - Quality factor. See Web Audio API for details.
- *    gain - The value is in dB. See Web Audio API for details.
  */
-void biquad_set(struct biquad *bq, enum biquad_type type, double freq, double Q,
-		double gain);
+void biquad_set(struct biquad *bq, enum biquad_type type, double freq);
 
 #ifdef __cplusplus
 } /* extern "C" */
diff --git a/src/pulsecore/filter/crossover.c b/src/pulsecore/filter/crossover.c
index 0a571c3..dab34af 100644
--- a/src/pulsecore/filter/crossover.c
+++ b/src/pulsecore/filter/crossover.c
@@ -9,18 +9,11 @@
 
 #include <pulsecore/macro.h>
 
-#include "biquad.h"
 #include "crossover.h"
 
 void lr4_set(struct lr4 *lr4, enum biquad_type type, float freq)
 {
-	struct biquad q;
-	biquad_set(&q, type, freq, 0, 0);
-	lr4->b0 = q.b0;
-	lr4->b1 = q.b1;
-	lr4->b2 = q.b2;
-	lr4->a1 = q.a1;
-	lr4->a2 = q.a2;
+	biquad_set(&lr4->bq, type, freq);
 	lr4->x1 = 0;
 	lr4->x2 = 0;
 	lr4->y1 = 0;
@@ -37,11 +30,11 @@ void lr4_process_float32(struct lr4 *lr4, int samples, int channels, float *src,
 	float ly2 = lr4->y2;
 	float lz1 = lr4->z1;
 	float lz2 = lr4->z2;
-	float lb0 = lr4->b0;
-	float lb1 = lr4->b1;
-	float lb2 = lr4->b2;
-	float la1 = lr4->a1;
-	float la2 = lr4->a2;
+	float lb0 = lr4->bq.b0;
+	float lb1 = lr4->bq.b1;
+	float lb2 = lr4->bq.b2;
+	float la1 = lr4->bq.a1;
+	float la2 = lr4->bq.a2;
 
 	int i;
 	for (i = 0; i < samples * channels; i += channels) {
@@ -74,11 +67,11 @@ void lr4_process_s16(struct lr4 *lr4, int samples, int channels, short *src, sho
 	float ly2 = lr4->y2;
 	float lz1 = lr4->z1;
 	float lz2 = lr4->z2;
-	float lb0 = lr4->b0;
-	float lb1 = lr4->b1;
-	float lb2 = lr4->b2;
-	float la1 = lr4->a1;
-	float la2 = lr4->a2;
+	float lb0 = lr4->bq.b0;
+	float lb1 = lr4->bq.b1;
+	float lb2 = lr4->bq.b2;
+	float la1 = lr4->bq.a1;
+	float la2 = lr4->bq.a2;
 
 	int i;
 	for (i = 0; i < samples * channels; i += channels) {
@@ -102,168 +95,3 @@ void lr4_process_s16(struct lr4 *lr4, int samples, int channels, short *src, sho
 	lr4->z1 = lz1;
 	lr4->z2 = lz2;
 }
-
-
-/* Split input data using two LR4 filters, put the result into the input array
- * and another array.
- *
- * data0 --+-- lp --> data0
- *         |
- *         \-- hp --> data1
- */
-static void lr4_split(struct lr4 *lp, struct lr4 *hp, int count, float *data0,
-		      float *data1)
-{
-	float lx1 = lp->x1;
-	float lx2 = lp->x2;
-	float ly1 = lp->y1;
-	float ly2 = lp->y2;
-	float lz1 = lp->z1;
-	float lz2 = lp->z2;
-	float lb0 = lp->b0;
-	float lb1 = lp->b1;
-	float lb2 = lp->b2;
-	float la1 = lp->a1;
-	float la2 = lp->a2;
-
-	float hx1 = hp->x1;
-	float hx2 = hp->x2;
-	float hy1 = hp->y1;
-	float hy2 = hp->y2;
-	float hz1 = hp->z1;
-	float hz2 = hp->z2;
-	float hb0 = hp->b0;
-	float hb1 = hp->b1;
-	float hb2 = hp->b2;
-	float ha1 = hp->a1;
-	float ha2 = hp->a2;
-
-	int i;
-	for (i = 0; i < count; i++) {
-		float x, y, z;
-		x = data0[i];
-		y = lb0*x + lb1*lx1 + lb2*lx2 - la1*ly1 - la2*ly2;
-		z = lb0*y + lb1*ly1 + lb2*ly2 - la1*lz1 - la2*lz2;
-		lx2 = lx1;
-		lx1 = x;
-		ly2 = ly1;
-		ly1 = y;
-		lz2 = lz1;
-		lz1 = z;
-		data0[i] = z;
-
-		y = hb0*x + hb1*hx1 + hb2*hx2 - ha1*hy1 - ha2*hy2;
-		z = hb0*y + hb1*hy1 + hb2*hy2 - ha1*hz1 - ha2*hz2;
-		hx2 = hx1;
-		hx1 = x;
-		hy2 = hy1;
-		hy1 = y;
-		hz2 = hz1;
-		hz1 = z;
-		data1[i] = z;
-	}
-
-	lp->x1 = lx1;
-	lp->x2 = lx2;
-	lp->y1 = ly1;
-	lp->y2 = ly2;
-	lp->z1 = lz1;
-	lp->z2 = lz2;
-
-	hp->x1 = hx1;
-	hp->x2 = hx2;
-	hp->y1 = hy1;
-	hp->y2 = hy2;
-	hp->z1 = hz1;
-	hp->z2 = hz2;
-}
-
-/* Split input data using two LR4 filters and sum them back to the original
- * data array.
- *
- * data --+-- lp --+--> data
- *        |        |
- *        \-- hp --/
- */
-static void lr4_merge(struct lr4 *lp, struct lr4 *hp, int count, float *data)
-{
-	float lx1 = lp->x1;
-	float lx2 = lp->x2;
-	float ly1 = lp->y1;
-	float ly2 = lp->y2;
-	float lz1 = lp->z1;
-	float lz2 = lp->z2;
-	float lb0 = lp->b0;
-	float lb1 = lp->b1;
-	float lb2 = lp->b2;
-	float la1 = lp->a1;
-	float la2 = lp->a2;
-
-	float hx1 = hp->x1;
-	float hx2 = hp->x2;
-	float hy1 = hp->y1;
-	float hy2 = hp->y2;
-	float hz1 = hp->z1;
-	float hz2 = hp->z2;
-	float hb0 = hp->b0;
-	float hb1 = hp->b1;
-	float hb2 = hp->b2;
-	float ha1 = hp->a1;
-	float ha2 = hp->a2;
-
-	int i;
-	for (i = 0; i < count; i++) {
-		float x, y, z;
-		x = data[i];
-		y = lb0*x + lb1*lx1 + lb2*lx2 - la1*ly1 - la2*ly2;
-		z = lb0*y + lb1*ly1 + lb2*ly2 - la1*lz1 - la2*lz2;
-		lx2 = lx1;
-		lx1 = x;
-		ly2 = ly1;
-		ly1 = y;
-		lz2 = lz1;
-		lz1 = z;
-
-		y = hb0*x + hb1*hx1 + hb2*hx2 - ha1*hy1 - ha2*hy2;
-		z = hb0*y + hb1*hy1 + hb2*hy2 - ha1*hz1 - ha2*hz2;
-		hx2 = hx1;
-		hx1 = x;
-		hy2 = hy1;
-		hy1 = y;
-		hz2 = hz1;
-		hz1 = z;
-		data[i] = z + lz1;
-	}
-
-	lp->x1 = lx1;
-	lp->x2 = lx2;
-	lp->y1 = ly1;
-	lp->y2 = ly2;
-	lp->z1 = lz1;
-	lp->z2 = lz2;
-
-	hp->x1 = hx1;
-	hp->x2 = hx2;
-	hp->y1 = hy1;
-	hp->y2 = hy2;
-	hp->z1 = hz1;
-	hp->z2 = hz2;
-}
-
-void crossover_init(struct crossover *xo, float freq1, float freq2)
-{
-	int i;
-	for (i = 0; i < 3; i++) {
-		float f = (i == 0) ? freq1 : freq2;
-		lr4_set(&xo->lp[i], BQ_LOWPASS, f);
-		lr4_set(&xo->hp[i], BQ_HIGHPASS, f);
-	}
-}
-
-void crossover_process(struct crossover *xo, int count, float *data0,
-		       float *data1, float *data2)
-{
-	lr4_split(&xo->lp[0], &xo->hp[0], count, data0, data1);
-	lr4_merge(&xo->lp[1], &xo->hp[1], count, data0);
-	lr4_split(&xo->lp[2], &xo->hp[2], count, data1, data2);
-}
diff --git a/src/pulsecore/filter/crossover.h b/src/pulsecore/filter/crossover.h
index a88f5b6..c5c9765 100644
--- a/src/pulsecore/filter/crossover.h
+++ b/src/pulsecore/filter/crossover.h
@@ -6,10 +6,7 @@
 #ifndef CROSSOVER_H_
 #define CROSSOVER_H_
 
-#ifdef __cplusplus
-extern "C" {
-#endif
-
+#include "biquad.h"
 /* An LR4 filter is two biquads with the same parameters connected in series:
  *
  * x -- [BIQUAD] -- y -- [BIQUAD] -- z
@@ -18,8 +15,7 @@ extern "C" {
  * The variable [xyz][12] keep the history values.
  */
 struct lr4 {
-	float b0, b1, b2;
-	float a1, a2;
+	struct biquad bq;
 	float x1, x2;
 	float y1, y2;
 	float z1, z2;
@@ -30,47 +26,4 @@ void lr4_set(struct lr4 *lr4, enum biquad_type type, float freq);
 void lr4_process_float32(struct lr4 *lr4, int samples, int channels, float *src, float *dest);
 void lr4_process_s16(struct lr4 *lr4, int samples, int channels, short *src, short *dest);
 
-
-/* Three bands crossover filter:
- *
- * INPUT --+-- lp0 --+-- lp1 --+---> LOW (0)
- *         |         |         |
- *         |         \-- hp1 --/
- *         |
- *         \-- hp0 --+-- lp2 ------> MID (1)
- *                   |
- *                   \-- hp2 ------> HIGH (2)
- *
- *            [f0]       [f1]
- *
- * Each lp or hp is an LR4 filter, which consists of two second-order
- * lowpass or highpass butterworth filters.
- */
-struct crossover {
-	struct lr4 lp[3], hp[3];
-};
-
-/* Initializes a crossover filter
- * Args:
- *    xo - The crossover filter we want to initialize.
- *    freq1 - The normalized frequency splits low and mid band.
- *    freq2 - The normalized frequency splits mid and high band.
- */
-void crossover_init(struct crossover *xo, float freq1, float freq2);
-
-/* Splits input samples to three bands.
- * Args:
- *    xo - The crossover filter to use.
- *    count - The number of input samples.
- *    data0 - The input samples, also the place to store low band output.
- *    data1 - The place to store mid band output.
- *    data2 - The place to store high band output.
- */
-void crossover_process(struct crossover *xo, int count, float *data0,
-		       float *data1, float *data2);
-
-#ifdef __cplusplus
-} /* extern "C" */
-#endif
-
 #endif /* CROSSOVER_H_ */
-- 
1.9.1



[Index of Archives]     [Linux Audio Users]     [AMD Graphics]     [Linux USB Devel]     [Linux Audio Users]     [Yosemite News]     [Linux Kernel]     [Linux SCSI]

  Powered by Linux