[AMD Official Use Only - General] Hello Tomas, So, I made sure that px_size and py_size are equal to the group order (48). I was able to verify successfully using our previous method (deprecated) with the new key generation method, but I'm still not able to get the digestverify to work successfully. As a reminder this is how we were verifying before: // Determine if SHA_TYPE is 256 bit or 384 bit if (parent_cert->pub_key_algo == SEV_SIG_ALGO_RSA_SHA256 || parent_cert->pub_key_algo == SEV_SIG_ALGO_ECDSA_SHA256 ||parent_cert->pub_key_algo == SEV_SIG_ALGO_ECDH_SHA256) { sha_type = SHA_TYPE_256; sha_digest = sha_digest_256; sha_length = sizeof(hmac_sha_256); } else if (parent_cert->pub_key_algo == SEV_SIG_ALGO_RSA_SHA384 || parent_cert->pub_key_algo == SEV_SIG_ALGO_ECDSA_SHA384 || parent_cert->pub_key_algo == SEV_SIG_ALGO_ECDH_SHA384) { sha_type = SHA_TYPE_384; sha_digest = sha_digest_384; sha_length = sizeof(hmac_sha_512); } else { break; } // 1. SHA256 hash the cert from Version through pub_key parameters // Calculate the digest of the input message rsa.c -> rsa_pss_verify_msg() // SHA256/SHA384 hash the cert from the [Version:pub_key] params uint32_t pub_key_offset = offsetof(sev_cert, sig_1_usage); // 16 + sizeof(SEV_PUBKEY) if (!digest_sha((uint8_t *)child_cert, pub_key_offset, sha_digest, sha_length, sha_type)) { break; } if ((parent_cert->pub_key_algo == SEV_SIG_ALGO_ECDSA_SHA256) || (parent_cert->pub_key_algo == SEV_SIG_ALGO_ECDSA_SHA384) || (parent_cert->pub_key_algo == SEV_SIG_ALGO_ECDH_SHA256) || (parent_cert->pub_key_algo == SEV_SIG_ALGO_ECDH_SHA384)) { // ecdsa.c -> sign_verify_msg ECDSA_SIG *tmp_ecdsa_sig = ECDSA_SIG_new(); BIGNUM *r_big_num = BN_new(); BIGNUM *s_big_num = BN_new(); // Store the x and y components as separate BIGNUM objects. The values in the // SEV certificate are little-endian, must reverse bytes before storing in BIGNUM r_big_num = BN_lebin2bn(cert_sig[i].ecdsa.r, sizeof(sev_ecdsa_sig::r), r_big_num); // LE to BE s_big_num = BN_lebin2bn(cert_sig[i].ecdsa.s, sizeof(sev_ecdsa_sig::s), s_big_num); // Calling ECDSA_SIG_set0() transfers the memory management of the values to // the ECDSA_SIG object, and therefore the values that have been passed // in should not be freed directly after this function has been called if (ECDSA_SIG_set0(tmp_ecdsa_sig, r_big_num, s_big_num) != 1) { BN_free(s_big_num); // Frees BIGNUMs manually here BN_free(r_big_num); ECDSA_SIG_free(tmp_ecdsa_sig); continue; } EC_KEY *tmp_ec_key = EVP_PKEY_get1_EC_KEY(parent_signing_key); // Make a local key so you can free it later if (ECDSA_do_verify(sha_digest, (uint32_t)sha_length, tmp_ecdsa_sig, tmp_ec_key) != 1) { EC_KEY_free(tmp_ec_key); ECDSA_SIG_free(tmp_ecdsa_sig); // Frees BIGNUMs too continue; } found_match = true; EC_KEY_free(tmp_ec_key); ECDSA_SIG_free(tmp_ecdsa_sig); // Frees BIGNUMs too break; } Digest sha function: bool digest_sha(const void *msg, size_t msg_len, uint8_t *digest, size_t digest_len, SHA_TYPE sha_type) { bool ret = false; do { //TODO 384 vs 512 is all a mess if ((sha_type == SHA_TYPE_256 && digest_len != SHA256_DIGEST_LENGTH)/* || (sha_type == SHA_TYPE_384 && digest_len != SHA384_DIGEST_LENGTH)*/) break; if (sha_type == SHA_TYPE_256) { SHA256_CTX context; if (SHA256_Init(&context) != 1) break; if (SHA256_Update(&context, (void *)msg, msg_len) != 1) break; if (SHA256_Final(digest, &context) != 1) break; } else if (sha_type == SHA_TYPE_384) { SHA512_CTX context; if (SHA384_Init(&context) != 1) break; if (SHA384_Update(&context, (void *)msg, msg_len) != 1) break; if (SHA384_Final(digest, &context) != 1) break; } ret = true; } while (0); return ret; } This works using the new EC EVP key generation. The current verification method keeps failing: if ((parent_cert->pub_key_algo == SEV_SIG_ALGO_ECDSA_SHA256) || (parent_cert->pub_key_algo == SEV_SIG_ALGO_ECDSA_SHA384) || (parent_cert->pub_key_algo == SEV_SIG_ALGO_ECDH_SHA256) || (parent_cert->pub_key_algo == SEV_SIG_ALGO_ECDH_SHA384)) { // ecdsa.c -> sign_verify_msg ECDSA_SIG *tmp_ecdsa_sig = ECDSA_SIG_new(); BIGNUM *r_big_num = BN_new(); BIGNUM *s_big_num = BN_new(); uint32_t sig_len; unsigned char* der_sig = NULL;; // Store the x and y components as separate BIGNUM objects. The values in the // SEV certificate are little-endian, must reverse bytes before storing in BIGNUM r_big_num = BN_lebin2bn(cert_sig[i].ecdsa.r, sizeof(sev_ecdsa_sig::r), r_big_num); // LE to BE s_big_num = BN_lebin2bn(cert_sig[i].ecdsa.s, sizeof(sev_ecdsa_sig::s), s_big_num); // Calling ECDSA_SIG_set0() transfers the memory management of the values to // the ECDSA_SIG object, and therefore the values that have been passed // in should not be freed directly after this function has been called if (ECDSA_SIG_set0(tmp_ecdsa_sig, r_big_num,s_big_num) != 1) { BN_free(s_big_num); // FreesBIGNUMs manually here BN_free(r_big_num); ECDSA_SIG_free(tmp_ecdsa_sig); break; } int der_sig_len = i2d_ECDSA_SIG(tmp_ecdsa_sig, &der_sig); // der_sig = static_cast<unsigned char*>(OPENSSL_malloc(der_sig_len)); // unsigned char* der_iter = der_sig; // der_sig_len = i2d_ECDSA_SIG(tmp_ecdsa_sig, &der_iter); // <= bugfix here if (der_sig_len == 0) { cout << "sig length invalid" << endl; break; } if (der_sig == NULL) { cout << "sig generation failed" << endl; break; } // loop through the array elements for (size_t i = 0; i < der_sig_len; i++) { cout << der_sig[i] << ' '; } verify_md_ctx = EVP_MD_CTX_new(); if (!verify_md_ctx) { cout << "Error md verify context " << endl;; break; } if (EVP_DigestVerifyInit(verify_md_ctx, NULL, (parent_cert->pub_key_algo == SEV_SIG_ALGO_ECDSA_SHA256 || parent_cert->pub_key_algo == SEV_SIG_ALGO_ECDH_SHA256) ? EVP_sha256(): EVP_sha384(), NULL, parent_signing_key) <= 0) { cout << "Init fails " << endl; break; } if (EVP_DigestVerifyUpdate(verify_md_ctx, (uint8_t *)child_cert, pub_key_offset) <= 0){ // Calls SHA256_UPDATE cout << "updating digest fails" << endl; break; } int ret = EVP_DigestVerifyFinal(verify_md_ctx, der_sig, der_sig_len); if (ret == 0) { cout << "EC Verify digest fails" << endl; break; } else if (ret < 0) { printf("Failed Final Verify %s\n",ERR_error_string(ERR_get_error(),NULL)); cout << "EC Verify error" << endl; break; } found_match = true; cout << "SEV EC verification Succesful" << endl; if (verify_md_ctx) EVP_MD_CTX_free(verify_md_ctx); break; } The only difference still is using the der signature; besides that, it is the same. Could it be a bug? Thank you, Diego Gonzalez ---------------------------------------------------------------------------------------------------------------------------------- -----Original Message----- From: Tomas Mraz <tomas@xxxxxxxxxxx> Sent: Thursday, September 29, 2022 1:12 AM To: GonzalezVillalobos, Diego <Diego.GonzalezVillalobos@xxxxxxx>; openssl-users@xxxxxxxxxxx Subject: Re: Updating RSA public key generation and signature verification from 1.1.1 to 3.0 Caution: This message originated from an External Source. Use proper caution when opening attachments, clicking links, or responding. Hi, comments below. On Wed, 2022-09-28 at 22:12 +0000, GonzalezVillalobos, Diego wrote: > [AMD Official Use Only - General] > > Hello Tomas, > > I generated the key as you suggested, and I am no longer getting an > error message! Thank you for that. Here is how I'm generating the key > now: > > // SEV certificate are little-endian, must reverse bytes before > generating key > if ((cert->pub_key_algo == SEV_SIG_ALGO_ECDSA_SHA256) || > (cert->pub_key_algo == SEV_SIG_ALGO_ECDSA_SHA384)) { > //Grab x param and flip bytes to BE > memcpy(px, &cert->pub_key.ecdsa.qx, ec_group_order); > if(!sev::reverse_bytes(px, sizeof(px))) > break; > //Grab y param and flip bytes to BE > memcpy(py, &cert->pub_key.ecdsa.qy, ec_group_order); > if(!sev::reverse_bytes(py, sizeof(py))) > break; > } > else if ((cert->pub_key_algo == > SEV_SIG_ALGO_ECDH_SHA256) || > (cert->pub_key_algo == SEV_SIG_ALGO_ECDH_SHA384)) > { > //Grab x param and flip bytes to BE > memcpy(px, &cert->pub_key.ecdh.qx, ec_group_order); > if(!sev::reverse_bytes(px, sizeof(px))) > break; > //Grab y param and flip bytes to BE > memcpy(py, &cert->pub_key.ecdh.qy, ec_group_order); > if(!sev::reverse_bytes(py, sizeof(py))) > break; > } > > int px_size = sizeof(px)/sizeof(*px); > int py_size = sizeof(py)/sizeof(*py); > > // Will contain x and y components > unsigned char public_key_xy[1 + px_size + py_size] = {0}; > > //Add point conversion as first value > public_key_xy[0] = POINT_CONVERSION_UNCOMPRESSED; > > //Add x components after point compression > memcpy(public_key_xy + 1, px, px_size); > //Add y components after x > memcpy(public_key_xy + px_size + 1, py ,py_size); > > // int nid = EC_curve_nist2nid("P-384"); // > NID_secp384r1 > > OSSL_PARAM_BLD *params_build = OSSL_PARAM_BLD_new(); > > if ( params_build == NULL ) { > cout << "Params build fails" << endl; > break; > } > > if (!OSSL_PARAM_BLD_push_utf8_string(params_build, > OSSL_PKEY_PARAM_GROUP_NAME, "P-384", 0)) { > cout<< "Push EC curve to build fails" << endl; > break; > } > > if (!OSSL_PARAM_BLD_push_octet_string(params_build, > OSSL_PKEY_PARAM_PUB_KEY, public_key_xy, sizeof(public_key_xy))) { > cout << "Error: failed to push qx into param build." > << endl; > break; > } > > OSSL_PARAM *params = > OSSL_PARAM_BLD_to_param(params_build); > > if ( params == NULL ) { > cout << "Error: building parameters." << endl; > break; > } > > OSSL_PARAM_BLD_free(params_build); > > key_gen_ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL); > > if(EVP_PKEY_fromdata_init(key_gen_ctx) != 1) { > cout << "failed to initialize key creation." << endl; > break; > } > > if(EVP_PKEY_fromdata(key_gen_ctx, &evp_pub_key, > EVP_PKEY_PUBLIC_KEY, params) != 1) { > cout << "key generation breaks" << endl; > printf("Failed Final Verify > %s\n",ERR_error_string(ERR_get_error(),NULL)); > break; > } > > if (EVP_PKEY_get_base_id(evp_pub_key) != EVP_PKEY_EC) { > cout << "wrong key type" << endl; > break; > } > } > > if (!evp_pub_key) { > cout << "no evp pkey" << endl; > break; > } > cout << "compile key succesful" << endl; > cmd_ret = STATUS_SUCCESS; > > Although the key generation works and I'm not getting a verify error > anymore, I am still unsuccessful on verifying the digest. It keeps > failing (returning 0). Here is how I'm currently trying to do the > verification. Are you sure the px_size and py_size is equal to the group order? The x and y values must be padded to the group order with 0 (at the start because the values need to be BE). > ECDSA_SIG *tmp_ecdsa_sig = ECDSA_SIG_new(); > BIGNUM *r_big_num = BN_new(); > BIGNUM *s_big_num = BN_new(); > uint32_t sig_len; > unsigned char* der_sig; > > // Store the x and y components as separate BIGNUM > objects. The values in the > // SEV certificate are little-endian, must reverse > bytes before storing in BIGNUM > r_big_num = BN_lebin2bn(cert_sig[i].ecdsa.r, > sizeof(sev_ecdsa_sig::r), r_big_num); // LE to BE > s_big_num = BN_lebin2bn(cert_sig[i].ecdsa.s, > sizeof(sev_ecdsa_sig::s), s_big_num); > > // Calling ECDSA_SIG_set0() transfers the memory > management of the values to > // the ECDSA_SIG object, and therefore the values that > have been passed > // in should not be freed directly after this function > has been called > if (ECDSA_SIG_set0(tmp_ecdsa_sig, > r_big_num,s_big_num) != 1) { > BN_free(s_big_num); // FreesBIGNUMs manually here > BN_free(r_big_num); > ECDSA_SIG_free(tmp_ecdsa_sig); > break; > } > int der_sig_len = i2d_ECDSA_SIG(tmp_ecdsa_sig, NULL); > der_sig = static_cast<unsigned > char*>(OPENSSL_malloc(der_sig_len)); > unsigned char* der_iter = der_sig; > der_sig_len = i2d_ECDSA_SIG(tmp_ecdsa_sig, &der_iter); > // <= bugfix here > > if (der_sig_len == 0) { > cout << "sig length invalid" << endl; > break; > } > > if (der_sig == NULL) { > cout << "sig generation failed" << endl; > break; > } > You do not need to call i2d_ECDSA_SIG() twice. Just assign NULL to der_iter and i2d_ECDSA_SIG(tmp_ecdsa_sig, &der_iter) call will allocate the buffer for the encoded signature for you. > verify_md_ctx = EVP_MD_CTX_new(); > > > if (!verify_md_ctx) { > cout << "Error md verify context " << endl;; > break; > } > > if (EVP_DigestVerifyInit(verify_md_ctx, NULL, > (parent_cert->pub_key_algo == SEV_SIG_ALGO_ECDSA_SHA256 || > parent_cert->pub_key_algo == SEV_SIG_ALGO_ECDH_SHA256) ? > EVP_sha256(): EVP_sha384(), NULL, parent_signing_key) <= 0) { > cout << "Init fails " << endl; > break; > } > > if (EVP_DigestVerifyUpdate(verify_md_ctx, (uint8_t > *)child_cert, pub_key_offset) <= 0){ // Calls SHA256_UPDATE > cout << "updating digest fails" << endl; > break; > } > > int ret = EVP_DigestVerifyFinal(verify_md_ctx, > der_sig, der_sig_len); > cout << ret << endl; > if (ret == 0) { > cout << "EC Verify digest fails" << endl; > break; > } else if (ret < 0) { > printf("Failed Final Verify > %s\n",ERR_error_string(ERR_get_error(),NULL)); > cout << "EC Verify error" << endl; > break; > } > > found_match = true; > cout << "SEV EC verification Succesful" << endl; > > Could it be because I'm creating a ECDSA SIG object and then turning > it into a der format to verify? Again, suggestions would be > appreciated. No, that should be correct. The signature as produced or verified by the EVP_DigestSignFinal or EVP_DigestVerifyFinal should be in the DER encoding of the ECDSA_SIG. So you have that correct. I do not see any apparent problem with your code apart of the remarks above. -- Tomáš Mráz, OpenSSL