> In principle, I believe this allows index-assisted access to keys and
> values nested in arrays and inner objects but in practice, it seems
> the planner "often" decides to ignore the index in favour of a table scan.
> values nested in arrays and inner objects but in practice, it seems
> the planner "often" decides to ignore the index in favour of a table scan.
part II. index usage ; see the "Bitmap Index Scan on jpqarr_idx"
select * from jsonb_table
where jsonb_path_query_array( jsonb_col, '$.employee.*.date_of_birth') @> to_jsonb('1971-02-02'::TEXT);
;
+----+---------------------------------------------------------------------------------------------------------------+
| id | jsonb_col |
+----+---------------------------------------------------------------------------------------------------------------+
| 2 | {"stuff": {}, "employee": {"7011": {"date_of_birth": "1970-01-01"}, "7122": {"date_of_birth": "1971-02-02"}}} |
+----+---------------------------------------------------------------------------------------------------------------+
(1 row)
EXPLAIN ANALYZE select * from jsonb_table
where jsonb_path_query_array( jsonb_col, '$.employee.*.date_of_birth') @> to_jsonb('1971-02-02'::TEXT);
;
+---------------------------------------------------------------------------------------------------------------------------------------------------------+
| QUERY PLAN |
+---------------------------------------------------------------------------------------------------------------------------------------------------------+
| Bitmap Heap Scan on jsonb_table (cost=3.00..4.52 rows=1 width=36) (actual time=0.056..0.059 rows=1 loops=1) |
| Recheck Cond: (jsonb_path_query_array(jsonb_col, '$."employee".*."date_of_birth"'::jsonpath, '{}'::jsonb, false) @> to_jsonb('1971-02-02'::text)) |
| Heap Blocks: exact=1 |
| -> Bitmap Index Scan on jpqarr_idx (cost=0.00..3.00 rows=1 width=0) (actual time=0.026..0.027 rows=1 loops=1) |
| Index Cond: (jsonb_path_query_array(jsonb_col, '$."employee".*."date_of_birth"'::jsonpath, '{}'::jsonb, false) @> to_jsonb('1971-02-02'::text)) |
| Planning Time: 0.255 ms |
| Execution Time: 0.122 ms |
+---------------------------------------------------------------------------------------------------------------------------------------------------------+
(7 rows)
where jsonb_path_query_array( jsonb_col, '$.employee.*.date_of_birth') @> to_jsonb('1971-02-02'::TEXT);
;
+---------------------------------------------------------------------------------------------------------------------------------------------------------+
| QUERY PLAN |
+---------------------------------------------------------------------------------------------------------------------------------------------------------+
| Bitmap Heap Scan on jsonb_table (cost=3.00..4.52 rows=1 width=36) (actual time=0.056..0.059 rows=1 loops=1) |
| Recheck Cond: (jsonb_path_query_array(jsonb_col, '$."employee".*."date_of_birth"'::jsonpath, '{}'::jsonb, false) @> to_jsonb('1971-02-02'::text)) |
| Heap Blocks: exact=1 |
| -> Bitmap Index Scan on jpqarr_idx (cost=0.00..3.00 rows=1 width=0) (actual time=0.026..0.027 rows=1 loops=1) |
| Index Cond: (jsonb_path_query_array(jsonb_col, '$."employee".*."date_of_birth"'::jsonpath, '{}'::jsonb, false) @> to_jsonb('1971-02-02'::text)) |
| Planning Time: 0.255 ms |
| Execution Time: 0.122 ms |
+---------------------------------------------------------------------------------------------------------------------------------------------------------+
(7 rows)
regards,
Imre
Imre Samu <pella.samu@xxxxxxxxx> ezt írta (időpont: 2022. máj. 30., H, 12:30):
Hi Shaheed,> WHAT GOES HEREimho check the: jsonb_path_query_array( jsonb_col, '$.employee.*.date_of_birth' )may example:CREATE TABLE jsonb_table (
id serial primary key,
jsonb_col JSONB
);
INSERT INTO jsonb_table(jsonb_col)
VALUES
('{"stuff": {},"employee": {"8011": {"date_of_birth": "1980-01-01"},"8222": {"date_of_birth": "1982-02-02"}}}'),
('{"stuff": {},"employee": {"7011": {"date_of_birth": "1970-01-01"},"7122": {"date_of_birth": "1971-02-02"}}}'),
('{"stuff": {},"employee": {"a12": {"date_of_birth": "2000-01-01"},"b56": {"date_of_birth": "2000-02-02"}}}')
;
select jsonb_path_query_array( jsonb_col, '$.employee.*.date_of_birth' ) from jsonb_table;
-- create index
create index jpqarr_idx
on jsonb_table
using gin ( jsonb_path_query_array( jsonb_col, '$.employee.*.date_of_birth' ) );
-- tests:
select id from jsonb_table
where jsonb_path_query_array( jsonb_col, '$.employee.*.date_of_birth') @> to_jsonb('2000-01-01'::TEXT);
;
DROP TABLE
CREATE TABLE
INSERT 0 3
+------------------------------+
| jsonb_path_query_array |
+------------------------------+
| ["1980-01-01", "1982-02-02"] |
| ["1970-01-01", "1971-02-02"] |
| ["2000-01-01", "2000-02-02"] |
+------------------------------+
(3 rows)
CREATE INDEX
+----+
| id |
+----+
| 3 |
+----+
(1 row)Regards,ImreShaheed Haque <shaheedhaque@xxxxxxxxx> ezt írta (időpont: 2022. máj. 29., V, 22:53):Suppose I have a JSONB field called "snapshot". I can create a GIN
index on it like this:
create index idx1 on mytable using gin (snapshot);
In principle, I believe this allows index-assisted access to keys and
values nested in arrays and inner objects but in practice, it seems
the planner "often" decides to ignore the index in favour of a table
scan. (As discussed elsewhere, this is influenced by the number of
rows, and possibly other criteria too).
Now, I know it is possible to index inner objects, so that is snapshot
looks like this:
{
"stuff": {},
"more other stuff": {},
"employee": {
"1234": {"date_of_birth": "1970-01-01"},
"56B789": {"date_of_birth": "1971-02-02"},
}
}
I can say:
create index idx2 on mytable using gin ((snapshot -> 'employee'));
But what is the syntax to index only on date_of_birth? I assume a
btree would work since it is a primitive value, but WHAT GOES HERE in
this:
create index idx3 on mytable using btree ((snapshot ->'employee' ->
WHAT GOES HERE -> 'date_of_birth'));
I believe an asterisk "*" would work if 'employee' was an array, but
here it is nested object with keys. If it helps, the keys are
invariably numbers (in quoted string form, as per JSON).
Thanks, Shaheed