The patch titled Subject: mm, hugetlbfs: pass fault address to no page handler has been added to the -mm tree. Its filename is mm-hugetlbfs-pass-fault-address-to-no-page-handler.patch This patch should soon appear at http://ozlabs.org/~akpm/mmots/broken-out/mm-hugetlbfs-pass-fault-address-to-no-page-handler.patch and later at http://ozlabs.org/~akpm/mmotm/broken-out/mm-hugetlbfs-pass-fault-address-to-no-page-handler.patch Before you just go and hit "reply", please: a) Consider who else should be cc'ed b) Prefer to cc a suitable mailing list as well c) Ideally: find the original patch on the mailing list and do a reply-to-all to that, adding suitable additional cc's *** Remember to use Documentation/process/submit-checklist.rst when testing your code *** The -mm tree is included into linux-next and is updated there every 3-4 working days ------------------------------------------------------ From: Huang Ying <ying.huang@xxxxxxxxx> Subject: mm, hugetlbfs: pass fault address to no page handler This is to take better advantage of general huge page clearing optimization (c79b57e462b5d, "mm: hugetlb: clear target sub-page last when clearing huge page") for hugetlbfs. In the general optimization patch, the sub-page to access will be cleared last to avoid the cache lines of to access sub-page to be evicted when clearing other sub-pages. This works better if we have the address of the sub-page to access, that is, the fault address inside the huge page. So the hugetlbfs no page fault handler is changed to pass that information. This will benefit workloads which don't access the begin of the hugetlbfs huge page after the page fault under heavy cache contention for shared last level cache. The patch is a generic optimization which should benefit quite some workloads, not for a specific use case. To demonstrate the performance benefit of the patch, we tested it with vm-scalability run on hugetlbfs. With this patch, the throughput increases ~28.1% in vm-scalability anon-w-seq test case with 88 processes on a 2 socket Xeon E5 2699 v4 system (44 cores, 88 threads). The test case creates 88 processes, each process mmaps a big anonymous memory area with MAP_HUGETLB and writes to it from the end to the begin. For each process, other processes could be seen as other workload which generates heavy cache pressure. At the same time, the cache miss rate reduced from ~36.3% to ~25.6%, the IPC (instruction per cycle) increased from 0.3 to 0.37, and the time spent in user space is reduced ~19.3%. Link: http://lkml.kernel.org/r/20180517083539.9242-1-ying.huang@xxxxxxxxx Signed-off-by: "Huang, Ying" <ying.huang@xxxxxxxxx> Reviewed-by: Mike Kravetz <mike.kravetz@xxxxxxxxxx> Cc: Michal Hocko <mhocko@xxxxxxxx> Cc: David Rientjes <rientjes@xxxxxxxxxx> Cc: Andrea Arcangeli <aarcange@xxxxxxxxxx> Cc: "Kirill A. Shutemov" <kirill.shutemov@xxxxxxxxxxxxxxx> Cc: Andi Kleen <andi.kleen@xxxxxxxxx> Cc: Jan Kara <jack@xxxxxxx> Cc: Matthew Wilcox <mawilcox@xxxxxxxxxxxxx> Cc: Hugh Dickins <hughd@xxxxxxxxxx> Cc: Minchan Kim <minchan@xxxxxxxxxx> Cc: Shaohua Li <shli@xxxxxx> Cc: Christopher Lameter <cl@xxxxxxxxx> Cc: "Aneesh Kumar K.V" <aneesh.kumar@xxxxxxxxxxxxxxxxxx> Cc: Punit Agrawal <punit.agrawal@xxxxxxx> Cc: Anshuman Khandual <khandual@xxxxxxxxxxxxxxxxxx> Signed-off-by: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx> --- mm/hugetlb.c | 42 +++++++++++++++++++++--------------------- 1 file changed, 21 insertions(+), 21 deletions(-) diff -puN mm/hugetlb.c~mm-hugetlbfs-pass-fault-address-to-no-page-handler mm/hugetlb.c --- a/mm/hugetlb.c~mm-hugetlbfs-pass-fault-address-to-no-page-handler +++ a/mm/hugetlb.c @@ -3686,6 +3686,7 @@ static int hugetlb_no_page(struct mm_str struct page *page; pte_t new_pte; spinlock_t *ptl; + unsigned long haddr = address & huge_page_mask(h); /* * Currently, we are forced to kill the process in the event the @@ -3716,7 +3717,7 @@ retry: u32 hash; struct vm_fault vmf = { .vma = vma, - .address = address, + .address = haddr, .flags = flags, /* * Hard to debug if it ends up being @@ -3733,14 +3734,14 @@ retry: * fault to make calling code simpler. */ hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, - idx, address); + idx, haddr); mutex_unlock(&hugetlb_fault_mutex_table[hash]); ret = handle_userfault(&vmf, VM_UFFD_MISSING); mutex_lock(&hugetlb_fault_mutex_table[hash]); goto out; } - page = alloc_huge_page(vma, address, 0); + page = alloc_huge_page(vma, haddr, 0); if (IS_ERR(page)) { ret = PTR_ERR(page); if (ret == -ENOMEM) @@ -3789,12 +3790,12 @@ retry: * the spinlock. */ if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { - if (vma_needs_reservation(h, vma, address) < 0) { + if (vma_needs_reservation(h, vma, haddr) < 0) { ret = VM_FAULT_OOM; goto backout_unlocked; } /* Just decrements count, does not deallocate */ - vma_end_reservation(h, vma, address); + vma_end_reservation(h, vma, haddr); } ptl = huge_pte_lock(h, mm, ptep); @@ -3808,17 +3809,17 @@ retry: if (anon_rmap) { ClearPagePrivate(page); - hugepage_add_new_anon_rmap(page, vma, address); + hugepage_add_new_anon_rmap(page, vma, haddr); } else page_dup_rmap(page, true); new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) && (vma->vm_flags & VM_SHARED))); - set_huge_pte_at(mm, address, ptep, new_pte); + set_huge_pte_at(mm, haddr, ptep, new_pte); hugetlb_count_add(pages_per_huge_page(h), mm); if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { /* Optimization, do the COW without a second fault */ - ret = hugetlb_cow(mm, vma, address, ptep, page, ptl); + ret = hugetlb_cow(mm, vma, haddr, ptep, page, ptl); } spin_unlock(ptl); @@ -3830,7 +3831,7 @@ backout: spin_unlock(ptl); backout_unlocked: unlock_page(page); - restore_reserve_on_error(h, vma, address, page); + restore_reserve_on_error(h, vma, haddr, page); put_page(page); goto out; } @@ -3883,10 +3884,9 @@ int hugetlb_fault(struct mm_struct *mm, struct hstate *h = hstate_vma(vma); struct address_space *mapping; int need_wait_lock = 0; + unsigned long haddr = address & huge_page_mask(h); - address &= huge_page_mask(h); - - ptep = huge_pte_offset(mm, address, huge_page_size(h)); + ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); if (ptep) { entry = huge_ptep_get(ptep); if (unlikely(is_hugetlb_entry_migration(entry))) { @@ -3896,20 +3896,20 @@ int hugetlb_fault(struct mm_struct *mm, return VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); } else { - ptep = huge_pte_alloc(mm, address, huge_page_size(h)); + ptep = huge_pte_alloc(mm, haddr, huge_page_size(h)); if (!ptep) return VM_FAULT_OOM; } mapping = vma->vm_file->f_mapping; - idx = vma_hugecache_offset(h, vma, address); + idx = vma_hugecache_offset(h, vma, haddr); /* * Serialize hugepage allocation and instantiation, so that we don't * get spurious allocation failures if two CPUs race to instantiate * the same page in the page cache. */ - hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address); + hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr); mutex_lock(&hugetlb_fault_mutex_table[hash]); entry = huge_ptep_get(ptep); @@ -3939,16 +3939,16 @@ int hugetlb_fault(struct mm_struct *mm, * consumed. */ if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { - if (vma_needs_reservation(h, vma, address) < 0) { + if (vma_needs_reservation(h, vma, haddr) < 0) { ret = VM_FAULT_OOM; goto out_mutex; } /* Just decrements count, does not deallocate */ - vma_end_reservation(h, vma, address); + vma_end_reservation(h, vma, haddr); if (!(vma->vm_flags & VM_MAYSHARE)) pagecache_page = hugetlbfs_pagecache_page(h, - vma, address); + vma, haddr); } ptl = huge_pte_lock(h, mm, ptep); @@ -3973,16 +3973,16 @@ int hugetlb_fault(struct mm_struct *mm, if (flags & FAULT_FLAG_WRITE) { if (!huge_pte_write(entry)) { - ret = hugetlb_cow(mm, vma, address, ptep, + ret = hugetlb_cow(mm, vma, haddr, ptep, pagecache_page, ptl); goto out_put_page; } entry = huge_pte_mkdirty(entry); } entry = pte_mkyoung(entry); - if (huge_ptep_set_access_flags(vma, address, ptep, entry, + if (huge_ptep_set_access_flags(vma, haddr, ptep, entry, flags & FAULT_FLAG_WRITE)) - update_mmu_cache(vma, address, ptep); + update_mmu_cache(vma, haddr, ptep); out_put_page: if (page != pagecache_page) unlock_page(page); _ Patches currently in -mm which might be from ying.huang@xxxxxxxxx are mm-gup-prevent-pmd-checking-race-in-follow_pmd_mask.patch mm-pagemap-hide-swap-entry-for-unprivileged-users.patch mm-hugetlbfs-pass-fault-address-to-no-page-handler.patch mm-swap-fix-race-between-swapoff-and-some-swap-operations.patch mm-swap-fix-race-between-swapoff-and-some-swap-operations-v6.patch mm-fix-race-between-swapoff-and-mincore.patch -- To unsubscribe from this list: send the line "unsubscribe mm-commits" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html