Re: reformat: [PATCH] hwmon: Driver for Andigilog aSC7621 family monitoring chips

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Sun, 2010-02-21 at 23:29 -0700, George Joseph wrote:
> Fixed word wrap this time (I hope)...

Yes, this applies cleanly thanks.

I have compared the sensors output of Intel WX58BP with its BIOS
hardware monitoring.

http://userweb.kernel.org/~jaswinder/Corei7/sensors_Intel_WX58P.txt :

asc7621a-i2c-0-2e
Adapter: SMBus I801 adapter at 2000
in0:         +1.08 V  (min =  +0.00 V, max =  +3.31 V)
in1:         +0.92 V  (min =  +0.00 V, max =  +2.99 V)  
in2:         +3.19 V  (min =  +0.00 V, max =  +4.36 V)   
in3:         +4.99 V  (min =  +0.00 V, max =  +6.61 V)   
in4:        +12.00 V  (min =  +0.00 V, max = +15.94 V)   
fan1:        949 RPM  (min =    0 RPM)
fan2:       2437 RPM  (min =    0 RPM)
fan3:          0 RPM  (min =    0 RPM)
fan4:        623 RPM  (min =    0 RPM)
temp1:       -57.5°C  (low  = -127.0°C, high =  +0.0°C)  
                      (crit = -17.0°C)                  
temp2:       +35.8°C  (low  = -127.0°C, high = +127.0°C)  
                      (crit = +65.0°C)                  
temp3:       +42.5°C  (low  = -127.0°C, high = +127.0°C)  
                      (crit = +65.0°C)                  
temp4:       +52.5°C  (low  = -127.0°C, high = +127.0°C)  
                      (crit = +103.0°C)                  
temp5:       -57.5°C                                    
temp6:       -84.5°C                                    
temp7:       +96.2°C                                    
temp8:      +118.5°C      


BIOS hardware monitoring :

Processor Fan speed: 949 RPM (which is same as fan1)
Aux Fan speed: 2437 RPM (which is same as fan2)
Front Fan speed: 0 (which is same as fan3)
Rear Fan speed: 623 RPM (which is same as fan4)

Processor Thermal Margin: 57 C (which is same as temp1 but without -ve)
IOH Temperature: 52 C (which is same as temp4)
Motherboard Ambient Temperature: 35 C (which is same as temp2)
Voltage Regulator Temperature: 42C (which is same as temp3)

V12.0 : 12.00 V (which is same as in4)
V12.0 : 12.00 V (which is same as in4)
V12.0 : 12.00 V (which is same as in4)
V12.0 : 12.00 V (which is same as in4)

I am CC Andrew, Ingo, Stephen and LKML. I hope we can also get reviews
and feedbacks from them.

Thanks,
--
Jaswinder Singh.

> ---
> 
> From: George Joseph <george.joseph@xxxxxxxxxxxxx>
>  
> Hwmon driver for Andigilog aSC7621 family monitoring chips
>  
> Signed-off-by: George Joseph <george.joseph@xxxxxxxxxxxxx>
> ---
> 
> Patch against 2.6.33-rc8
> 
>  Documentation/hwmon/asc7621 |  295 ++++++++++
>  MAINTAINERS                 |    7 
>  drivers/hwmon/Kconfig       |   13 
>  drivers/hwmon/Makefile      |    1 
>  drivers/hwmon/asc7621.c     | 1233 ++++++++++++++++++++++++++++++++++++++++++++
>  5 files changed, 1549 insertions(+)
> 
> diff -uprN a/Documentation/hwmon/asc7621 b/Documentation/hwmon/asc7621
> --- a/Documentation/hwmon/asc7621	1969-12-31 17:00:00.000000000 -0700
> +++ b/Documentation/hwmon/asc7621	2010-02-21 11:47:26.000000000 -0700
> @@ -0,0 +1,295 @@
> +Kernel driver asc7621
> +==================
> +
> +Supported chips:
> +    Andigilog aSC7621 and aSC7621a
> +    Prefix: 'asc7621'
> +    Addresses scanned: I2C 0x2c, 0x2d, 0x2e
> +    Datasheet: http://www.fairview5.com/linux/asc7621/asc7621.pdf
> +
> +Author:
> +		George Joseph
> +
> +Description provided by Dave Pivin @ Andigilog:
> +
> +Andigilog has both the PECI and pre-PECI versions of the Heceta-6, as
> +Intel calls them. Heceta-6e has high frequency PWM and Heceta-6p has
> +added PECI and a 4th thermal zone. The Andigilog aSC7611 is the
> +Heceta-6e part and aSC7621 is the Heceta-6p part. They are both in
> +volume production, shipping to Intel and their subs.
> +
> +We have enhanced both parts relative to the governing Intel
> +specification. First enhancement is temperature reading resolution. We
> +have used registers below 20h for vendor-specific functions in addition
> +to those in the Intel-specified vendor range.
> +
> +Our conversion process produces a result that is reported as two bytes.
> +The fan speed control uses this finer value to produce a "step-less" fan
> +PWM output. These two bytes are "read-locked" to guarantee that once a
> +high or low byte is read, the other byte is locked-in until after the
> +next read of any register. So to get an atomic reading, read high or low
> +byte, then the very next read should be the opposite byte. Our data
> +sheet says 10-bits of resolution, although you may find the lower bits
> +are active, they are not necessarily reliable or useful externally. We
> +chose not to mask them.
> +
> +We employ significant filtering that is user tunable as described in the
> +data sheet. Our temperature reports and fan PWM outputs are very smooth
> +when compared to the competition, in addition to the higher resolution
> +temperature reports. The smoother PWM output does not require user
> +intervention.
> +
> +We offer GPIO features on the former VID pins. These are open-drain
> +outputs or inputs and may be used as general purpose I/O or as alarm
> +outputs that are based on temperature limits. These are in 19h and 1Ah.
> +
> +We offer flexible mapping of temperature readings to thermal zones. Any
> +temperature may be mapped to any zone, which has a default assignment
> +that follows Intel's specs.
> +
> +Since there is a fan to zone assignment that allows for the "hotter" of
> +a set of zones to control the PWM of an individual fan, but there is no
> +indication to the user, we have added an indicator that shows which zone
> +is currently controlling the PWM for a given fan. This is in register
> +00h.
> +
> +Both remote diode temperature readings may be given an offset value such
> +that the reported reading as well as the temperature used to determine
> +PWM may be offset for system calibration purposes.
> +
> +PECI Extended configuration allows for having more than two domains per
> +PECI address and also provides an enabling function for each PECI
> +address. One could use our flexible zone assignment to have a zone
> +assigned to up to 4 PECI addresses. This is not possible in the default
> +Intel configuration. This would be useful in multi-CPU systems with
> +individual fans on each that would benefit from individual fan control.
> +This is in register 0Eh.
> +
> +The tachometer measurement system is flexible and able to adapt to many
> +fan types. We can also support pulse-stretched PWM so that 3-wire fans
> +may be used. These characteristics are in registers 04h to 07h.
> +
> +Finally, we have added a tach disable function that turns off the tach
> +measurement system for individual tachs in order to save power. That is
> +in register 75h.
> +
> +--
> +aSC7621 Product Description
> +
> +The aSC7621 has a two wire digital interface compatible with SMBus 2.0.
> +Using a 10-bit ADC, the aSC7621 measures the temperature of two remote diode
> +connected transistors as well as its own die. Support for Platform
> +Environmental Control Interface (PECI) is included.
> +
> +Using temperature information from these four zones, an automatic fan speed
> +control algorithm is employed to minimize acoustic impact while achieving
> +recommended CPU temperature under varying operational loads.
> +
> +To set fan speed, the aSC7621 has three independent pulse width modulation
> +(PWM) outputs that are controlled by one, or a combination of three,
> +temperature zones. Both high- and low-frequency PWM ranges are supported.
> +
> +The aSC7621 also includes a digital filter that can be invoked to smooth
> +temperature readings for better control of fan speed and minimum acoustic
> +impact.
> +
> +The aSC7621 has tachometer inputs to measure fan speed on up to four fans.
> +Limit and status registers for all measured values are included to alert
> +the system host that any measurements are outside of programmed limits
> +via status registers.
> +
> +System voltages of VCCP, 2.5V, 3.3V, 5.0V, and 12V motherboard power are
> +monitored efficiently with internal scaling resistors.
> +
> +Features
> +- Supports PECI interface and monitors internal and remote thermal diodes
> +- 2-wire, SMBus 2.0 compliant, serial interface
> +- 10-bit ADC
> +- Monitors VCCP, 2.5V, 3.3V, 5.0V, and 12V motherboard/processor supplies
> +- Programmable autonomous fan control based on temperature readings
> +- Noise filtering of temperature reading for fan speed control
> +- 0.25C digital temperature sensor resolution
> +- 3 PWM fan speed control outputs for 2-, 3- or 4-wire fans and up to 4 fan
> +	tachometer inputs
> +- Enhanced measured temperature to Temperature Zone assignment.
> +- Provides high and low PWM frequency ranges
> +- 3 GPIO pins for custom use
> +- 24-Lead QSOP package
> +
> +Configuration Notes
> +===================
> +
> +Except where noted below, the sysfs entries created by this driver follow
> +the standards defined in "sysfs-interface".
> +
> +temp1_source
> +	0 	(default) peci_legacy = 0, Remote 1 Temperature
> +			peci_legacy = 1, PECI Processor Temperature 0
> +	1 	Remote 1 Temperature
> +	2 	Remote 2 Temperature
> +	3 	Internal Temperature
> +	4 	PECI Processor Temperature 0
> +	5 	PECI Processor Temperature 1
> +	6 	PECI Processor Temperature 2
> +	7  PECI Processor Temperature 3
> +
> +temp2_source
> +	0 	(default) Internal Temperature
> +	1 	Remote 1 Temperature
> +	2 	Remote 2 Temperature
> +	3 	Internal Temperature
> +	4 	PECI Processor Temperature 0
> +	5 	PECI Processor Temperature 1
> +	6 	PECI Processor Temperature 2
> +	7 	PECI Processor Temperature 3
> +
> +temp3_source
> +	0 	(default) Remote 2 Temperature
> +	1 	Remote 1 Temperature
> +	2 	Remote 2 Temperature
> +	3 	Internal Temperature
> +	4 	PECI Processor Temperature 0
> +	5 	PECI Processor Temperature 1
> +	6 	PECI Processor Temperature 2
> +	7 	PECI Processor Temperature 3
> +
> +temp4_source
> +	0 	(default) peci_legacy = 0, PECI Processor Temperature 0
> +			peci_legacy = 1, Remote 1 Temperature
> +	1 	Remote 1 Temperature
> +	2 	Remote 2 Temperature
> +	3 	Internal Temperature
> +	4 	PECI Processor Temperature 0
> +	5 	PECI Processor Temperature 1
> +	6 	PECI Processor Temperature 2
> +	7 	PECI Processor Temperature 3
> +
> +temp[1-4]_smoothing_enable
> +temp[1-4]_smoothing_time
> +	Smooths spikes in temp readings caused by noise.
> +	0	35 sec
> +	1	17.6 sec
> +	2	11.8 sec
> +	3	7.0 sec
> +	4	4.4 sec
> +	5	3.0 sec
> +	6	1.6 sec
> +	7	0.8 sec
> +
> +temp[1-4]_crit
> +	When the corresponding zone temperature reaches this value,
> +	ALL pwm outputs will got to 100%.
> +
> +temp[5-8]_input
> +temp[5-8]_enable
> +	The aSC7621 can also read temperatures provided by the processor
> +	via the PECI bus.  Usually these are "core" temps and are relative
> +	to the point where the automatic thermal control circuit starts
> +	throttling.  This means that these are usually negative numbers.
> +
> +pwm[1-3]_enable
> +	0		Fan off.
> +	1		Fan on manual control.
> +	2		Fan on automatic control and will run at the minimum pwm
> +				if the temperature for the zone is below the minimum.
> +	3		Fan on automatic control but will be off if the temperature
> +				for the zone is below the minimum.
> +	4-254	Ignored.
> +	255		Fan on full.
> +
> +pwm[1-3]_auto_channels
> +	Bitmap as described in sysctl-interface with the following
> +	exceptions...
> +	Only the following combination of zones (and their corresponding masks)
> +	are valid:
> +	1
> +	2
> +	3
> +	2,3
> +	1,2,3
> +	4
> +	1,2,3,4
> +
> +	Special values:
> +	0			Disabled.
> +	16		Fan on manual control.
> +	31		Fan on full.
> +
> +
> +pwm[1-3]_invert
> +	When set, inverts the meaning of pwm[1-3].
> +	i.e.  when pwm = 0, the fan will be on full and
> +	when pwm = 255 the fan will be off.
> +
> +pwm[1-3]_freq
> +	PWM frequency in Hz
> +	Valid values in Hz are:
> +
> +	10
> +	15
> +	23
> +	30  (default)
> +	38
> +	47
> +	62
> +	94
> +	23000
> +	24000
> +	25000
> +	26000
> +	27000
> +	28000
> +	29000
> +	30000
> +
> +	Setting any other value will be ignored.
> +
> +peci_enable
> +	Enables or disables PECI
> +
> +peci_avg
> +	Input filter average time.
> +
> +	0 	0 Sec. (no Smoothing) (default)
> +	1 	0.25 Sec.
> +	2 	0.5 Sec.
> +	3 	1.0 Sec.
> +	4 	2.0 Sec.
> +	5 	4.0 Sec.
> +	6 	8.0 Sec.
> +	7 	0.0 Sec.
> +
> +peci_legacy
> +
> +	0	Standard Mode (default)
> +		Remote Diode 1 reading is associated with
> +		Temperature Zone 1, PECI is associated with
> +		Zone 4
> +
> +	1	Legacy Mode
> +		PECI is associated with Temperature Zone 1,
> +		Remote Diode 1 is associated with Zone 4
> +
> +peci_diode
> +	Diode filter
> +
> +	0	0.25 Sec.
> +	1 	1.1 Sec.
> +	2 	2.4 Sec.  (default)
> +	3 	3.4 Sec.
> +	4 	5.0 Sec.
> +	5 	6.8 Sec.
> +	6 	10.2 Sec.
> +	7 	16.4 Sec.
> +
> +peci_4domain
> +	Four domain enable
> +
> +	0 	1 or 2 Domains for enabled processors (default)
> +	1 	3 or 4 Domains for enabled processors
> +
> +peci_domain
> +	Domain
> +
> +	0 	Processor contains a single domain (0) 	 (default)
> +	1 	Processor contains two domains (0,1)
> diff -uprN a/drivers/hwmon/asc7621.c b/drivers/hwmon/asc7621.c
> --- a/drivers/hwmon/asc7621.c	1969-12-31 17:00:00.000000000 -0700
> +++ b/drivers/hwmon/asc7621.c	2010-02-21 10:47:06.000000000 -0700
> @@ -0,0 +1,1233 @@
> +/*
> + * asc7621.c - Part of lm_sensors, Linux kernel modules for hardware monitoring
> + * Copyright (c) 2007, 2010 George Joseph  <george.joseph@xxxxxxxxxxxxx>
> + *
> + * This program is free software; you can redistribute it and/or modify
> + * it under the terms of the GNU General Public License as published by
> + * the Free Software Foundation; either version 2 of the License, or
> + * (at your option) any later version.
> + *
> + * This program is distributed in the hope that it will be useful,
> + * but WITHOUT ANY WARRANTY; without even the implied warranty of
> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
> + * GNU General Public License for more details.
> + *
> + * You should have received a copy of the GNU General Public License
> + * along with this program; if not, write to the Free Software
> + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
> + */
> +
> +#include <linux/module.h>
> +#include <linux/init.h>
> +#include <linux/slab.h>
> +#include <linux/jiffies.h>
> +#include <linux/i2c.h>
> +#include <linux/hwmon.h>
> +#include <linux/hwmon-sysfs.h>
> +#include <linux/err.h>
> +#include <linux/mutex.h>
> +
> +/* Addresses to scan */
> +static unsigned short normal_i2c[] = {
> +	0x2c, 0x2d, 0x2e, I2C_CLIENT_END
> +};
> +
> +enum asc7621_type {
> +	asc7621,
> +	asc7621a
> +};
> +
> +#define INTERVAL_HIGH		(HZ + HZ / 2)
> +#define INTERVAL_LOW		(1 * 60 * HZ)
> +#define PRI_NONE 		0
> +#define PRI_LOW 		1
> +#define PRI_HIGH 		2
> +#define FIRST_CHIP 		asc7621
> +#define LAST_CHIP 		asc7621a
> +
> +struct asc7621_chip {
> +	char *name;
> +	enum asc7621_type chip_type;
> +	u8 company_reg;
> +	u8 company_id;
> +	u8 verstep_reg;
> +	u8 verstep_id;
> +	unsigned short *addresses;
> +};
> +
> +static struct asc7621_chip asc7621_chips[] = {
> +	{
> +		.name = "asc7621",
> +		.chip_type = asc7621,
> +		.company_reg = 0x3e,
> +		.company_id = 0x61,
> +		.verstep_reg = 0x3f,
> +		.verstep_id = 0x6c,
> +		.addresses = normal_i2c,
> +	 },
> +	{
> +		.name = "asc7621a",
> +		.chip_type = asc7621a,
> +		.company_reg = 0x3e,
> +		.company_id = 0x61,
> +		.verstep_reg = 0x3f,
> +		.verstep_id = 0x6d,
> +		.addresses = normal_i2c,
> +	 },
> +};
> +
> +/*
> + * Defines the highest register to be used, not the count.
> + * The actual count will probably be smaller because of gaps
> + * in the implementation (unused register locations).
> + * This define will safely set the array size of both the parameter
> + * and data arrays.
> + * This comes from the data sheet register description table.
> + */
> +#define LAST_REGISTER 0xff
> +
> +struct asc7621_data {
> +	struct i2c_client client;
> +	struct device *class_dev;
> +	struct mutex update_lock;
> +	int valid;		/* !=0 if following fields are valid */
> +	unsigned long last_high_reading;	/* In jiffies */
> +	unsigned long last_low_reading;		/* In jiffies */
> +	/*
> +	 * Registers we care about occupy the corresponding index
> +	 * in the array.  Registers we don't care about are left
> +	 * at 0.
> +	 */
> +	u8 reg[LAST_REGISTER + 1];
> +};
> +
> +/*
> + * Macro to get the parent asc7621_param structure
> + * from a sensor_device_attribute passed into the
> + * show/store functions.
> + */
> +#define to_asc7621_param(_sda) \
> +	container_of(_sda, struct asc7621_param, sda)
> +
> +/*
> + * Each parameter to be retrieved needs an asc7621_param structure
> + * allocated.  It contains the sensor_device_attribute structure
> + * and the control info needed to retrieve the value from the register map.
> + */
> +struct asc7621_param {
> +	struct sensor_device_attribute sda;
> +	u8 priority;
> +	u8 msb[3];
> +	u8 lsb[3];
> +	u8 mask[3];
> +	u8 shift[3];
> +};
> +
> +/*
> + * This is the map that ultimately indicates whether we'll be
> + * retrieving a register value or not, and at what frequency.
> + */
> +static u8 asc7621_register_priorities[255];
> +
> +static struct asc7621_data *asc7621_update_device(struct device *dev);
> +
> +#define read_byte(reg)		(i2c_smbus_read_byte_data(client, reg) & 0xff)
> +#define write_byte(reg, data)	i2c_smbus_write_byte_data(client, reg, data)
> +
> +/*
> + * Data Handlers
> + * Each function handles the formatting, storage
> + * and retrieval of like parameters.
> + */
> +
> +#define SETUP_SHOW_data_param(d, a) \
> +	struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
> +	struct asc7621_data *data = asc7621_update_device(d); \
> +	struct asc7621_param *param = to_asc7621_param(sda)
> +
> +#define SETUP_STORE_data_param(d, a) \
> +	struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
> +	struct i2c_client *client = to_i2c_client(d); \
> +	struct asc7621_data *data = i2c_get_clientdata(client); \
> +	struct asc7621_param *param = to_asc7621_param(sda)
> +
> +/*
> + * u8 is just what it sounds like...an unsigned byte with no
> + * special formatting.
> + */
> +static ssize_t show_u8(struct device *dev, struct device_attribute *attr,
> +		       char *buf)
> +{
> +	SETUP_SHOW_data_param(dev, attr);
> +
> +	return sprintf(buf, "%u\n", data->reg[param->msb[0]]);
> +}
> +
> +static ssize_t store_u8(struct device *dev, struct device_attribute *attr,
> +			const char *buf, size_t count)
> +{
> +	SETUP_STORE_data_param(dev, attr);
> +	long reqval;
> +
> +	if (strict_strtol(buf, 10, &reqval))
> +		return -EINVAL;
> +
> +	reqval = SENSORS_LIMIT(reqval, 0, 255);
> +
> +	mutex_lock(&data->update_lock);
> +	data->reg[param->msb[0]] = reqval;
> +	write_byte(param->msb[0], reqval);
> +	mutex_unlock(&data->update_lock);
> +	return count;
> +}
> +
> +/*
> + * Many of the config values occupy only a few bits of a register.
> + */
> +static ssize_t show_bitmask(struct device *dev,
> +			    struct device_attribute *attr, char *buf)
> +{
> +	SETUP_SHOW_data_param(dev, attr);
> +
> +	return sprintf(buf, "%u\n",
> +		       (data->reg[param->msb[0]] >> param->
> +			shift[0]) & param->mask[0]);
> +}
> +
> +static ssize_t store_bitmask(struct device *dev,
> +			     struct device_attribute *attr,
> +			     const char *buf, size_t count)
> +{
> +	SETUP_STORE_data_param(dev, attr);
> +	long reqval;
> +	u8 currval;
> +
> +	if (strict_strtol(buf, 10, &reqval))
> +		return -EINVAL;
> +
> +	reqval = SENSORS_LIMIT(reqval, 0, param->mask[0]);
> +
> +	reqval = (reqval & param->mask[0]) << param->shift[0];
> +
> +	mutex_lock(&data->update_lock);
> +	currval = read_byte(param->msb[0]);
> +	reqval |= (currval & ~(param->mask[0] << param->shift[0]));
> +	data->reg[param->msb[0]] = reqval;
> +	write_byte(param->msb[0], reqval);
> +	mutex_unlock(&data->update_lock);
> +	return count;
> +}
> +
> +/*
> + * 16 bit fan rpm values
> + * reported by the device as the number of 11.111us periods (90khz)
> + * between full fan rotations.  Therefore...
> + * RPM = (90000 * 60) / register value
> + */
> +static ssize_t show_fan16(struct device *dev,
> +			  struct device_attribute *attr, char *buf)
> +{
> +	SETUP_SHOW_data_param(dev, attr);
> +	u16 regval;
> +
> +	mutex_lock(&data->update_lock);
> +	regval = (data->reg[param->msb[0]] << 8) | data->reg[param->lsb[0]];
> +	mutex_unlock(&data->update_lock);
> +
> +	return sprintf(buf, "%u\n",
> +		       (regval == 0 ? -1 : (regval) ==
> +			0xffff ? 0 : 5400000 / regval));
> +}
> +
> +static ssize_t store_fan16(struct device *dev,
> +			   struct device_attribute *attr, const char *buf,
> +			   size_t count)
> +{
> +	SETUP_STORE_data_param(dev, attr);
> +	long reqval;
> +
> +	if (strict_strtol(buf, 10, &reqval))
> +		return -EINVAL;
> +
> +	reqval =
> +	    (SENSORS_LIMIT((reqval) <= 0 ? 0 : 5400000 / (reqval), 0, 65534));
> +
> +	mutex_lock(&data->update_lock);
> +	data->reg[param->msb[0]] = (reqval >> 8) & 0xff;
> +	data->reg[param->lsb[0]] = reqval & 0xff;
> +	write_byte(param->msb[0], data->reg[param->msb[0]]);
> +	write_byte(param->lsb[0], data->reg[param->lsb[0]]);
> +	mutex_unlock(&data->update_lock);
> +
> +	return count;
> +}
> +
> +/*
> + * Voltages are scaled in the device so that the nominal voltage
> + * is 3/4ths of the 0-255 range (i.e. 192).
> + * If all voltages are 'normal' then all voltage registers will
> + * read 0xC0.  This doesn't help us if we don't have a point of refernce.
> + * The data sheet however provides us with the full scale value for each
> + * which is stored in in_scaling.  The sda->index parameter value provides
> + * the index into in_scaling.
> + *
> + * NOTE: The chip expects the first 2 inputs be 2.5 and 2.25 volts
> + * respectively. That doesn't mean that's what the motherboard provides. :)
> + */
> +
> +static int asc7621_in_scaling[] = {
> +	3320, 3000, 4380, 6640, 16000
> +};
> +
> +static ssize_t show_in10(struct device *dev, struct device_attribute *attr,
> +			 char *buf)
> +{
> +	SETUP_SHOW_data_param(dev, attr);
> +	u16 regval;
> +	u8 nr = sda->index;
> +
> +	mutex_lock(&data->update_lock);
> +	regval = (data->reg[param->msb[0]] * asc7621_in_scaling[nr]) / 256;
> +
> +	/* The LSB value is a 2-bit scaling of the MSB's LSbit value.
> +	 * I.E.  If the maximim voltage for this input is 6640 millivolts then
> +	 * a MSB register value of 0 = 0mv and 255 = 6640mv.
> +	 * A 1 step change therefore represents 25.9mv (6640 / 256).
> +	 * The extra 2-bits therefore represent increments of 6.48mv.
> +	 */
> +	regval += ((asc7621_in_scaling[nr] / 256) / 4) *
> +	    (data->reg[param->lsb[0]] >> 6);
> +
> +	mutex_unlock(&data->update_lock);
> +
> +	return sprintf(buf, "%u\n", regval);
> +}
> +
> +/* 8 bit voltage values (the mins and maxs) */
> +static ssize_t show_in8(struct device *dev, struct device_attribute *attr,
> +			char *buf)
> +{
> +	SETUP_SHOW_data_param(dev, attr);
> +	u8 nr = sda->index;
> +
> +	return sprintf(buf, "%u\n",
> +		       ((data->reg[param->msb[0]] *
> +			 asc7621_in_scaling[nr]) / 256));
> +}
> +
> +static ssize_t store_in8(struct device *dev, struct device_attribute *attr,
> +			 const char *buf, size_t count)
> +{
> +	SETUP_STORE_data_param(dev, attr);
> +	long reqval;
> +	u8 nr = sda->index;
> +
> +	if (strict_strtol(buf, 10, &reqval))
> +		return -EINVAL;
> +
> +	reqval = SENSORS_LIMIT(reqval, 0, asc7621_in_scaling[nr]);
> +
> +	reqval = (reqval * 256) / asc7621_in_scaling[nr];
> +
> +	mutex_lock(&data->update_lock);
> +	data->reg[param->msb[0]] = reqval;
> +	write_byte(param->msb[0], reqval);
> +	mutex_unlock(&data->update_lock);
> +
> +	return count;
> +}
> +
> +static ssize_t show_temp8(struct device *dev,
> +			  struct device_attribute *attr, char *buf)
> +{
> +	SETUP_SHOW_data_param(dev, attr);
> +
> +	return sprintf(buf, "%d\n", ((s8) data->reg[param->msb[0]]) * 1000);
> +}
> +
> +static ssize_t store_temp8(struct device *dev,
> +			   struct device_attribute *attr, const char *buf,
> +			   size_t count)
> +{
> +	SETUP_STORE_data_param(dev, attr);
> +	long reqval;
> +	s8 temp;
> +
> +	if (strict_strtol(buf, 10, &reqval))
> +		return -EINVAL;
> +
> +	reqval = SENSORS_LIMIT(reqval, -127000, 127000);
> +
> +	temp = reqval / 1000;
> +
> +	mutex_lock(&data->update_lock);
> +	data->reg[param->msb[0]] = temp;
> +	write_byte(param->msb[0], temp);
> +	mutex_unlock(&data->update_lock);
> +	return count;
> +}
> +
> +/*
> + * Temperatures that occupy 2 bytes always have the whole
> + * number of degrees in the MSB with some part of the LSB
> + * indicating fractional degrees.
> + */
> +
> +/*   mmmmmmmm.llxxxxxx */
> +static ssize_t show_temp10(struct device *dev,
> +			   struct device_attribute *attr, char *buf)
> +{
> +	SETUP_SHOW_data_param(dev, attr);
> +	u8 msb, lsb;
> +	int temp;
> +
> +	mutex_lock(&data->update_lock);
> +	msb = data->reg[param->msb[0]];
> +	lsb = (data->reg[param->lsb[0]] >> 6) & 0x03;
> +	temp = (((s8) msb) * 1000) + (lsb * 250);
> +	mutex_unlock(&data->update_lock);
> +
> +	return sprintf(buf, "%d\n", temp);
> +}
> +
> +/*   mmmmmm.ll */
> +static ssize_t show_temp62(struct device *dev,
> +			   struct device_attribute *attr, char *buf)
> +{
> +	SETUP_SHOW_data_param(dev, attr);
> +	u8 regval = data->reg[param->msb[0]];
> +	int temp = ((s8) (regval & 0xfc) * 1000) + ((regval & 0x03) * 250);
> +
> +	return sprintf(buf, "%d\n", temp);
> +}
> +
> +static ssize_t store_temp62(struct device *dev,
> +			    struct device_attribute *attr, const char *buf,
> +			    size_t count)
> +{
> +	SETUP_STORE_data_param(dev, attr);
> +	long reqval, i, f;
> +	s8 temp;
> +
> +	if (strict_strtol(buf, 10, &reqval))
> +		return -EINVAL;
> +
> +	reqval = SENSORS_LIMIT(reqval, -32000, 31750);
> +	i = reqval / 1000;
> +	f = reqval - (i * 1000);
> +	temp = i << 2;
> +	temp |= f / 250;
> +
> +	mutex_lock(&data->update_lock);
> +	data->reg[param->msb[0]] = temp;
> +	write_byte(param->msb[0], temp);
> +	mutex_unlock(&data->update_lock);
> +	return count;
> +}
> +
> +/*
> + * The aSC7621 doesn't provide an "auto_point2".  Instead, you
> + * specify the auto_point1 and a range.  To keep with the sysfs
> + * hwmon specs, we synthesize the auto_point_2 from them.
> + */
> +
> +static u32 asc7621_range_map[] = {
> +	2000, 2500, 3330, 4000, 5000, 6670, 8000, 10000,
> +	13330, 16000, 20000, 26670, 32000, 40000, 53330, 80000,
> +};
> +
> +static ssize_t show_ap2_temp(struct device *dev,
> +			     struct device_attribute *attr, char *buf)
> +{
> +	SETUP_SHOW_data_param(dev, attr);
> +	long auto_point1;
> +	u8 regval;
> +	int temp;
> +
> +	mutex_lock(&data->update_lock);
> +	auto_point1 = ((s8) data->reg[param->msb[1]]) * 1000;
> +	regval =
> +	    ((data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]);
> +	temp = auto_point1 + asc7621_range_map[SENSORS_LIMIT(regval, 0, 15)];
> +	mutex_unlock(&data->update_lock);
> +
> +	return sprintf(buf, "%d\n", temp);
> +
> +}
> +
> +static ssize_t store_ap2_temp(struct device *dev,
> +			      struct device_attribute *attr,
> +			      const char *buf, size_t count)
> +{
> +	SETUP_STORE_data_param(dev, attr);
> +	long reqval, auto_point1;
> +	int i;
> +	u8 currval, newval = 255;
> +
> +	if (strict_strtol(buf, 10, &reqval))
> +		return -EINVAL;
> +
> +	mutex_lock(&data->update_lock);
> +	auto_point1 = data->reg[param->msb[1]] * 1000;
> +	for (i = ARRAY_SIZE(asc7621_range_map) - 1; i >= 0; i--) {
> +		if (reqval >= auto_point1 + asc7621_range_map[i]) {
> +			newval = i;
> +			break;
> +		}
> +	}
> +	if (newval == 255) {
> +		mutex_unlock(&data->update_lock);
> +		return -EINVAL;
> +	}
> +
> +	newval = (newval & param->mask[0]) << param->shift[0];
> +	currval = read_byte(param->msb[0]);
> +	newval |= (currval & ~(param->mask[0] << param->shift[0]));
> +	data->reg[param->msb[0]] = newval;
> +	write_byte(param->msb[0], newval);
> +	mutex_unlock(&data->update_lock);
> +	return count;
> +}
> +
> +static ssize_t show_pwm_ac(struct device *dev,
> +			   struct device_attribute *attr, char *buf)
> +{
> +	SETUP_SHOW_data_param(dev, attr);
> +	u8 config, altbit, regval;
> +	u8 map[] = {
> +		0x01, 0x02, 0x04, 0x1f, 0x00, 0x06, 0x07, 0x10,
> +		0x08, 0x0f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f
> +	};
> +
> +	mutex_lock(&data->update_lock);
> +	config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
> +	altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
> +	regval = config | (altbit << 3);
> +	mutex_unlock(&data->update_lock);
> +
> +	return sprintf(buf, "%u\n", map[SENSORS_LIMIT(regval, 0, 15)]);
> +}
> +
> +static ssize_t store_pwm_ac(struct device *dev,
> +			    struct device_attribute *attr,
> +			    const char *buf, size_t count)
> +{
> +	SETUP_STORE_data_param(dev, attr);
> +	unsigned long reqval;
> +	u8 currval, config, altbit, newval;
> +	u16 map[] = {
> +		0x04, 0x00, 0x01, 0xff, 0x02, 0xff, 0x05, 0x06,
> +		0x08, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f,
> +		0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
> +		0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03,
> +	};
> +
> +	if (strict_strtoul(buf, 10, &reqval))
> +		return -EINVAL;
> +
> +	if (reqval > 31)
> +		return -EINVAL;
> +
> +	reqval = map[reqval];
> +
> +	config = reqval & 0x07;
> +	altbit = (reqval >> 3) & 0x01;
> +
> +	config = (config & param->mask[0]) << param->shift[0];
> +	altbit = (altbit & param->mask[1]) << param->shift[1];
> +
> +	mutex_lock(&data->update_lock);
> +	currval = read_byte(param->msb[0]);
> +	newval = config | (currval & ~(param->mask[0] << param->shift[0]));
> +	newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
> +	data->reg[param->msb[0]] = newval;
> +	write_byte(param->msb[0], newval);
> +	mutex_unlock(&data->update_lock);
> +	return count;
> +}
> +
> +static ssize_t show_pwm_enable(struct device *dev,
> +			       struct device_attribute *attr, char *buf)
> +{
> +	SETUP_SHOW_data_param(dev, attr);
> +	u8 config, altbit, minoff, val, newval;
> +
> +	mutex_lock(&data->update_lock);
> +	config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
> +	altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
> +	minoff = (data->reg[param->msb[2]] >> param->shift[2]) & param->mask[2];
> +	mutex_unlock(&data->update_lock);
> +
> +	val = config | (altbit << 3);
> +	newval = 0;
> +
> +	if (val == 3 || val >= 10)
> +		newval = 255;
> +	else if (val == 4)
> +		newval = 0;
> +	else if (val == 7)
> +		newval = 1;
> +	else if (minoff == 1)
> +		newval = 2;
> +	else
> +		newval = 3;
> +
> +	return sprintf(buf, "%u\n", newval);
> +}
> +
> +static ssize_t store_pwm_enable(struct device *dev,
> +				struct device_attribute *attr,
> +				const char *buf, size_t count)
> +{
> +	SETUP_STORE_data_param(dev, attr);
> +	long reqval;
> +	u8 currval, config, altbit, newval, minoff = 255;
> +
> +	if (strict_strtol(buf, 10, &reqval))
> +		return -EINVAL;
> +
> +	switch (reqval) {
> +	case 0:
> +		newval = 0x04;
> +		break;
> +	case 1:
> +		newval = 0x07;
> +		break;
> +	case 2:
> +		newval = 0x00;
> +		minoff = 1;
> +		break;
> +	case 3:
> +		newval = 0x00;
> +		minoff = 0;
> +		break;
> +	case 255:
> +		newval = 0x03;
> +		break;
> +	default:
> +		return -EINVAL;
> +	}
> +
> +	config = newval & 0x07;
> +	altbit = (newval >> 3) & 0x01;
> +
> +	mutex_lock(&data->update_lock);
> +	config = (config & param->mask[0]) << param->shift[0];
> +	altbit = (altbit & param->mask[1]) << param->shift[1];
> +	currval = read_byte(param->msb[0]);
> +	newval = config | (currval & ~(param->mask[0] << param->shift[0]));
> +	newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
> +	data->reg[param->msb[0]] = newval;
> +	write_byte(param->msb[0], newval);
> +	if (minoff < 255) {
> +		minoff = (minoff & param->mask[2]) << param->shift[2];
> +		currval = read_byte(param->msb[2]);
> +		newval =
> +		    minoff | (currval & ~(param->mask[2] << param->shift[2]));
> +		data->reg[param->msb[2]] = newval;
> +		write_byte(param->msb[2], newval);
> +	}
> +	mutex_unlock(&data->update_lock);
> +	return count;
> +}
> +
> +static u32 asc7621_pwm_freq_map[] = {
> +	10, 15, 23, 30, 38, 47, 62, 94,
> +	23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000
> +};
> +
> +static ssize_t show_pwm_freq(struct device *dev,
> +			     struct device_attribute *attr, char *buf)
> +{
> +	SETUP_SHOW_data_param(dev, attr);
> +	u8 regval =
> +	    (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
> +
> +	regval = SENSORS_LIMIT(regval, 0, 15);
> +
> +	return sprintf(buf, "%u\n", asc7621_pwm_freq_map[regval]);
> +}
> +
> +static ssize_t store_pwm_freq(struct device *dev,
> +			      struct device_attribute *attr,
> +			      const char *buf, size_t count)
> +{
> +	SETUP_STORE_data_param(dev, attr);
> +	unsigned long reqval;
> +	u8 currval, newval = 255;
> +	int i;
> +
> +	if (strict_strtoul(buf, 10, &reqval))
> +		return -EINVAL;
> +
> +	for (i = 0; i < ARRAY_SIZE(asc7621_pwm_freq_map); i++) {
> +		if (reqval == asc7621_pwm_freq_map[i]) {
> +			newval = i;
> +			break;
> +		}
> +	}
> +	if (newval == 255)
> +		return -EINVAL;
> +
> +	newval = (newval & param->mask[0]) << param->shift[0];
> +
> +	mutex_lock(&data->update_lock);
> +	currval = read_byte(param->msb[0]);
> +	newval |= (currval & ~(param->mask[0] << param->shift[0]));
> +	data->reg[param->msb[0]] = newval;
> +	write_byte(param->msb[0], newval);
> +	mutex_unlock(&data->update_lock);
> +	return count;
> +}
> +
> +static u32 asc7621_pwm_auto_spinup_map[] =  {
> +	0, 100, 250, 400, 700, 1000, 2000, 4000
> +};
> +
> +static ssize_t show_pwm_ast(struct device *dev,
> +			    struct device_attribute *attr, char *buf)
> +{
> +	SETUP_SHOW_data_param(dev, attr);
> +	u8 regval =
> +	    (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
> +
> +	regval = SENSORS_LIMIT(regval, 0, 7);
> +
> +	return sprintf(buf, "%u\n", asc7621_pwm_auto_spinup_map[regval]);
> +
> +}
> +
> +static ssize_t store_pwm_ast(struct device *dev,
> +			     struct device_attribute *attr,
> +			     const char *buf, size_t count)
> +{
> +	SETUP_STORE_data_param(dev, attr);
> +	long reqval;
> +	u8 currval, newval = 255;
> +	u32 i;
> +
> +	if (strict_strtol(buf, 10, &reqval))
> +		return -EINVAL;
> +
> +	for (i = 0; i < ARRAY_SIZE(asc7621_pwm_auto_spinup_map); i++) {
> +		if (reqval == asc7621_pwm_auto_spinup_map[i]) {
> +			newval = i;
> +			break;
> +		}
> +	}
> +	if (newval == 255)
> +		return -EINVAL;
> +
> +	newval = (newval & param->mask[0]) << param->shift[0];
> +
> +	mutex_lock(&data->update_lock);
> +	currval = read_byte(param->msb[0]);
> +	newval |= (currval & ~(param->mask[0] << param->shift[0]));
> +	data->reg[param->msb[0]] = newval;
> +	write_byte(param->msb[0], newval);
> +	mutex_unlock(&data->update_lock);
> +	return count;
> +}
> +
> +static u32 asc7621_temp_smoothing_time_map[] = {
> +	35000, 17600, 11800, 7000, 4400, 3000, 1600, 800
> +};
> +
> +static ssize_t show_temp_st(struct device *dev,
> +			    struct device_attribute *attr, char *buf)
> +{
> +	SETUP_SHOW_data_param(dev, attr);
> +	u8 regval =
> +	    (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
> +	regval = SENSORS_LIMIT(regval, 0, 7);
> +
> +	return sprintf(buf, "%u\n", asc7621_temp_smoothing_time_map[regval]);
> +}
> +
> +static ssize_t store_temp_st(struct device *dev,
> +			     struct device_attribute *attr,
> +			     const char *buf, size_t count)
> +{
> +	SETUP_STORE_data_param(dev, attr);
> +	long reqval;
> +	u8 currval, newval = 255;
> +	u32 i;
> +
> +	if (strict_strtol(buf, 10, &reqval))
> +		return -EINVAL;
> +
> +	for (i = 0; i < ARRAY_SIZE(asc7621_pwm_auto_spinup_map); i++) {
> +		if (reqval == asc7621_temp_smoothing_time_map[i]) {
> +			newval = i;
> +			break;
> +		}
> +	}
> +
> +	if (newval == 255)
> +		return -EINVAL;
> +
> +	newval = (newval & param->mask[0]) << param->shift[0];
> +
> +	mutex_lock(&data->update_lock);
> +	currval = read_byte(param->msb[0]);
> +	newval |= (currval & ~(param->mask[0] << param->shift[0]));
> +	data->reg[param->msb[0]] = newval;
> +	write_byte(param->msb[0], newval);
> +	mutex_unlock(&data->update_lock);
> +	return count;
> +}
> +
> +/*
> + * End of data handlers
> + *
> + * These defines do nothing more than make the table easier
> + * to read when wrapped at column 80.
> + */
> +
> +/*
> + * Creates a variable length array inititalizer.
> + * VAA(1,3,5,7) would produce {1,3,5,7}
> + */
> +#define VAA(args...) {args}
> +
> +#define PREAD(name, n, pri, rm, rl, m, s, r) \
> +	{.sda = SENSOR_ATTR(name, S_IRUGO, show_##r, NULL, n), \
> +	  .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
> +	  .shift[0] = s,}
> +
> +#define PWRITE(name, n, pri, rm, rl, m, s, r) \
> +	{.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
> +	  .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
> +	  .shift[0] = s,}
> +
> +/*
> + * PWRITEM assumes that the initializers for the .msb, .lsb, .mask and .shift
> + * were created using the VAA macro.
> + */
> +#define PWRITEM(name, n, pri, rm, rl, m, s, r) \
> +	{.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
> +	  .priority = pri, .msb = rm, .lsb = rl, .mask = m, .shift = s,}
> +
> +static struct asc7621_param asc7621_params[] = {
> +	PREAD(in0_input, 0, PRI_HIGH, 0x20, 0x13, 0, 0, in10),
> +	PREAD(in1_input, 1, PRI_HIGH, 0x21, 0x18, 0, 0, in10),
> +	PREAD(in2_input, 2, PRI_HIGH, 0x22, 0x11, 0, 0, in10),
> +	PREAD(in3_input, 3, PRI_HIGH, 0x23, 0x12, 0, 0, in10),
> +	PREAD(in4_input, 4, PRI_HIGH, 0x24, 0x14, 0, 0, in10),
> +
> +	PWRITE(in0_min, 0, PRI_LOW, 0x44, 0, 0, 0, in8),
> +	PWRITE(in1_min, 1, PRI_LOW, 0x46, 0, 0, 0, in8),
> +	PWRITE(in2_min, 2, PRI_LOW, 0x48, 0, 0, 0, in8),
> +	PWRITE(in3_min, 3, PRI_LOW, 0x4a, 0, 0, 0, in8),
> +	PWRITE(in4_min, 4, PRI_LOW, 0x4c, 0, 0, 0, in8),
> +
> +	PWRITE(in0_max, 0, PRI_LOW, 0x45, 0, 0, 0, in8),
> +	PWRITE(in1_max, 1, PRI_LOW, 0x47, 0, 0, 0, in8),
> +	PWRITE(in2_max, 2, PRI_LOW, 0x49, 0, 0, 0, in8),
> +	PWRITE(in3_max, 3, PRI_LOW, 0x4b, 0, 0, 0, in8),
> +	PWRITE(in4_max, 4, PRI_LOW, 0x4d, 0, 0, 0, in8),
> +
> +	PREAD(in0_alarm, 0, PRI_LOW, 0x41, 0, 0x01, 0, bitmask),
> +	PREAD(in1_alarm, 1, PRI_LOW, 0x41, 0, 0x01, 1, bitmask),
> +	PREAD(in2_alarm, 2, PRI_LOW, 0x41, 0, 0x01, 2, bitmask),
> +	PREAD(in3_alarm, 3, PRI_LOW, 0x41, 0, 0x01, 3, bitmask),
> +	PREAD(in4_alarm, 4, PRI_LOW, 0x42, 0, 0x01, 0, bitmask),
> +
> +	PREAD(fan1_input, 0, PRI_HIGH, 0x29, 0x28, 0, 0, fan16),
> +	PREAD(fan2_input, 1, PRI_HIGH, 0x2b, 0x2a, 0, 0, fan16),
> +	PREAD(fan3_input, 2, PRI_HIGH, 0x2d, 0x2c, 0, 0, fan16),
> +	PREAD(fan4_input, 3, PRI_HIGH, 0x2f, 0x2e, 0, 0, fan16),
> +
> +	PWRITE(fan1_min, 0, PRI_LOW, 0x55, 0x54, 0, 0, fan16),
> +	PWRITE(fan2_min, 1, PRI_LOW, 0x57, 0x56, 0, 0, fan16),
> +	PWRITE(fan3_min, 2, PRI_LOW, 0x59, 0x58, 0, 0, fan16),
> +	PWRITE(fan4_min, 3, PRI_LOW, 0x5b, 0x5a, 0, 0, fan16),
> +
> +	PREAD(fan1_alarm, 0, PRI_LOW, 0x42, 0, 0x01, 0, bitmask),
> +	PREAD(fan2_alarm, 1, PRI_LOW, 0x42, 0, 0x01, 1, bitmask),
> +	PREAD(fan3_alarm, 2, PRI_LOW, 0x42, 0, 0x01, 2, bitmask),
> +	PREAD(fan4_alarm, 3, PRI_LOW, 0x42, 0, 0x01, 3, bitmask),
> +
> +	PREAD(temp1_input, 0, PRI_HIGH, 0x25, 0x10, 0, 0, temp10),
> +	PREAD(temp2_input, 1, PRI_HIGH, 0x26, 0x15, 0, 0, temp10),
> +	PREAD(temp3_input, 2, PRI_HIGH, 0x27, 0x16, 0, 0, temp10),
> +	PREAD(temp4_input, 3, PRI_HIGH, 0x33, 0x17, 0, 0, temp10),
> +	PREAD(temp5_input, 4, PRI_HIGH, 0xf7, 0xf6, 0, 0, temp10),
> +	PREAD(temp6_input, 5, PRI_HIGH, 0xf9, 0xf8, 0, 0, temp10),
> +	PREAD(temp7_input, 6, PRI_HIGH, 0xfb, 0xfa, 0, 0, temp10),
> +	PREAD(temp8_input, 7, PRI_HIGH, 0xfd, 0xfc, 0, 0, temp10),
> +
> +	PWRITE(temp1_min, 0, PRI_LOW, 0x4e, 0, 0, 0, temp8),
> +	PWRITE(temp2_min, 1, PRI_LOW, 0x50, 0, 0, 0, temp8),
> +	PWRITE(temp3_min, 2, PRI_LOW, 0x52, 0, 0, 0, temp8),
> +	PWRITE(temp4_min, 3, PRI_LOW, 0x34, 0, 0, 0, temp8),
> +
> +	PWRITE(temp1_max, 0, PRI_LOW, 0x4f, 0, 0, 0, temp8),
> +	PWRITE(temp2_max, 1, PRI_LOW, 0x51, 0, 0, 0, temp8),
> +	PWRITE(temp3_max, 2, PRI_LOW, 0x53, 0, 0, 0, temp8),
> +	PWRITE(temp4_max, 3, PRI_LOW, 0x35, 0, 0, 0, temp8),
> +
> +	PREAD(temp1_alarm, 0, PRI_LOW, 0x41, 0, 0x01, 4, bitmask),
> +	PREAD(temp2_alarm, 1, PRI_LOW, 0x41, 0, 0x01, 5, bitmask),
> +	PREAD(temp3_alarm, 2, PRI_LOW, 0x41, 0, 0x01, 6, bitmask),
> +	PREAD(temp4_alarm, 3, PRI_LOW, 0x43, 0, 0x01, 0, bitmask),
> +
> +	PWRITE(temp1_source, 0, PRI_LOW, 0x02, 0, 0x07, 4, bitmask),
> +	PWRITE(temp2_source, 1, PRI_LOW, 0x02, 0, 0x07, 0, bitmask),
> +	PWRITE(temp3_source, 2, PRI_LOW, 0x03, 0, 0x07, 4, bitmask),
> +	PWRITE(temp4_source, 3, PRI_LOW, 0x03, 0, 0x07, 0, bitmask),
> +
> +	PWRITE(temp1_smoothing_enable, 0, PRI_LOW, 0x62, 0, 0x01, 3, bitmask),
> +	PWRITE(temp2_smoothing_enable, 1, PRI_LOW, 0x63, 0, 0x01, 7, bitmask),
> +	PWRITE(temp3_smoothing_enable, 2, PRI_LOW, 0x64, 0, 0x01, 3, bitmask),
> +	PWRITE(temp4_smoothing_enable, 3, PRI_LOW, 0x3c, 0, 0x01, 3, bitmask),
> +
> +	PWRITE(temp1_smoothing_time, 0, PRI_LOW, 0x62, 0, 0x07, 0, temp_st),
> +	PWRITE(temp2_smoothing_time, 1, PRI_LOW, 0x63, 0, 0x07, 4, temp_st),
> +	PWRITE(temp3_smoothing_time, 2, PRI_LOW, 0x63, 0, 0x07, 0, temp_st),
> +	PWRITE(temp4_smoothing_time, 3, PRI_LOW, 0x3c, 0, 0x07, 0, temp_st),
> +
> +	PWRITE(temp1_auto_point1_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
> +	       bitmask),
> +	PWRITE(temp2_auto_point1_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
> +	       bitmask),
> +	PWRITE(temp3_auto_point1_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
> +	       bitmask),
> +	PWRITE(temp4_auto_point1_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
> +	       bitmask),
> +
> +	PREAD(temp1_auto_point2_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
> +	      bitmask),
> +	PREAD(temp2_auto_point2_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
> +	      bitmask),
> +	PREAD(temp3_auto_point2_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
> +	      bitmask),
> +	PREAD(temp4_auto_point2_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
> +	      bitmask),
> +
> +	PWRITE(temp1_auto_point1_temp, 0, PRI_LOW, 0x67, 0, 0, 0, temp8),
> +	PWRITE(temp2_auto_point1_temp, 1, PRI_LOW, 0x68, 0, 0, 0, temp8),
> +	PWRITE(temp3_auto_point1_temp, 2, PRI_LOW, 0x69, 0, 0, 0, temp8),
> +	PWRITE(temp4_auto_point1_temp, 3, PRI_LOW, 0x3b, 0, 0, 0, temp8),
> +
> +	PWRITEM(temp1_auto_point2_temp, 0, PRI_LOW, VAA(0x5f, 0x67), VAA(0),
> +		VAA(0x0f), VAA(4), ap2_temp),
> +	PWRITEM(temp2_auto_point2_temp, 1, PRI_LOW, VAA(0x60, 0x68), VAA(0),
> +		VAA(0x0f), VAA(4), ap2_temp),
> +	PWRITEM(temp3_auto_point2_temp, 2, PRI_LOW, VAA(0x61, 0x69), VAA(0),
> +		VAA(0x0f), VAA(4), ap2_temp),
> +	PWRITEM(temp4_auto_point2_temp, 3, PRI_LOW, VAA(0x3c, 0x3b), VAA(0),
> +		VAA(0x0f), VAA(4), ap2_temp),
> +
> +	PWRITE(temp1_crit, 0, PRI_LOW, 0x6a, 0, 0, 0, temp8),
> +	PWRITE(temp2_crit, 1, PRI_LOW, 0x6b, 0, 0, 0, temp8),
> +	PWRITE(temp3_crit, 2, PRI_LOW, 0x6c, 0, 0, 0, temp8),
> +	PWRITE(temp4_crit, 3, PRI_LOW, 0x3d, 0, 0, 0, temp8),
> +
> +	PWRITE(temp5_enable, 4, PRI_LOW, 0x0e, 0, 0x01, 0, bitmask),
> +	PWRITE(temp6_enable, 5, PRI_LOW, 0x0e, 0, 0x01, 1, bitmask),
> +	PWRITE(temp7_enable, 6, PRI_LOW, 0x0e, 0, 0x01, 2, bitmask),
> +	PWRITE(temp8_enable, 7, PRI_LOW, 0x0e, 0, 0x01, 3, bitmask),
> +
> +	PWRITE(remote1_offset, 0, PRI_LOW, 0x1c, 0, 0, 0, temp62),
> +	PWRITE(remote2_offset, 1, PRI_LOW, 0x1d, 0, 0, 0, temp62),
> +
> +	PWRITE(pwm1, 0, PRI_HIGH, 0x30, 0, 0, 0, u8),
> +	PWRITE(pwm2, 1, PRI_HIGH, 0x31, 0, 0, 0, u8),
> +	PWRITE(pwm3, 2, PRI_HIGH, 0x32, 0, 0, 0, u8),
> +
> +	PWRITE(pwm1_invert, 0, PRI_LOW, 0x5c, 0, 0x01, 4, bitmask),
> +	PWRITE(pwm2_invert, 1, PRI_LOW, 0x5d, 0, 0x01, 4, bitmask),
> +	PWRITE(pwm3_invert, 2, PRI_LOW, 0x5e, 0, 0x01, 4, bitmask),
> +
> +	PWRITEM(pwm1_enable, 0, PRI_LOW, VAA(0x5c, 0x5c, 0x62), VAA(0, 0, 0),
> +		VAA(0x07, 0x01, 0x01), VAA(5, 3, 5), pwm_enable),
> +	PWRITEM(pwm2_enable, 1, PRI_LOW, VAA(0x5d, 0x5d, 0x62), VAA(0, 0, 0),
> +		VAA(0x07, 0x01, 0x01), VAA(5, 3, 6), pwm_enable),
> +	PWRITEM(pwm3_enable, 2, PRI_LOW, VAA(0x5e, 0x5e, 0x62), VAA(0, 0, 0),
> +		VAA(0x07, 0x01, 0x01), VAA(5, 3, 7), pwm_enable),
> +
> +	PWRITEM(pwm1_auto_channels, 0, PRI_LOW, VAA(0x5c, 0x5c), VAA(0, 0),
> +		VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
> +	PWRITEM(pwm2_auto_channels, 1, PRI_LOW, VAA(0x5d, 0x5d), VAA(0, 0),
> +		VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
> +	PWRITEM(pwm3_auto_channels, 2, PRI_LOW, VAA(0x5e, 0x5e), VAA(0, 0),
> +		VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
> +
> +	PWRITE(pwm1_auto_point1_pwm, 0, PRI_LOW, 0x64, 0, 0, 0, u8),
> +	PWRITE(pwm2_auto_point1_pwm, 1, PRI_LOW, 0x65, 0, 0, 0, u8),
> +	PWRITE(pwm3_auto_point1_pwm, 2, PRI_LOW, 0x66, 0, 0, 0, u8),
> +
> +	PWRITE(pwm1_auto_point2_pwm, 0, PRI_LOW, 0x38, 0, 0, 0, u8),
> +	PWRITE(pwm2_auto_point2_pwm, 1, PRI_LOW, 0x39, 0, 0, 0, u8),
> +	PWRITE(pwm3_auto_point2_pwm, 2, PRI_LOW, 0x3a, 0, 0, 0, u8),
> +
> +	PWRITE(pwm1_freq, 0, PRI_LOW, 0x5f, 0, 0x0f, 0, pwm_freq),
> +	PWRITE(pwm2_freq, 1, PRI_LOW, 0x60, 0, 0x0f, 0, pwm_freq),
> +	PWRITE(pwm3_freq, 2, PRI_LOW, 0x61, 0, 0x0f, 0, pwm_freq),
> +
> +	PREAD(pwm1_auto_zone_assigned, 0, PRI_LOW, 0, 0, 0x03, 2, bitmask),
> +	PREAD(pwm2_auto_zone_assigned, 1, PRI_LOW, 0, 0, 0x03, 4, bitmask),
> +	PREAD(pwm3_auto_zone_assigned, 2, PRI_LOW, 0, 0, 0x03, 6, bitmask),
> +
> +	PWRITE(pwm1_auto_spinup_time, 0, PRI_LOW, 0x5c, 0, 0x07, 0, pwm_ast),
> +	PWRITE(pwm2_auto_spinup_time, 1, PRI_LOW, 0x5d, 0, 0x07, 0, pwm_ast),
> +	PWRITE(pwm3_auto_spinup_time, 2, PRI_LOW, 0x5e, 0, 0x07, 0, pwm_ast),
> +
> +	PWRITE(peci_enable, 0, PRI_LOW, 0x40, 0, 0x01, 4, bitmask),
> +	PWRITE(peci_avg, 0, PRI_LOW, 0x36, 0, 0x07, 0, bitmask),
> +	PWRITE(peci_domain, 0, PRI_LOW, 0x36, 0, 0x01, 3, bitmask),
> +	PWRITE(peci_legacy, 0, PRI_LOW, 0x36, 0, 0x01, 4, bitmask),
> +	PWRITE(peci_diode, 0, PRI_LOW, 0x0e, 0, 0x07, 4, bitmask),
> +	PWRITE(peci_4domain, 0, PRI_LOW, 0x0e, 0, 0x01, 4, bitmask),
> +
> +};
> +
> +static struct asc7621_data *asc7621_update_device(struct device *dev)
> +{
> +	struct i2c_client *client = to_i2c_client(dev);
> +	struct asc7621_data *data = i2c_get_clientdata(client);
> +	int i;
> +
> +/*
> + * The asc7621 chips guarantee consistent reads of multi-byte values
> + * regardless of the order of the reads.  No special logic is needed
> + * so we can just read the registers in whatever  order they appear
> + * in the asc7621_params array.
> + */
> +
> +	mutex_lock(&data->update_lock);
> +
> +	/* Read all the high priority registers */
> +
> +	if (!data->valid ||
> +	    time_after(jiffies, data->last_high_reading + INTERVAL_HIGH)) {
> +
> +		for (i = 0; i < ARRAY_SIZE(asc7621_register_priorities); i++) {
> +			if (asc7621_register_priorities[i] == PRI_HIGH) {
> +				data->reg[i] =
> +				    i2c_smbus_read_byte_data(client, i) & 0xff;
> +			}
> +		}
> +		data->last_high_reading = jiffies;
> +	};			/* last_reading */
> +
> +	/* Read all the low priority registers. */
> +
> +	if (!data->valid ||
> +	    time_after(jiffies, data->last_high_reading + INTERVAL_LOW)) {
> +
> +		for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
> +			if (asc7621_register_priorities[i] == PRI_LOW) {
> +				data->reg[i] =
> +				    i2c_smbus_read_byte_data(client, i) & 0xff;
> +			}
> +		}
> +		data->last_low_reading = jiffies;
> +	};			/* last_reading */
> +
> +	data->valid = 1;
> +
> +	mutex_unlock(&data->update_lock);
> +
> +	return data;
> +}
> +
> +/*
> + * Standard detection and initialization below
> + *
> + * Helper function that checks if an address is valid
> + * for a particular chip.
> + */
> +
> +static inline int valid_address_for_chip(int chip_type, int address)
> +{
> +	int i;
> +
> +	for (i = 0; asc7621_chips[chip_type].addresses[i] != I2C_CLIENT_END;
> +	     i++) {
> +		if (asc7621_chips[chip_type].addresses[i] == address)
> +			return 1;
> +	}
> +	return 0;
> +}
> +
> +static void asc7621_init_client(struct i2c_client *client)
> +{
> +	int value, i, j;
> +
> +	/* Warn if part was not "READY" */
> +
> +	value = read_byte(0x40);
> +
> +	if (value & 0x02) {
> +		dev_err(&client->dev,
> +			"Client (%d,0x%02x) config is locked.\n",
> +			i2c_adapter_id(client->adapter), client->addr);
> +	};
> +	if (!(value & 0x04)) {
> +		dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n",
> +			i2c_adapter_id(client->adapter), client->addr);
> +	};
> +
> +/*
> + * Start monitoring
> + *
> + * Try to clear LOCK, Set START, save everything else
> + */
> +	value = (value & ~0x02) | 0x01;
> +	write_byte(0x40, value & 0xff);
> +
> +	/*
> +	 * Collect all the registers needed into a single array.
> +	 * This way, if a register isn't actually used for anything,
> +	 * we don't retrieve it.
> +	 */
> +
> +	for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
> +		for (j = 0; j < ARRAY_SIZE(asc7621_params[i].msb); j++)
> +			asc7621_register_priorities[asc7621_params[i].msb[j]] =
> +			    asc7621_params[i].priority;
> +		for (j = 0; j < ARRAY_SIZE(asc7621_params[i].lsb); j++)
> +			asc7621_register_priorities[asc7621_params[i].lsb[j]] =
> +			    asc7621_params[i].priority;
> +	}
> +}
> +
> +static int
> +asc7621_probe(struct i2c_client *client, const struct i2c_device_id *id)
> +{
> +	struct asc7621_data *data;
> +	int i, err;
> +
> +	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
> +		return -EIO;
> +
> +	data = kzalloc(sizeof(struct asc7621_data), GFP_KERNEL);
> +	if (data == NULL)
> +		return -ENOMEM;
> +
> +	i2c_set_clientdata(client, data);
> +	data->valid = 0;
> +	mutex_init(&data->update_lock);
> +
> +	/* Initialize the asc7621 chip */
> +	asc7621_init_client(client);
> +
> +	/* Create the sysfs entries */
> +	for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
> +		err =
> +		    device_create_file(&client->dev,
> +				       &(asc7621_params[i].sda.dev_attr));
> +		if (err)
> +			goto exit_remove;
> +	}
> +
> +	data->class_dev = hwmon_device_register(&client->dev);
> +	if (IS_ERR(data->class_dev)) {
> +		err = PTR_ERR(data->class_dev);
> +		goto exit_remove;
> +	}
> +
> +	return 0;
> +
> +exit_remove:
> +	for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
> +		device_remove_file(&client->dev,
> +				   &(asc7621_params[i].sda.dev_attr));
> +	}
> +
> +	i2c_set_clientdata(client, NULL);
> +	kfree(data);
> +	return err;
> +}
> +
> +static int asc7621_detect(struct i2c_client *client,
> +			  struct i2c_board_info *info)
> +{
> +	struct i2c_adapter *adapter = client->adapter;
> +	int company, verstep, chip_index;
> +	struct device *dev;
> +
> +	dev = &client->dev;
> +
> +	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
> +		return -ENODEV;
> +
> +	for (chip_index = FIRST_CHIP; chip_index <= LAST_CHIP; chip_index++) {
> +
> +		if (!valid_address_for_chip(chip_index, client->addr))
> +			continue;
> +
> +		company = read_byte(asc7621_chips[chip_index].company_reg);
> +		verstep = read_byte(asc7621_chips[chip_index].verstep_reg);
> +
> +		if (company == asc7621_chips[chip_index].company_id &&
> +		    verstep == asc7621_chips[chip_index].verstep_id) {
> +			strlcpy(client->name, asc7621_chips[chip_index].name,
> +				I2C_NAME_SIZE);
> +			strlcpy(info->type, asc7621_chips[chip_index].name,
> +				I2C_NAME_SIZE);
> +
> +			dev_info(&adapter->dev, "Matched %s\n",
> +				 asc7621_chips[chip_index].name);
> +			return 0;
> +		}
> +	}
> +
> +	return -ENODEV;
> +}
> +
> +static int asc7621_remove(struct i2c_client *client)
> +{
> +	struct asc7621_data *data = i2c_get_clientdata(client);
> +	int i;
> +
> +	hwmon_device_unregister(data->class_dev);
> +
> +	for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
> +		device_remove_file(&client->dev,
> +				   &(asc7621_params[i].sda.dev_attr));
> +	}
> +
> +	i2c_set_clientdata(client, NULL);
> +	kfree(data);
> +	return 0;
> +}
> +
> +static const struct i2c_device_id asc7621_id[] = {
> +	{"asc7621", asc7621},
> +	{"asc7621a", asc7621a},
> +	{},
> +};
> +
> +MODULE_DEVICE_TABLE(i2c, asc7621_id);
> +
> +static struct i2c_driver asc7621_driver = {
> +	.class = I2C_CLASS_HWMON,
> +	.driver = {
> +		.name = "asc7621",
> +	},
> +	.probe = asc7621_probe,
> +	.remove = asc7621_remove,
> +	.id_table = asc7621_id,
> +	.detect = asc7621_detect,
> +	.address_list = normal_i2c,
> +};
> +
> +static int __init sm_asc7621_init(void)
> +{
> +	return i2c_add_driver(&asc7621_driver);
> +}
> +
> +static void __exit sm_asc7621_exit(void)
> +{
> +	i2c_del_driver(&asc7621_driver);
> +}
> +
> +MODULE_LICENSE("GPL");
> +MODULE_AUTHOR("George Joseph");
> +MODULE_DESCRIPTION("Andigilog aSC7621 and aSC7621a driver");
> +
> +module_init(sm_asc7621_init);
> +module_exit(sm_asc7621_exit);
> diff -uprN a/drivers/hwmon/Kconfig b/drivers/hwmon/Kconfig
> --- a/drivers/hwmon/Kconfig	2010-02-21 09:33:51.000000000 -0700
> +++ b/drivers/hwmon/Kconfig	2010-02-21 09:57:46.000000000 -0700
> @@ -277,6 +277,19 @@ config SENSORS_ASB100
>  	  This driver can also be built as a module.  If so, the module
>  	  will be called asb100.
>  
> +config SENSORS_ASC7621
> +	tristate "Andigilog aSC7621"
> +	depends on HWMON && I2C
> +	help
> +	  If you say yes here you get support for the aSC7621
> +	  family of SMBus sensors chip found on most Intel X48, X38, 975,
> +	  965 and 945 desktop boards.  Currently supported chips:
> +	  aSC7621
> +	  aSC7621a
> +
> +	  This driver can also be built as a module.  If so, the module
> +	  will be called asc7621.
> +
>  config SENSORS_ATXP1
>  	tristate "Attansic ATXP1 VID controller"
>  	depends on I2C && EXPERIMENTAL
> diff -uprN a/drivers/hwmon/Makefile b/drivers/hwmon/Makefile
> --- a/drivers/hwmon/Makefile	2010-02-21 09:33:51.000000000 -0700
> +++ b/drivers/hwmon/Makefile	2010-02-21 09:55:37.000000000 -0700
> @@ -35,6 +35,7 @@ obj-$(CONFIG_SENSORS_ADT7473)	+= adt7473
>  obj-$(CONFIG_SENSORS_ADT7475)	+= adt7475.o
>  obj-$(CONFIG_SENSORS_APPLESMC)	+= applesmc.o
>  obj-$(CONFIG_SENSORS_AMS)	+= ams/
> +obj-$(CONFIG_SENSORS_ASC7621)	+= asc7621.o
>  obj-$(CONFIG_SENSORS_ATXP1)	+= atxp1.o
>  obj-$(CONFIG_SENSORS_CORETEMP)	+= coretemp.o
>  obj-$(CONFIG_SENSORS_DME1737)	+= dme1737.o
> diff -uprN a/MAINTAINERS b/MAINTAINERS
> --- a/MAINTAINERS	2010-02-21 09:33:56.000000000 -0700
> +++ b/MAINTAINERS	2010-02-21 09:51:43.000000000 -0700
> @@ -964,6 +964,13 @@ W:	http://www.arm.linux.org.uk/
>  S:	Maintained
>  F:	arch/arm/vfp/
>  
> +ASC7621 HARDWARE MONITOR DRIVER
> +M:	George Joseph <george.joseph@xxxxxxxxxxxxx>
> +L:	lm-sensors@xxxxxxxxxxxxxx
> +S:	Maintained
> +F:	Documentation/hwmon/asc7621
> +F:	drivers/hwmon/asc7621.c
> +
>  ASUS ACPI EXTRAS DRIVER
>  M:	Corentin Chary <corentincj@xxxxxxxxxx>
>  M:	Karol Kozimor <sziwan@xxxxxxxxxxxxxxxxxxxxx>



_______________________________________________
lm-sensors mailing list
lm-sensors@xxxxxxxxxxxxxx
http://lists.lm-sensors.org/mailman/listinfo/lm-sensors


[Index of Archives]     [Linux Kernel]     [Linux Hardware Monitoring]     [Linux USB Devel]     [Linux Audio Users]     [Linux Kernel]     [Linux SCSI]     [Yosemite Backpacking]

  Powered by Linux