Re: reformat: [PATCH] hwmon: Driver for Andigilog aSC7621 family monitoring chips

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Fixed word wrap this time (I hope)...
---

From: George Joseph <george.joseph@xxxxxxxxxxxxx>
 
Hwmon driver for Andigilog aSC7621 family monitoring chips
 
Signed-off-by: George Joseph <george.joseph@xxxxxxxxxxxxx>
---

Patch against 2.6.33-rc8

 Documentation/hwmon/asc7621 |  295 ++++++++++
 MAINTAINERS                 |    7 
 drivers/hwmon/Kconfig       |   13 
 drivers/hwmon/Makefile      |    1 
 drivers/hwmon/asc7621.c     | 1233 ++++++++++++++++++++++++++++++++++++++++++++
 5 files changed, 1549 insertions(+)

diff -uprN a/Documentation/hwmon/asc7621 b/Documentation/hwmon/asc7621
--- a/Documentation/hwmon/asc7621	1969-12-31 17:00:00.000000000 -0700
+++ b/Documentation/hwmon/asc7621	2010-02-21 11:47:26.000000000 -0700
@@ -0,0 +1,295 @@
+Kernel driver asc7621
+==================
+
+Supported chips:
+    Andigilog aSC7621 and aSC7621a
+    Prefix: 'asc7621'
+    Addresses scanned: I2C 0x2c, 0x2d, 0x2e
+    Datasheet: http://www.fairview5.com/linux/asc7621/asc7621.pdf
+
+Author:
+		George Joseph
+
+Description provided by Dave Pivin @ Andigilog:
+
+Andigilog has both the PECI and pre-PECI versions of the Heceta-6, as
+Intel calls them. Heceta-6e has high frequency PWM and Heceta-6p has
+added PECI and a 4th thermal zone. The Andigilog aSC7611 is the
+Heceta-6e part and aSC7621 is the Heceta-6p part. They are both in
+volume production, shipping to Intel and their subs.
+
+We have enhanced both parts relative to the governing Intel
+specification. First enhancement is temperature reading resolution. We
+have used registers below 20h for vendor-specific functions in addition
+to those in the Intel-specified vendor range.
+
+Our conversion process produces a result that is reported as two bytes.
+The fan speed control uses this finer value to produce a "step-less" fan
+PWM output. These two bytes are "read-locked" to guarantee that once a
+high or low byte is read, the other byte is locked-in until after the
+next read of any register. So to get an atomic reading, read high or low
+byte, then the very next read should be the opposite byte. Our data
+sheet says 10-bits of resolution, although you may find the lower bits
+are active, they are not necessarily reliable or useful externally. We
+chose not to mask them.
+
+We employ significant filtering that is user tunable as described in the
+data sheet. Our temperature reports and fan PWM outputs are very smooth
+when compared to the competition, in addition to the higher resolution
+temperature reports. The smoother PWM output does not require user
+intervention.
+
+We offer GPIO features on the former VID pins. These are open-drain
+outputs or inputs and may be used as general purpose I/O or as alarm
+outputs that are based on temperature limits. These are in 19h and 1Ah.
+
+We offer flexible mapping of temperature readings to thermal zones. Any
+temperature may be mapped to any zone, which has a default assignment
+that follows Intel's specs.
+
+Since there is a fan to zone assignment that allows for the "hotter" of
+a set of zones to control the PWM of an individual fan, but there is no
+indication to the user, we have added an indicator that shows which zone
+is currently controlling the PWM for a given fan. This is in register
+00h.
+
+Both remote diode temperature readings may be given an offset value such
+that the reported reading as well as the temperature used to determine
+PWM may be offset for system calibration purposes.
+
+PECI Extended configuration allows for having more than two domains per
+PECI address and also provides an enabling function for each PECI
+address. One could use our flexible zone assignment to have a zone
+assigned to up to 4 PECI addresses. This is not possible in the default
+Intel configuration. This would be useful in multi-CPU systems with
+individual fans on each that would benefit from individual fan control.
+This is in register 0Eh.
+
+The tachometer measurement system is flexible and able to adapt to many
+fan types. We can also support pulse-stretched PWM so that 3-wire fans
+may be used. These characteristics are in registers 04h to 07h.
+
+Finally, we have added a tach disable function that turns off the tach
+measurement system for individual tachs in order to save power. That is
+in register 75h.
+
+--
+aSC7621 Product Description
+
+The aSC7621 has a two wire digital interface compatible with SMBus 2.0.
+Using a 10-bit ADC, the aSC7621 measures the temperature of two remote diode
+connected transistors as well as its own die. Support for Platform
+Environmental Control Interface (PECI) is included.
+
+Using temperature information from these four zones, an automatic fan speed
+control algorithm is employed to minimize acoustic impact while achieving
+recommended CPU temperature under varying operational loads.
+
+To set fan speed, the aSC7621 has three independent pulse width modulation
+(PWM) outputs that are controlled by one, or a combination of three,
+temperature zones. Both high- and low-frequency PWM ranges are supported.
+
+The aSC7621 also includes a digital filter that can be invoked to smooth
+temperature readings for better control of fan speed and minimum acoustic
+impact.
+
+The aSC7621 has tachometer inputs to measure fan speed on up to four fans.
+Limit and status registers for all measured values are included to alert
+the system host that any measurements are outside of programmed limits
+via status registers.
+
+System voltages of VCCP, 2.5V, 3.3V, 5.0V, and 12V motherboard power are
+monitored efficiently with internal scaling resistors.
+
+Features
+- Supports PECI interface and monitors internal and remote thermal diodes
+- 2-wire, SMBus 2.0 compliant, serial interface
+- 10-bit ADC
+- Monitors VCCP, 2.5V, 3.3V, 5.0V, and 12V motherboard/processor supplies
+- Programmable autonomous fan control based on temperature readings
+- Noise filtering of temperature reading for fan speed control
+- 0.25C digital temperature sensor resolution
+- 3 PWM fan speed control outputs for 2-, 3- or 4-wire fans and up to 4 fan
+	tachometer inputs
+- Enhanced measured temperature to Temperature Zone assignment.
+- Provides high and low PWM frequency ranges
+- 3 GPIO pins for custom use
+- 24-Lead QSOP package
+
+Configuration Notes
+===================
+
+Except where noted below, the sysfs entries created by this driver follow
+the standards defined in "sysfs-interface".
+
+temp1_source
+	0 	(default) peci_legacy = 0, Remote 1 Temperature
+			peci_legacy = 1, PECI Processor Temperature 0
+	1 	Remote 1 Temperature
+	2 	Remote 2 Temperature
+	3 	Internal Temperature
+	4 	PECI Processor Temperature 0
+	5 	PECI Processor Temperature 1
+	6 	PECI Processor Temperature 2
+	7  PECI Processor Temperature 3
+
+temp2_source
+	0 	(default) Internal Temperature
+	1 	Remote 1 Temperature
+	2 	Remote 2 Temperature
+	3 	Internal Temperature
+	4 	PECI Processor Temperature 0
+	5 	PECI Processor Temperature 1
+	6 	PECI Processor Temperature 2
+	7 	PECI Processor Temperature 3
+
+temp3_source
+	0 	(default) Remote 2 Temperature
+	1 	Remote 1 Temperature
+	2 	Remote 2 Temperature
+	3 	Internal Temperature
+	4 	PECI Processor Temperature 0
+	5 	PECI Processor Temperature 1
+	6 	PECI Processor Temperature 2
+	7 	PECI Processor Temperature 3
+
+temp4_source
+	0 	(default) peci_legacy = 0, PECI Processor Temperature 0
+			peci_legacy = 1, Remote 1 Temperature
+	1 	Remote 1 Temperature
+	2 	Remote 2 Temperature
+	3 	Internal Temperature
+	4 	PECI Processor Temperature 0
+	5 	PECI Processor Temperature 1
+	6 	PECI Processor Temperature 2
+	7 	PECI Processor Temperature 3
+
+temp[1-4]_smoothing_enable
+temp[1-4]_smoothing_time
+	Smooths spikes in temp readings caused by noise.
+	0	35 sec
+	1	17.6 sec
+	2	11.8 sec
+	3	7.0 sec
+	4	4.4 sec
+	5	3.0 sec
+	6	1.6 sec
+	7	0.8 sec
+
+temp[1-4]_crit
+	When the corresponding zone temperature reaches this value,
+	ALL pwm outputs will got to 100%.
+
+temp[5-8]_input
+temp[5-8]_enable
+	The aSC7621 can also read temperatures provided by the processor
+	via the PECI bus.  Usually these are "core" temps and are relative
+	to the point where the automatic thermal control circuit starts
+	throttling.  This means that these are usually negative numbers.
+
+pwm[1-3]_enable
+	0		Fan off.
+	1		Fan on manual control.
+	2		Fan on automatic control and will run at the minimum pwm
+				if the temperature for the zone is below the minimum.
+	3		Fan on automatic control but will be off if the temperature
+				for the zone is below the minimum.
+	4-254	Ignored.
+	255		Fan on full.
+
+pwm[1-3]_auto_channels
+	Bitmap as described in sysctl-interface with the following
+	exceptions...
+	Only the following combination of zones (and their corresponding masks)
+	are valid:
+	1
+	2
+	3
+	2,3
+	1,2,3
+	4
+	1,2,3,4
+
+	Special values:
+	0			Disabled.
+	16		Fan on manual control.
+	31		Fan on full.
+
+
+pwm[1-3]_invert
+	When set, inverts the meaning of pwm[1-3].
+	i.e.  when pwm = 0, the fan will be on full and
+	when pwm = 255 the fan will be off.
+
+pwm[1-3]_freq
+	PWM frequency in Hz
+	Valid values in Hz are:
+
+	10
+	15
+	23
+	30  (default)
+	38
+	47
+	62
+	94
+	23000
+	24000
+	25000
+	26000
+	27000
+	28000
+	29000
+	30000
+
+	Setting any other value will be ignored.
+
+peci_enable
+	Enables or disables PECI
+
+peci_avg
+	Input filter average time.
+
+	0 	0 Sec. (no Smoothing) (default)
+	1 	0.25 Sec.
+	2 	0.5 Sec.
+	3 	1.0 Sec.
+	4 	2.0 Sec.
+	5 	4.0 Sec.
+	6 	8.0 Sec.
+	7 	0.0 Sec.
+
+peci_legacy
+
+	0	Standard Mode (default)
+		Remote Diode 1 reading is associated with
+		Temperature Zone 1, PECI is associated with
+		Zone 4
+
+	1	Legacy Mode
+		PECI is associated with Temperature Zone 1,
+		Remote Diode 1 is associated with Zone 4
+
+peci_diode
+	Diode filter
+
+	0	0.25 Sec.
+	1 	1.1 Sec.
+	2 	2.4 Sec.  (default)
+	3 	3.4 Sec.
+	4 	5.0 Sec.
+	5 	6.8 Sec.
+	6 	10.2 Sec.
+	7 	16.4 Sec.
+
+peci_4domain
+	Four domain enable
+
+	0 	1 or 2 Domains for enabled processors (default)
+	1 	3 or 4 Domains for enabled processors
+
+peci_domain
+	Domain
+
+	0 	Processor contains a single domain (0) 	 (default)
+	1 	Processor contains two domains (0,1)
diff -uprN a/drivers/hwmon/asc7621.c b/drivers/hwmon/asc7621.c
--- a/drivers/hwmon/asc7621.c	1969-12-31 17:00:00.000000000 -0700
+++ b/drivers/hwmon/asc7621.c	2010-02-21 10:47:06.000000000 -0700
@@ -0,0 +1,1233 @@
+/*
+ * asc7621.c - Part of lm_sensors, Linux kernel modules for hardware monitoring
+ * Copyright (c) 2007, 2010 George Joseph  <george.joseph@xxxxxxxxxxxxx>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/jiffies.h>
+#include <linux/i2c.h>
+#include <linux/hwmon.h>
+#include <linux/hwmon-sysfs.h>
+#include <linux/err.h>
+#include <linux/mutex.h>
+
+/* Addresses to scan */
+static unsigned short normal_i2c[] = {
+	0x2c, 0x2d, 0x2e, I2C_CLIENT_END
+};
+
+enum asc7621_type {
+	asc7621,
+	asc7621a
+};
+
+#define INTERVAL_HIGH		(HZ + HZ / 2)
+#define INTERVAL_LOW		(1 * 60 * HZ)
+#define PRI_NONE 		0
+#define PRI_LOW 		1
+#define PRI_HIGH 		2
+#define FIRST_CHIP 		asc7621
+#define LAST_CHIP 		asc7621a
+
+struct asc7621_chip {
+	char *name;
+	enum asc7621_type chip_type;
+	u8 company_reg;
+	u8 company_id;
+	u8 verstep_reg;
+	u8 verstep_id;
+	unsigned short *addresses;
+};
+
+static struct asc7621_chip asc7621_chips[] = {
+	{
+		.name = "asc7621",
+		.chip_type = asc7621,
+		.company_reg = 0x3e,
+		.company_id = 0x61,
+		.verstep_reg = 0x3f,
+		.verstep_id = 0x6c,
+		.addresses = normal_i2c,
+	 },
+	{
+		.name = "asc7621a",
+		.chip_type = asc7621a,
+		.company_reg = 0x3e,
+		.company_id = 0x61,
+		.verstep_reg = 0x3f,
+		.verstep_id = 0x6d,
+		.addresses = normal_i2c,
+	 },
+};
+
+/*
+ * Defines the highest register to be used, not the count.
+ * The actual count will probably be smaller because of gaps
+ * in the implementation (unused register locations).
+ * This define will safely set the array size of both the parameter
+ * and data arrays.
+ * This comes from the data sheet register description table.
+ */
+#define LAST_REGISTER 0xff
+
+struct asc7621_data {
+	struct i2c_client client;
+	struct device *class_dev;
+	struct mutex update_lock;
+	int valid;		/* !=0 if following fields are valid */
+	unsigned long last_high_reading;	/* In jiffies */
+	unsigned long last_low_reading;		/* In jiffies */
+	/*
+	 * Registers we care about occupy the corresponding index
+	 * in the array.  Registers we don't care about are left
+	 * at 0.
+	 */
+	u8 reg[LAST_REGISTER + 1];
+};
+
+/*
+ * Macro to get the parent asc7621_param structure
+ * from a sensor_device_attribute passed into the
+ * show/store functions.
+ */
+#define to_asc7621_param(_sda) \
+	container_of(_sda, struct asc7621_param, sda)
+
+/*
+ * Each parameter to be retrieved needs an asc7621_param structure
+ * allocated.  It contains the sensor_device_attribute structure
+ * and the control info needed to retrieve the value from the register map.
+ */
+struct asc7621_param {
+	struct sensor_device_attribute sda;
+	u8 priority;
+	u8 msb[3];
+	u8 lsb[3];
+	u8 mask[3];
+	u8 shift[3];
+};
+
+/*
+ * This is the map that ultimately indicates whether we'll be
+ * retrieving a register value or not, and at what frequency.
+ */
+static u8 asc7621_register_priorities[255];
+
+static struct asc7621_data *asc7621_update_device(struct device *dev);
+
+#define read_byte(reg)		(i2c_smbus_read_byte_data(client, reg) & 0xff)
+#define write_byte(reg, data)	i2c_smbus_write_byte_data(client, reg, data)
+
+/*
+ * Data Handlers
+ * Each function handles the formatting, storage
+ * and retrieval of like parameters.
+ */
+
+#define SETUP_SHOW_data_param(d, a) \
+	struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
+	struct asc7621_data *data = asc7621_update_device(d); \
+	struct asc7621_param *param = to_asc7621_param(sda)
+
+#define SETUP_STORE_data_param(d, a) \
+	struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
+	struct i2c_client *client = to_i2c_client(d); \
+	struct asc7621_data *data = i2c_get_clientdata(client); \
+	struct asc7621_param *param = to_asc7621_param(sda)
+
+/*
+ * u8 is just what it sounds like...an unsigned byte with no
+ * special formatting.
+ */
+static ssize_t show_u8(struct device *dev, struct device_attribute *attr,
+		       char *buf)
+{
+	SETUP_SHOW_data_param(dev, attr);
+
+	return sprintf(buf, "%u\n", data->reg[param->msb[0]]);
+}
+
+static ssize_t store_u8(struct device *dev, struct device_attribute *attr,
+			const char *buf, size_t count)
+{
+	SETUP_STORE_data_param(dev, attr);
+	long reqval;
+
+	if (strict_strtol(buf, 10, &reqval))
+		return -EINVAL;
+
+	reqval = SENSORS_LIMIT(reqval, 0, 255);
+
+	mutex_lock(&data->update_lock);
+	data->reg[param->msb[0]] = reqval;
+	write_byte(param->msb[0], reqval);
+	mutex_unlock(&data->update_lock);
+	return count;
+}
+
+/*
+ * Many of the config values occupy only a few bits of a register.
+ */
+static ssize_t show_bitmask(struct device *dev,
+			    struct device_attribute *attr, char *buf)
+{
+	SETUP_SHOW_data_param(dev, attr);
+
+	return sprintf(buf, "%u\n",
+		       (data->reg[param->msb[0]] >> param->
+			shift[0]) & param->mask[0]);
+}
+
+static ssize_t store_bitmask(struct device *dev,
+			     struct device_attribute *attr,
+			     const char *buf, size_t count)
+{
+	SETUP_STORE_data_param(dev, attr);
+	long reqval;
+	u8 currval;
+
+	if (strict_strtol(buf, 10, &reqval))
+		return -EINVAL;
+
+	reqval = SENSORS_LIMIT(reqval, 0, param->mask[0]);
+
+	reqval = (reqval & param->mask[0]) << param->shift[0];
+
+	mutex_lock(&data->update_lock);
+	currval = read_byte(param->msb[0]);
+	reqval |= (currval & ~(param->mask[0] << param->shift[0]));
+	data->reg[param->msb[0]] = reqval;
+	write_byte(param->msb[0], reqval);
+	mutex_unlock(&data->update_lock);
+	return count;
+}
+
+/*
+ * 16 bit fan rpm values
+ * reported by the device as the number of 11.111us periods (90khz)
+ * between full fan rotations.  Therefore...
+ * RPM = (90000 * 60) / register value
+ */
+static ssize_t show_fan16(struct device *dev,
+			  struct device_attribute *attr, char *buf)
+{
+	SETUP_SHOW_data_param(dev, attr);
+	u16 regval;
+
+	mutex_lock(&data->update_lock);
+	regval = (data->reg[param->msb[0]] << 8) | data->reg[param->lsb[0]];
+	mutex_unlock(&data->update_lock);
+
+	return sprintf(buf, "%u\n",
+		       (regval == 0 ? -1 : (regval) ==
+			0xffff ? 0 : 5400000 / regval));
+}
+
+static ssize_t store_fan16(struct device *dev,
+			   struct device_attribute *attr, const char *buf,
+			   size_t count)
+{
+	SETUP_STORE_data_param(dev, attr);
+	long reqval;
+
+	if (strict_strtol(buf, 10, &reqval))
+		return -EINVAL;
+
+	reqval =
+	    (SENSORS_LIMIT((reqval) <= 0 ? 0 : 5400000 / (reqval), 0, 65534));
+
+	mutex_lock(&data->update_lock);
+	data->reg[param->msb[0]] = (reqval >> 8) & 0xff;
+	data->reg[param->lsb[0]] = reqval & 0xff;
+	write_byte(param->msb[0], data->reg[param->msb[0]]);
+	write_byte(param->lsb[0], data->reg[param->lsb[0]]);
+	mutex_unlock(&data->update_lock);
+
+	return count;
+}
+
+/*
+ * Voltages are scaled in the device so that the nominal voltage
+ * is 3/4ths of the 0-255 range (i.e. 192).
+ * If all voltages are 'normal' then all voltage registers will
+ * read 0xC0.  This doesn't help us if we don't have a point of refernce.
+ * The data sheet however provides us with the full scale value for each
+ * which is stored in in_scaling.  The sda->index parameter value provides
+ * the index into in_scaling.
+ *
+ * NOTE: The chip expects the first 2 inputs be 2.5 and 2.25 volts
+ * respectively. That doesn't mean that's what the motherboard provides. :)
+ */
+
+static int asc7621_in_scaling[] = {
+	3320, 3000, 4380, 6640, 16000
+};
+
+static ssize_t show_in10(struct device *dev, struct device_attribute *attr,
+			 char *buf)
+{
+	SETUP_SHOW_data_param(dev, attr);
+	u16 regval;
+	u8 nr = sda->index;
+
+	mutex_lock(&data->update_lock);
+	regval = (data->reg[param->msb[0]] * asc7621_in_scaling[nr]) / 256;
+
+	/* The LSB value is a 2-bit scaling of the MSB's LSbit value.
+	 * I.E.  If the maximim voltage for this input is 6640 millivolts then
+	 * a MSB register value of 0 = 0mv and 255 = 6640mv.
+	 * A 1 step change therefore represents 25.9mv (6640 / 256).
+	 * The extra 2-bits therefore represent increments of 6.48mv.
+	 */
+	regval += ((asc7621_in_scaling[nr] / 256) / 4) *
+	    (data->reg[param->lsb[0]] >> 6);
+
+	mutex_unlock(&data->update_lock);
+
+	return sprintf(buf, "%u\n", regval);
+}
+
+/* 8 bit voltage values (the mins and maxs) */
+static ssize_t show_in8(struct device *dev, struct device_attribute *attr,
+			char *buf)
+{
+	SETUP_SHOW_data_param(dev, attr);
+	u8 nr = sda->index;
+
+	return sprintf(buf, "%u\n",
+		       ((data->reg[param->msb[0]] *
+			 asc7621_in_scaling[nr]) / 256));
+}
+
+static ssize_t store_in8(struct device *dev, struct device_attribute *attr,
+			 const char *buf, size_t count)
+{
+	SETUP_STORE_data_param(dev, attr);
+	long reqval;
+	u8 nr = sda->index;
+
+	if (strict_strtol(buf, 10, &reqval))
+		return -EINVAL;
+
+	reqval = SENSORS_LIMIT(reqval, 0, asc7621_in_scaling[nr]);
+
+	reqval = (reqval * 256) / asc7621_in_scaling[nr];
+
+	mutex_lock(&data->update_lock);
+	data->reg[param->msb[0]] = reqval;
+	write_byte(param->msb[0], reqval);
+	mutex_unlock(&data->update_lock);
+
+	return count;
+}
+
+static ssize_t show_temp8(struct device *dev,
+			  struct device_attribute *attr, char *buf)
+{
+	SETUP_SHOW_data_param(dev, attr);
+
+	return sprintf(buf, "%d\n", ((s8) data->reg[param->msb[0]]) * 1000);
+}
+
+static ssize_t store_temp8(struct device *dev,
+			   struct device_attribute *attr, const char *buf,
+			   size_t count)
+{
+	SETUP_STORE_data_param(dev, attr);
+	long reqval;
+	s8 temp;
+
+	if (strict_strtol(buf, 10, &reqval))
+		return -EINVAL;
+
+	reqval = SENSORS_LIMIT(reqval, -127000, 127000);
+
+	temp = reqval / 1000;
+
+	mutex_lock(&data->update_lock);
+	data->reg[param->msb[0]] = temp;
+	write_byte(param->msb[0], temp);
+	mutex_unlock(&data->update_lock);
+	return count;
+}
+
+/*
+ * Temperatures that occupy 2 bytes always have the whole
+ * number of degrees in the MSB with some part of the LSB
+ * indicating fractional degrees.
+ */
+
+/*   mmmmmmmm.llxxxxxx */
+static ssize_t show_temp10(struct device *dev,
+			   struct device_attribute *attr, char *buf)
+{
+	SETUP_SHOW_data_param(dev, attr);
+	u8 msb, lsb;
+	int temp;
+
+	mutex_lock(&data->update_lock);
+	msb = data->reg[param->msb[0]];
+	lsb = (data->reg[param->lsb[0]] >> 6) & 0x03;
+	temp = (((s8) msb) * 1000) + (lsb * 250);
+	mutex_unlock(&data->update_lock);
+
+	return sprintf(buf, "%d\n", temp);
+}
+
+/*   mmmmmm.ll */
+static ssize_t show_temp62(struct device *dev,
+			   struct device_attribute *attr, char *buf)
+{
+	SETUP_SHOW_data_param(dev, attr);
+	u8 regval = data->reg[param->msb[0]];
+	int temp = ((s8) (regval & 0xfc) * 1000) + ((regval & 0x03) * 250);
+
+	return sprintf(buf, "%d\n", temp);
+}
+
+static ssize_t store_temp62(struct device *dev,
+			    struct device_attribute *attr, const char *buf,
+			    size_t count)
+{
+	SETUP_STORE_data_param(dev, attr);
+	long reqval, i, f;
+	s8 temp;
+
+	if (strict_strtol(buf, 10, &reqval))
+		return -EINVAL;
+
+	reqval = SENSORS_LIMIT(reqval, -32000, 31750);
+	i = reqval / 1000;
+	f = reqval - (i * 1000);
+	temp = i << 2;
+	temp |= f / 250;
+
+	mutex_lock(&data->update_lock);
+	data->reg[param->msb[0]] = temp;
+	write_byte(param->msb[0], temp);
+	mutex_unlock(&data->update_lock);
+	return count;
+}
+
+/*
+ * The aSC7621 doesn't provide an "auto_point2".  Instead, you
+ * specify the auto_point1 and a range.  To keep with the sysfs
+ * hwmon specs, we synthesize the auto_point_2 from them.
+ */
+
+static u32 asc7621_range_map[] = {
+	2000, 2500, 3330, 4000, 5000, 6670, 8000, 10000,
+	13330, 16000, 20000, 26670, 32000, 40000, 53330, 80000,
+};
+
+static ssize_t show_ap2_temp(struct device *dev,
+			     struct device_attribute *attr, char *buf)
+{
+	SETUP_SHOW_data_param(dev, attr);
+	long auto_point1;
+	u8 regval;
+	int temp;
+
+	mutex_lock(&data->update_lock);
+	auto_point1 = ((s8) data->reg[param->msb[1]]) * 1000;
+	regval =
+	    ((data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]);
+	temp = auto_point1 + asc7621_range_map[SENSORS_LIMIT(regval, 0, 15)];
+	mutex_unlock(&data->update_lock);
+
+	return sprintf(buf, "%d\n", temp);
+
+}
+
+static ssize_t store_ap2_temp(struct device *dev,
+			      struct device_attribute *attr,
+			      const char *buf, size_t count)
+{
+	SETUP_STORE_data_param(dev, attr);
+	long reqval, auto_point1;
+	int i;
+	u8 currval, newval = 255;
+
+	if (strict_strtol(buf, 10, &reqval))
+		return -EINVAL;
+
+	mutex_lock(&data->update_lock);
+	auto_point1 = data->reg[param->msb[1]] * 1000;
+	for (i = ARRAY_SIZE(asc7621_range_map) - 1; i >= 0; i--) {
+		if (reqval >= auto_point1 + asc7621_range_map[i]) {
+			newval = i;
+			break;
+		}
+	}
+	if (newval == 255) {
+		mutex_unlock(&data->update_lock);
+		return -EINVAL;
+	}
+
+	newval = (newval & param->mask[0]) << param->shift[0];
+	currval = read_byte(param->msb[0]);
+	newval |= (currval & ~(param->mask[0] << param->shift[0]));
+	data->reg[param->msb[0]] = newval;
+	write_byte(param->msb[0], newval);
+	mutex_unlock(&data->update_lock);
+	return count;
+}
+
+static ssize_t show_pwm_ac(struct device *dev,
+			   struct device_attribute *attr, char *buf)
+{
+	SETUP_SHOW_data_param(dev, attr);
+	u8 config, altbit, regval;
+	u8 map[] = {
+		0x01, 0x02, 0x04, 0x1f, 0x00, 0x06, 0x07, 0x10,
+		0x08, 0x0f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f
+	};
+
+	mutex_lock(&data->update_lock);
+	config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
+	altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
+	regval = config | (altbit << 3);
+	mutex_unlock(&data->update_lock);
+
+	return sprintf(buf, "%u\n", map[SENSORS_LIMIT(regval, 0, 15)]);
+}
+
+static ssize_t store_pwm_ac(struct device *dev,
+			    struct device_attribute *attr,
+			    const char *buf, size_t count)
+{
+	SETUP_STORE_data_param(dev, attr);
+	unsigned long reqval;
+	u8 currval, config, altbit, newval;
+	u16 map[] = {
+		0x04, 0x00, 0x01, 0xff, 0x02, 0xff, 0x05, 0x06,
+		0x08, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f,
+		0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+		0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03,
+	};
+
+	if (strict_strtoul(buf, 10, &reqval))
+		return -EINVAL;
+
+	if (reqval > 31)
+		return -EINVAL;
+
+	reqval = map[reqval];
+
+	config = reqval & 0x07;
+	altbit = (reqval >> 3) & 0x01;
+
+	config = (config & param->mask[0]) << param->shift[0];
+	altbit = (altbit & param->mask[1]) << param->shift[1];
+
+	mutex_lock(&data->update_lock);
+	currval = read_byte(param->msb[0]);
+	newval = config | (currval & ~(param->mask[0] << param->shift[0]));
+	newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
+	data->reg[param->msb[0]] = newval;
+	write_byte(param->msb[0], newval);
+	mutex_unlock(&data->update_lock);
+	return count;
+}
+
+static ssize_t show_pwm_enable(struct device *dev,
+			       struct device_attribute *attr, char *buf)
+{
+	SETUP_SHOW_data_param(dev, attr);
+	u8 config, altbit, minoff, val, newval;
+
+	mutex_lock(&data->update_lock);
+	config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
+	altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
+	minoff = (data->reg[param->msb[2]] >> param->shift[2]) & param->mask[2];
+	mutex_unlock(&data->update_lock);
+
+	val = config | (altbit << 3);
+	newval = 0;
+
+	if (val == 3 || val >= 10)
+		newval = 255;
+	else if (val == 4)
+		newval = 0;
+	else if (val == 7)
+		newval = 1;
+	else if (minoff == 1)
+		newval = 2;
+	else
+		newval = 3;
+
+	return sprintf(buf, "%u\n", newval);
+}
+
+static ssize_t store_pwm_enable(struct device *dev,
+				struct device_attribute *attr,
+				const char *buf, size_t count)
+{
+	SETUP_STORE_data_param(dev, attr);
+	long reqval;
+	u8 currval, config, altbit, newval, minoff = 255;
+
+	if (strict_strtol(buf, 10, &reqval))
+		return -EINVAL;
+
+	switch (reqval) {
+	case 0:
+		newval = 0x04;
+		break;
+	case 1:
+		newval = 0x07;
+		break;
+	case 2:
+		newval = 0x00;
+		minoff = 1;
+		break;
+	case 3:
+		newval = 0x00;
+		minoff = 0;
+		break;
+	case 255:
+		newval = 0x03;
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	config = newval & 0x07;
+	altbit = (newval >> 3) & 0x01;
+
+	mutex_lock(&data->update_lock);
+	config = (config & param->mask[0]) << param->shift[0];
+	altbit = (altbit & param->mask[1]) << param->shift[1];
+	currval = read_byte(param->msb[0]);
+	newval = config | (currval & ~(param->mask[0] << param->shift[0]));
+	newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
+	data->reg[param->msb[0]] = newval;
+	write_byte(param->msb[0], newval);
+	if (minoff < 255) {
+		minoff = (minoff & param->mask[2]) << param->shift[2];
+		currval = read_byte(param->msb[2]);
+		newval =
+		    minoff | (currval & ~(param->mask[2] << param->shift[2]));
+		data->reg[param->msb[2]] = newval;
+		write_byte(param->msb[2], newval);
+	}
+	mutex_unlock(&data->update_lock);
+	return count;
+}
+
+static u32 asc7621_pwm_freq_map[] = {
+	10, 15, 23, 30, 38, 47, 62, 94,
+	23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000
+};
+
+static ssize_t show_pwm_freq(struct device *dev,
+			     struct device_attribute *attr, char *buf)
+{
+	SETUP_SHOW_data_param(dev, attr);
+	u8 regval =
+	    (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
+
+	regval = SENSORS_LIMIT(regval, 0, 15);
+
+	return sprintf(buf, "%u\n", asc7621_pwm_freq_map[regval]);
+}
+
+static ssize_t store_pwm_freq(struct device *dev,
+			      struct device_attribute *attr,
+			      const char *buf, size_t count)
+{
+	SETUP_STORE_data_param(dev, attr);
+	unsigned long reqval;
+	u8 currval, newval = 255;
+	int i;
+
+	if (strict_strtoul(buf, 10, &reqval))
+		return -EINVAL;
+
+	for (i = 0; i < ARRAY_SIZE(asc7621_pwm_freq_map); i++) {
+		if (reqval == asc7621_pwm_freq_map[i]) {
+			newval = i;
+			break;
+		}
+	}
+	if (newval == 255)
+		return -EINVAL;
+
+	newval = (newval & param->mask[0]) << param->shift[0];
+
+	mutex_lock(&data->update_lock);
+	currval = read_byte(param->msb[0]);
+	newval |= (currval & ~(param->mask[0] << param->shift[0]));
+	data->reg[param->msb[0]] = newval;
+	write_byte(param->msb[0], newval);
+	mutex_unlock(&data->update_lock);
+	return count;
+}
+
+static u32 asc7621_pwm_auto_spinup_map[] =  {
+	0, 100, 250, 400, 700, 1000, 2000, 4000
+};
+
+static ssize_t show_pwm_ast(struct device *dev,
+			    struct device_attribute *attr, char *buf)
+{
+	SETUP_SHOW_data_param(dev, attr);
+	u8 regval =
+	    (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
+
+	regval = SENSORS_LIMIT(regval, 0, 7);
+
+	return sprintf(buf, "%u\n", asc7621_pwm_auto_spinup_map[regval]);
+
+}
+
+static ssize_t store_pwm_ast(struct device *dev,
+			     struct device_attribute *attr,
+			     const char *buf, size_t count)
+{
+	SETUP_STORE_data_param(dev, attr);
+	long reqval;
+	u8 currval, newval = 255;
+	u32 i;
+
+	if (strict_strtol(buf, 10, &reqval))
+		return -EINVAL;
+
+	for (i = 0; i < ARRAY_SIZE(asc7621_pwm_auto_spinup_map); i++) {
+		if (reqval == asc7621_pwm_auto_spinup_map[i]) {
+			newval = i;
+			break;
+		}
+	}
+	if (newval == 255)
+		return -EINVAL;
+
+	newval = (newval & param->mask[0]) << param->shift[0];
+
+	mutex_lock(&data->update_lock);
+	currval = read_byte(param->msb[0]);
+	newval |= (currval & ~(param->mask[0] << param->shift[0]));
+	data->reg[param->msb[0]] = newval;
+	write_byte(param->msb[0], newval);
+	mutex_unlock(&data->update_lock);
+	return count;
+}
+
+static u32 asc7621_temp_smoothing_time_map[] = {
+	35000, 17600, 11800, 7000, 4400, 3000, 1600, 800
+};
+
+static ssize_t show_temp_st(struct device *dev,
+			    struct device_attribute *attr, char *buf)
+{
+	SETUP_SHOW_data_param(dev, attr);
+	u8 regval =
+	    (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
+	regval = SENSORS_LIMIT(regval, 0, 7);
+
+	return sprintf(buf, "%u\n", asc7621_temp_smoothing_time_map[regval]);
+}
+
+static ssize_t store_temp_st(struct device *dev,
+			     struct device_attribute *attr,
+			     const char *buf, size_t count)
+{
+	SETUP_STORE_data_param(dev, attr);
+	long reqval;
+	u8 currval, newval = 255;
+	u32 i;
+
+	if (strict_strtol(buf, 10, &reqval))
+		return -EINVAL;
+
+	for (i = 0; i < ARRAY_SIZE(asc7621_pwm_auto_spinup_map); i++) {
+		if (reqval == asc7621_temp_smoothing_time_map[i]) {
+			newval = i;
+			break;
+		}
+	}
+
+	if (newval == 255)
+		return -EINVAL;
+
+	newval = (newval & param->mask[0]) << param->shift[0];
+
+	mutex_lock(&data->update_lock);
+	currval = read_byte(param->msb[0]);
+	newval |= (currval & ~(param->mask[0] << param->shift[0]));
+	data->reg[param->msb[0]] = newval;
+	write_byte(param->msb[0], newval);
+	mutex_unlock(&data->update_lock);
+	return count;
+}
+
+/*
+ * End of data handlers
+ *
+ * These defines do nothing more than make the table easier
+ * to read when wrapped at column 80.
+ */
+
+/*
+ * Creates a variable length array inititalizer.
+ * VAA(1,3,5,7) would produce {1,3,5,7}
+ */
+#define VAA(args...) {args}
+
+#define PREAD(name, n, pri, rm, rl, m, s, r) \
+	{.sda = SENSOR_ATTR(name, S_IRUGO, show_##r, NULL, n), \
+	  .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
+	  .shift[0] = s,}
+
+#define PWRITE(name, n, pri, rm, rl, m, s, r) \
+	{.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
+	  .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
+	  .shift[0] = s,}
+
+/*
+ * PWRITEM assumes that the initializers for the .msb, .lsb, .mask and .shift
+ * were created using the VAA macro.
+ */
+#define PWRITEM(name, n, pri, rm, rl, m, s, r) \
+	{.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
+	  .priority = pri, .msb = rm, .lsb = rl, .mask = m, .shift = s,}
+
+static struct asc7621_param asc7621_params[] = {
+	PREAD(in0_input, 0, PRI_HIGH, 0x20, 0x13, 0, 0, in10),
+	PREAD(in1_input, 1, PRI_HIGH, 0x21, 0x18, 0, 0, in10),
+	PREAD(in2_input, 2, PRI_HIGH, 0x22, 0x11, 0, 0, in10),
+	PREAD(in3_input, 3, PRI_HIGH, 0x23, 0x12, 0, 0, in10),
+	PREAD(in4_input, 4, PRI_HIGH, 0x24, 0x14, 0, 0, in10),
+
+	PWRITE(in0_min, 0, PRI_LOW, 0x44, 0, 0, 0, in8),
+	PWRITE(in1_min, 1, PRI_LOW, 0x46, 0, 0, 0, in8),
+	PWRITE(in2_min, 2, PRI_LOW, 0x48, 0, 0, 0, in8),
+	PWRITE(in3_min, 3, PRI_LOW, 0x4a, 0, 0, 0, in8),
+	PWRITE(in4_min, 4, PRI_LOW, 0x4c, 0, 0, 0, in8),
+
+	PWRITE(in0_max, 0, PRI_LOW, 0x45, 0, 0, 0, in8),
+	PWRITE(in1_max, 1, PRI_LOW, 0x47, 0, 0, 0, in8),
+	PWRITE(in2_max, 2, PRI_LOW, 0x49, 0, 0, 0, in8),
+	PWRITE(in3_max, 3, PRI_LOW, 0x4b, 0, 0, 0, in8),
+	PWRITE(in4_max, 4, PRI_LOW, 0x4d, 0, 0, 0, in8),
+
+	PREAD(in0_alarm, 0, PRI_LOW, 0x41, 0, 0x01, 0, bitmask),
+	PREAD(in1_alarm, 1, PRI_LOW, 0x41, 0, 0x01, 1, bitmask),
+	PREAD(in2_alarm, 2, PRI_LOW, 0x41, 0, 0x01, 2, bitmask),
+	PREAD(in3_alarm, 3, PRI_LOW, 0x41, 0, 0x01, 3, bitmask),
+	PREAD(in4_alarm, 4, PRI_LOW, 0x42, 0, 0x01, 0, bitmask),
+
+	PREAD(fan1_input, 0, PRI_HIGH, 0x29, 0x28, 0, 0, fan16),
+	PREAD(fan2_input, 1, PRI_HIGH, 0x2b, 0x2a, 0, 0, fan16),
+	PREAD(fan3_input, 2, PRI_HIGH, 0x2d, 0x2c, 0, 0, fan16),
+	PREAD(fan4_input, 3, PRI_HIGH, 0x2f, 0x2e, 0, 0, fan16),
+
+	PWRITE(fan1_min, 0, PRI_LOW, 0x55, 0x54, 0, 0, fan16),
+	PWRITE(fan2_min, 1, PRI_LOW, 0x57, 0x56, 0, 0, fan16),
+	PWRITE(fan3_min, 2, PRI_LOW, 0x59, 0x58, 0, 0, fan16),
+	PWRITE(fan4_min, 3, PRI_LOW, 0x5b, 0x5a, 0, 0, fan16),
+
+	PREAD(fan1_alarm, 0, PRI_LOW, 0x42, 0, 0x01, 0, bitmask),
+	PREAD(fan2_alarm, 1, PRI_LOW, 0x42, 0, 0x01, 1, bitmask),
+	PREAD(fan3_alarm, 2, PRI_LOW, 0x42, 0, 0x01, 2, bitmask),
+	PREAD(fan4_alarm, 3, PRI_LOW, 0x42, 0, 0x01, 3, bitmask),
+
+	PREAD(temp1_input, 0, PRI_HIGH, 0x25, 0x10, 0, 0, temp10),
+	PREAD(temp2_input, 1, PRI_HIGH, 0x26, 0x15, 0, 0, temp10),
+	PREAD(temp3_input, 2, PRI_HIGH, 0x27, 0x16, 0, 0, temp10),
+	PREAD(temp4_input, 3, PRI_HIGH, 0x33, 0x17, 0, 0, temp10),
+	PREAD(temp5_input, 4, PRI_HIGH, 0xf7, 0xf6, 0, 0, temp10),
+	PREAD(temp6_input, 5, PRI_HIGH, 0xf9, 0xf8, 0, 0, temp10),
+	PREAD(temp7_input, 6, PRI_HIGH, 0xfb, 0xfa, 0, 0, temp10),
+	PREAD(temp8_input, 7, PRI_HIGH, 0xfd, 0xfc, 0, 0, temp10),
+
+	PWRITE(temp1_min, 0, PRI_LOW, 0x4e, 0, 0, 0, temp8),
+	PWRITE(temp2_min, 1, PRI_LOW, 0x50, 0, 0, 0, temp8),
+	PWRITE(temp3_min, 2, PRI_LOW, 0x52, 0, 0, 0, temp8),
+	PWRITE(temp4_min, 3, PRI_LOW, 0x34, 0, 0, 0, temp8),
+
+	PWRITE(temp1_max, 0, PRI_LOW, 0x4f, 0, 0, 0, temp8),
+	PWRITE(temp2_max, 1, PRI_LOW, 0x51, 0, 0, 0, temp8),
+	PWRITE(temp3_max, 2, PRI_LOW, 0x53, 0, 0, 0, temp8),
+	PWRITE(temp4_max, 3, PRI_LOW, 0x35, 0, 0, 0, temp8),
+
+	PREAD(temp1_alarm, 0, PRI_LOW, 0x41, 0, 0x01, 4, bitmask),
+	PREAD(temp2_alarm, 1, PRI_LOW, 0x41, 0, 0x01, 5, bitmask),
+	PREAD(temp3_alarm, 2, PRI_LOW, 0x41, 0, 0x01, 6, bitmask),
+	PREAD(temp4_alarm, 3, PRI_LOW, 0x43, 0, 0x01, 0, bitmask),
+
+	PWRITE(temp1_source, 0, PRI_LOW, 0x02, 0, 0x07, 4, bitmask),
+	PWRITE(temp2_source, 1, PRI_LOW, 0x02, 0, 0x07, 0, bitmask),
+	PWRITE(temp3_source, 2, PRI_LOW, 0x03, 0, 0x07, 4, bitmask),
+	PWRITE(temp4_source, 3, PRI_LOW, 0x03, 0, 0x07, 0, bitmask),
+
+	PWRITE(temp1_smoothing_enable, 0, PRI_LOW, 0x62, 0, 0x01, 3, bitmask),
+	PWRITE(temp2_smoothing_enable, 1, PRI_LOW, 0x63, 0, 0x01, 7, bitmask),
+	PWRITE(temp3_smoothing_enable, 2, PRI_LOW, 0x64, 0, 0x01, 3, bitmask),
+	PWRITE(temp4_smoothing_enable, 3, PRI_LOW, 0x3c, 0, 0x01, 3, bitmask),
+
+	PWRITE(temp1_smoothing_time, 0, PRI_LOW, 0x62, 0, 0x07, 0, temp_st),
+	PWRITE(temp2_smoothing_time, 1, PRI_LOW, 0x63, 0, 0x07, 4, temp_st),
+	PWRITE(temp3_smoothing_time, 2, PRI_LOW, 0x63, 0, 0x07, 0, temp_st),
+	PWRITE(temp4_smoothing_time, 3, PRI_LOW, 0x3c, 0, 0x07, 0, temp_st),
+
+	PWRITE(temp1_auto_point1_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
+	       bitmask),
+	PWRITE(temp2_auto_point1_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
+	       bitmask),
+	PWRITE(temp3_auto_point1_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
+	       bitmask),
+	PWRITE(temp4_auto_point1_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
+	       bitmask),
+
+	PREAD(temp1_auto_point2_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
+	      bitmask),
+	PREAD(temp2_auto_point2_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
+	      bitmask),
+	PREAD(temp3_auto_point2_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
+	      bitmask),
+	PREAD(temp4_auto_point2_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
+	      bitmask),
+
+	PWRITE(temp1_auto_point1_temp, 0, PRI_LOW, 0x67, 0, 0, 0, temp8),
+	PWRITE(temp2_auto_point1_temp, 1, PRI_LOW, 0x68, 0, 0, 0, temp8),
+	PWRITE(temp3_auto_point1_temp, 2, PRI_LOW, 0x69, 0, 0, 0, temp8),
+	PWRITE(temp4_auto_point1_temp, 3, PRI_LOW, 0x3b, 0, 0, 0, temp8),
+
+	PWRITEM(temp1_auto_point2_temp, 0, PRI_LOW, VAA(0x5f, 0x67), VAA(0),
+		VAA(0x0f), VAA(4), ap2_temp),
+	PWRITEM(temp2_auto_point2_temp, 1, PRI_LOW, VAA(0x60, 0x68), VAA(0),
+		VAA(0x0f), VAA(4), ap2_temp),
+	PWRITEM(temp3_auto_point2_temp, 2, PRI_LOW, VAA(0x61, 0x69), VAA(0),
+		VAA(0x0f), VAA(4), ap2_temp),
+	PWRITEM(temp4_auto_point2_temp, 3, PRI_LOW, VAA(0x3c, 0x3b), VAA(0),
+		VAA(0x0f), VAA(4), ap2_temp),
+
+	PWRITE(temp1_crit, 0, PRI_LOW, 0x6a, 0, 0, 0, temp8),
+	PWRITE(temp2_crit, 1, PRI_LOW, 0x6b, 0, 0, 0, temp8),
+	PWRITE(temp3_crit, 2, PRI_LOW, 0x6c, 0, 0, 0, temp8),
+	PWRITE(temp4_crit, 3, PRI_LOW, 0x3d, 0, 0, 0, temp8),
+
+	PWRITE(temp5_enable, 4, PRI_LOW, 0x0e, 0, 0x01, 0, bitmask),
+	PWRITE(temp6_enable, 5, PRI_LOW, 0x0e, 0, 0x01, 1, bitmask),
+	PWRITE(temp7_enable, 6, PRI_LOW, 0x0e, 0, 0x01, 2, bitmask),
+	PWRITE(temp8_enable, 7, PRI_LOW, 0x0e, 0, 0x01, 3, bitmask),
+
+	PWRITE(remote1_offset, 0, PRI_LOW, 0x1c, 0, 0, 0, temp62),
+	PWRITE(remote2_offset, 1, PRI_LOW, 0x1d, 0, 0, 0, temp62),
+
+	PWRITE(pwm1, 0, PRI_HIGH, 0x30, 0, 0, 0, u8),
+	PWRITE(pwm2, 1, PRI_HIGH, 0x31, 0, 0, 0, u8),
+	PWRITE(pwm3, 2, PRI_HIGH, 0x32, 0, 0, 0, u8),
+
+	PWRITE(pwm1_invert, 0, PRI_LOW, 0x5c, 0, 0x01, 4, bitmask),
+	PWRITE(pwm2_invert, 1, PRI_LOW, 0x5d, 0, 0x01, 4, bitmask),
+	PWRITE(pwm3_invert, 2, PRI_LOW, 0x5e, 0, 0x01, 4, bitmask),
+
+	PWRITEM(pwm1_enable, 0, PRI_LOW, VAA(0x5c, 0x5c, 0x62), VAA(0, 0, 0),
+		VAA(0x07, 0x01, 0x01), VAA(5, 3, 5), pwm_enable),
+	PWRITEM(pwm2_enable, 1, PRI_LOW, VAA(0x5d, 0x5d, 0x62), VAA(0, 0, 0),
+		VAA(0x07, 0x01, 0x01), VAA(5, 3, 6), pwm_enable),
+	PWRITEM(pwm3_enable, 2, PRI_LOW, VAA(0x5e, 0x5e, 0x62), VAA(0, 0, 0),
+		VAA(0x07, 0x01, 0x01), VAA(5, 3, 7), pwm_enable),
+
+	PWRITEM(pwm1_auto_channels, 0, PRI_LOW, VAA(0x5c, 0x5c), VAA(0, 0),
+		VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
+	PWRITEM(pwm2_auto_channels, 1, PRI_LOW, VAA(0x5d, 0x5d), VAA(0, 0),
+		VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
+	PWRITEM(pwm3_auto_channels, 2, PRI_LOW, VAA(0x5e, 0x5e), VAA(0, 0),
+		VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
+
+	PWRITE(pwm1_auto_point1_pwm, 0, PRI_LOW, 0x64, 0, 0, 0, u8),
+	PWRITE(pwm2_auto_point1_pwm, 1, PRI_LOW, 0x65, 0, 0, 0, u8),
+	PWRITE(pwm3_auto_point1_pwm, 2, PRI_LOW, 0x66, 0, 0, 0, u8),
+
+	PWRITE(pwm1_auto_point2_pwm, 0, PRI_LOW, 0x38, 0, 0, 0, u8),
+	PWRITE(pwm2_auto_point2_pwm, 1, PRI_LOW, 0x39, 0, 0, 0, u8),
+	PWRITE(pwm3_auto_point2_pwm, 2, PRI_LOW, 0x3a, 0, 0, 0, u8),
+
+	PWRITE(pwm1_freq, 0, PRI_LOW, 0x5f, 0, 0x0f, 0, pwm_freq),
+	PWRITE(pwm2_freq, 1, PRI_LOW, 0x60, 0, 0x0f, 0, pwm_freq),
+	PWRITE(pwm3_freq, 2, PRI_LOW, 0x61, 0, 0x0f, 0, pwm_freq),
+
+	PREAD(pwm1_auto_zone_assigned, 0, PRI_LOW, 0, 0, 0x03, 2, bitmask),
+	PREAD(pwm2_auto_zone_assigned, 1, PRI_LOW, 0, 0, 0x03, 4, bitmask),
+	PREAD(pwm3_auto_zone_assigned, 2, PRI_LOW, 0, 0, 0x03, 6, bitmask),
+
+	PWRITE(pwm1_auto_spinup_time, 0, PRI_LOW, 0x5c, 0, 0x07, 0, pwm_ast),
+	PWRITE(pwm2_auto_spinup_time, 1, PRI_LOW, 0x5d, 0, 0x07, 0, pwm_ast),
+	PWRITE(pwm3_auto_spinup_time, 2, PRI_LOW, 0x5e, 0, 0x07, 0, pwm_ast),
+
+	PWRITE(peci_enable, 0, PRI_LOW, 0x40, 0, 0x01, 4, bitmask),
+	PWRITE(peci_avg, 0, PRI_LOW, 0x36, 0, 0x07, 0, bitmask),
+	PWRITE(peci_domain, 0, PRI_LOW, 0x36, 0, 0x01, 3, bitmask),
+	PWRITE(peci_legacy, 0, PRI_LOW, 0x36, 0, 0x01, 4, bitmask),
+	PWRITE(peci_diode, 0, PRI_LOW, 0x0e, 0, 0x07, 4, bitmask),
+	PWRITE(peci_4domain, 0, PRI_LOW, 0x0e, 0, 0x01, 4, bitmask),
+
+};
+
+static struct asc7621_data *asc7621_update_device(struct device *dev)
+{
+	struct i2c_client *client = to_i2c_client(dev);
+	struct asc7621_data *data = i2c_get_clientdata(client);
+	int i;
+
+/*
+ * The asc7621 chips guarantee consistent reads of multi-byte values
+ * regardless of the order of the reads.  No special logic is needed
+ * so we can just read the registers in whatever  order they appear
+ * in the asc7621_params array.
+ */
+
+	mutex_lock(&data->update_lock);
+
+	/* Read all the high priority registers */
+
+	if (!data->valid ||
+	    time_after(jiffies, data->last_high_reading + INTERVAL_HIGH)) {
+
+		for (i = 0; i < ARRAY_SIZE(asc7621_register_priorities); i++) {
+			if (asc7621_register_priorities[i] == PRI_HIGH) {
+				data->reg[i] =
+				    i2c_smbus_read_byte_data(client, i) & 0xff;
+			}
+		}
+		data->last_high_reading = jiffies;
+	};			/* last_reading */
+
+	/* Read all the low priority registers. */
+
+	if (!data->valid ||
+	    time_after(jiffies, data->last_high_reading + INTERVAL_LOW)) {
+
+		for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
+			if (asc7621_register_priorities[i] == PRI_LOW) {
+				data->reg[i] =
+				    i2c_smbus_read_byte_data(client, i) & 0xff;
+			}
+		}
+		data->last_low_reading = jiffies;
+	};			/* last_reading */
+
+	data->valid = 1;
+
+	mutex_unlock(&data->update_lock);
+
+	return data;
+}
+
+/*
+ * Standard detection and initialization below
+ *
+ * Helper function that checks if an address is valid
+ * for a particular chip.
+ */
+
+static inline int valid_address_for_chip(int chip_type, int address)
+{
+	int i;
+
+	for (i = 0; asc7621_chips[chip_type].addresses[i] != I2C_CLIENT_END;
+	     i++) {
+		if (asc7621_chips[chip_type].addresses[i] == address)
+			return 1;
+	}
+	return 0;
+}
+
+static void asc7621_init_client(struct i2c_client *client)
+{
+	int value, i, j;
+
+	/* Warn if part was not "READY" */
+
+	value = read_byte(0x40);
+
+	if (value & 0x02) {
+		dev_err(&client->dev,
+			"Client (%d,0x%02x) config is locked.\n",
+			i2c_adapter_id(client->adapter), client->addr);
+	};
+	if (!(value & 0x04)) {
+		dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n",
+			i2c_adapter_id(client->adapter), client->addr);
+	};
+
+/*
+ * Start monitoring
+ *
+ * Try to clear LOCK, Set START, save everything else
+ */
+	value = (value & ~0x02) | 0x01;
+	write_byte(0x40, value & 0xff);
+
+	/*
+	 * Collect all the registers needed into a single array.
+	 * This way, if a register isn't actually used for anything,
+	 * we don't retrieve it.
+	 */
+
+	for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
+		for (j = 0; j < ARRAY_SIZE(asc7621_params[i].msb); j++)
+			asc7621_register_priorities[asc7621_params[i].msb[j]] =
+			    asc7621_params[i].priority;
+		for (j = 0; j < ARRAY_SIZE(asc7621_params[i].lsb); j++)
+			asc7621_register_priorities[asc7621_params[i].lsb[j]] =
+			    asc7621_params[i].priority;
+	}
+}
+
+static int
+asc7621_probe(struct i2c_client *client, const struct i2c_device_id *id)
+{
+	struct asc7621_data *data;
+	int i, err;
+
+	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
+		return -EIO;
+
+	data = kzalloc(sizeof(struct asc7621_data), GFP_KERNEL);
+	if (data == NULL)
+		return -ENOMEM;
+
+	i2c_set_clientdata(client, data);
+	data->valid = 0;
+	mutex_init(&data->update_lock);
+
+	/* Initialize the asc7621 chip */
+	asc7621_init_client(client);
+
+	/* Create the sysfs entries */
+	for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
+		err =
+		    device_create_file(&client->dev,
+				       &(asc7621_params[i].sda.dev_attr));
+		if (err)
+			goto exit_remove;
+	}
+
+	data->class_dev = hwmon_device_register(&client->dev);
+	if (IS_ERR(data->class_dev)) {
+		err = PTR_ERR(data->class_dev);
+		goto exit_remove;
+	}
+
+	return 0;
+
+exit_remove:
+	for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
+		device_remove_file(&client->dev,
+				   &(asc7621_params[i].sda.dev_attr));
+	}
+
+	i2c_set_clientdata(client, NULL);
+	kfree(data);
+	return err;
+}
+
+static int asc7621_detect(struct i2c_client *client,
+			  struct i2c_board_info *info)
+{
+	struct i2c_adapter *adapter = client->adapter;
+	int company, verstep, chip_index;
+	struct device *dev;
+
+	dev = &client->dev;
+
+	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
+		return -ENODEV;
+
+	for (chip_index = FIRST_CHIP; chip_index <= LAST_CHIP; chip_index++) {
+
+		if (!valid_address_for_chip(chip_index, client->addr))
+			continue;
+
+		company = read_byte(asc7621_chips[chip_index].company_reg);
+		verstep = read_byte(asc7621_chips[chip_index].verstep_reg);
+
+		if (company == asc7621_chips[chip_index].company_id &&
+		    verstep == asc7621_chips[chip_index].verstep_id) {
+			strlcpy(client->name, asc7621_chips[chip_index].name,
+				I2C_NAME_SIZE);
+			strlcpy(info->type, asc7621_chips[chip_index].name,
+				I2C_NAME_SIZE);
+
+			dev_info(&adapter->dev, "Matched %s\n",
+				 asc7621_chips[chip_index].name);
+			return 0;
+		}
+	}
+
+	return -ENODEV;
+}
+
+static int asc7621_remove(struct i2c_client *client)
+{
+	struct asc7621_data *data = i2c_get_clientdata(client);
+	int i;
+
+	hwmon_device_unregister(data->class_dev);
+
+	for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
+		device_remove_file(&client->dev,
+				   &(asc7621_params[i].sda.dev_attr));
+	}
+
+	i2c_set_clientdata(client, NULL);
+	kfree(data);
+	return 0;
+}
+
+static const struct i2c_device_id asc7621_id[] = {
+	{"asc7621", asc7621},
+	{"asc7621a", asc7621a},
+	{},
+};
+
+MODULE_DEVICE_TABLE(i2c, asc7621_id);
+
+static struct i2c_driver asc7621_driver = {
+	.class = I2C_CLASS_HWMON,
+	.driver = {
+		.name = "asc7621",
+	},
+	.probe = asc7621_probe,
+	.remove = asc7621_remove,
+	.id_table = asc7621_id,
+	.detect = asc7621_detect,
+	.address_list = normal_i2c,
+};
+
+static int __init sm_asc7621_init(void)
+{
+	return i2c_add_driver(&asc7621_driver);
+}
+
+static void __exit sm_asc7621_exit(void)
+{
+	i2c_del_driver(&asc7621_driver);
+}
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("George Joseph");
+MODULE_DESCRIPTION("Andigilog aSC7621 and aSC7621a driver");
+
+module_init(sm_asc7621_init);
+module_exit(sm_asc7621_exit);
diff -uprN a/drivers/hwmon/Kconfig b/drivers/hwmon/Kconfig
--- a/drivers/hwmon/Kconfig	2010-02-21 09:33:51.000000000 -0700
+++ b/drivers/hwmon/Kconfig	2010-02-21 09:57:46.000000000 -0700
@@ -277,6 +277,19 @@ config SENSORS_ASB100
 	  This driver can also be built as a module.  If so, the module
 	  will be called asb100.
 
+config SENSORS_ASC7621
+	tristate "Andigilog aSC7621"
+	depends on HWMON && I2C
+	help
+	  If you say yes here you get support for the aSC7621
+	  family of SMBus sensors chip found on most Intel X48, X38, 975,
+	  965 and 945 desktop boards.  Currently supported chips:
+	  aSC7621
+	  aSC7621a
+
+	  This driver can also be built as a module.  If so, the module
+	  will be called asc7621.
+
 config SENSORS_ATXP1
 	tristate "Attansic ATXP1 VID controller"
 	depends on I2C && EXPERIMENTAL
diff -uprN a/drivers/hwmon/Makefile b/drivers/hwmon/Makefile
--- a/drivers/hwmon/Makefile	2010-02-21 09:33:51.000000000 -0700
+++ b/drivers/hwmon/Makefile	2010-02-21 09:55:37.000000000 -0700
@@ -35,6 +35,7 @@ obj-$(CONFIG_SENSORS_ADT7473)	+= adt7473
 obj-$(CONFIG_SENSORS_ADT7475)	+= adt7475.o
 obj-$(CONFIG_SENSORS_APPLESMC)	+= applesmc.o
 obj-$(CONFIG_SENSORS_AMS)	+= ams/
+obj-$(CONFIG_SENSORS_ASC7621)	+= asc7621.o
 obj-$(CONFIG_SENSORS_ATXP1)	+= atxp1.o
 obj-$(CONFIG_SENSORS_CORETEMP)	+= coretemp.o
 obj-$(CONFIG_SENSORS_DME1737)	+= dme1737.o
diff -uprN a/MAINTAINERS b/MAINTAINERS
--- a/MAINTAINERS	2010-02-21 09:33:56.000000000 -0700
+++ b/MAINTAINERS	2010-02-21 09:51:43.000000000 -0700
@@ -964,6 +964,13 @@ W:	http://www.arm.linux.org.uk/
 S:	Maintained
 F:	arch/arm/vfp/
 
+ASC7621 HARDWARE MONITOR DRIVER
+M:	George Joseph <george.joseph@xxxxxxxxxxxxx>
+L:	lm-sensors@xxxxxxxxxxxxxx
+S:	Maintained
+F:	Documentation/hwmon/asc7621
+F:	drivers/hwmon/asc7621.c
+
 ASUS ACPI EXTRAS DRIVER
 M:	Corentin Chary <corentincj@xxxxxxxxxx>
 M:	Karol Kozimor <sziwan@xxxxxxxxxxxxxxxxxxxxx>

_______________________________________________
lm-sensors mailing list
lm-sensors@xxxxxxxxxxxxxx
http://lists.lm-sensors.org/mailman/listinfo/lm-sensors

[Index of Archives]     [Linux Kernel]     [Linux Hardware Monitoring]     [Linux USB Devel]     [Linux Audio Users]     [Linux Kernel]     [Linux SCSI]     [Yosemite Backpacking]

  Powered by Linux