Hey Zefir, On Tue, Dec 18, 2012 at 12:08:57PM +0100, Zefir Kurtisi wrote: > On 12/13/2012 03:07 PM, Simon Wunderlich wrote: > > Hey there, > > > > just to bump the issue again - isn't there anyone here who can answer > > some of these questions? > > > > [...] > > > > Thanks a lot! > > Simon > > > Note: removed John, Johannes and Juoni from CC, since this is ath9k specific > > > Hi Simon, > > I have a spectral scanning module up and running in an AR9590 based system and can > provide you some relevant observations and experiences I made. Cool, thanks a lot for adding more puzzle pieces to this one! This is very helpful! > > > First off: forget about 40MHz for now. It is either not working at all or way too > unstable (tested with 9280, 9380, 9580). Thanks for the warning, I won't waste time on that for now then and post a HT20 only version to begin with. > > In 20MHz mode, spectral data is provided in the following format: > > +#define SPECTRAL_HT20_NUM_BINS 56 > +#define SPECTRAL_HT20_DC_INDEX (SPECTRAL_HT20_NUM_BINS / 2) > +#define SPECTRAL_HT20_TOTAL_DATA_LEN (sizeof(struct ht20_fft_packet) + 3) > + > +struct ht20_mag_data { > + u8 all_bins1; > + u8 max_mag_bits29; > + u8 all_bins2; > + u8 max_exp; > +} __attribute__((packed)); > + > +struct ht20_fft_packet { > + u8 bin[SPECTRAL_HT20_NUM_BINS]; > + struct ht20_mag_data mag_data; > +} __attribute__((packed)); > + > > When spectral data is ready, the length is sometimes reported incorrectly, valid > values are between (SPECTRAL_HT20_TOTAL_DATA_LEN - 1) and > (SPECTRAL_HT20_TOTAL_DATA_LEN + 2), my code snipped to check the validity is: OK, this matches with my data (55-58 byte of "spectral data") ... > > +static s8 fix_rssi_inv_only(u8 rssi_val) > +{ > + if (rssi_val == 128) > + rssi_val = 0; > + return (s8) rssi_val; > +} > + > +#define SPECTRAL_SCAN_BITMASK 0x10 > + > +/* > + * check PHY-error for spectral > + */ > +bool process_spectral_phyerr(struct ath_softc *sc, void *data, > + struct ath_rx_status *rs, u64 mactime) > +{ > + u16 datalen; > + char *vdata_end; > + struct ath_hw *ah = sc->sc_ah; > + struct ath_spectral_scanner *ass = ah->spectral_scanner; > + struct ath_spectral_data *sd = &ass->spectral_data; > + u8 pulse_bw_info; > + s8 rssi; > + struct spectral_ht20_msg *msg; > + > + sd->stats.total_phy_errors++; > + > + if (rs->rs_phyerr != ATH9K_PHYERR_SPECTRAL) { > + sd->stats.drop_non_spectral++; > + return false; > + } > + > + datalen = rs->rs_datalen; > + if (datalen > SPECTRAL_HT20_TOTAL_DATA_LEN + 2) { > + sd->stats.drop_len_overflow++; > + return false; > + } > + if (datalen < SPECTRAL_HT20_TOTAL_DATA_LEN - 1) { > + sd->stats.drop_len_underflow++; > + return false; > + } > + > + vdata_end = (char *)data + datalen; > + pulse_bw_info = vdata_end[-1]; > + > + if (!(pulse_bw_info & SPECTRAL_SCAN_BITMASK)) { > + sd->stats.drop_non_spectral++; > + return false; > + } > + > + rssi = fix_rssi_inv_only(rs->rs_rssi_ctl0); > + > + sd->stats.descriptors_processed++; > + > + ath_process_spectraldata_ht20(ah, data, datalen, rssi, mactime, msg); > + > + sd->run_stats.last_tstamp = mactime; > + sd->run_stats.spectral_packets++; > + > + return true; > +} > > As for the incorrect data, there are 4 cases to consider: > 1) data length is correct => take the 56 bins as is > 2) data length is 1 less => duplicate the first bin > 3) data length is 2 more => remove bins 30 and 32 > 4) data length is 1 more => combine 2) + 3) ... didn't see THAT coming. But that explains it very well how to handle these varying data lengths. Although I wonder how this can happen. I guess there are some chip-internal reasons ... > > The code snippet to handle this post-processing is: > > +static s8 fix_max_index(u8 max_index) > +{ > + s8 maxindex = max_index; > + if (max_index > 32) > + maxindex |= 0xe0; > + else > + maxindex &= ~0xe0; > + maxindex += 29; > + return maxindex; > +} > + > +static void ath_process_spectraldata_ht20(struct ath_hw *ah, u8 *vdata, > + u16 datalen, s8 rssi, u64 fulltsf, > + struct spectral_ht20_msg *nl_msg) > +{ > + struct ath_spectral_data *sd = &ah->spectral_scanner->spectral_data; > + u8 *vdata_end = (char*)vdata + datalen; > + u8 *msg_bin = nl_msg->bin; > + struct ht20_mag_data *mag = (struct ht20_mag_data *) (vdata_end - 7); > + > + switch(datalen - SPECTRAL_HT20_TOTAL_DATA_LEN) { > + case 0: > + // correct length > + memcpy(msg_bin, vdata, SPECTRAL_HT20_NUM_BINS); > + sd->stats.datalen_ok++; > + break; > + case -1: > + // missing the first byte -> duplicate first as byte 0 and 1 > + msg_bin[0] = vdata[0]; > + memcpy(msg_bin + 1, vdata, SPECTRAL_HT20_NUM_BINS - 1); > + sd->stats.datalen_m1++; > + break; > + case 2: > + // MAC added 2 extra bytes at bin 30 and 32 > + memcpy(msg_bin, vdata, 30); > + msg_bin[30] = vdata[31]; > + memcpy(msg_bin + 31, vdata + 33, SPECTRAL_HT20_NUM_BINS - 31); > + sd->stats.datalen_p2++; > + break; > + case 1: > + // MAC added 2 extra bytes AND first byte missing > + msg_bin[0] = vdata[0]; > + memcpy(msg_bin + 1, vdata, 30); > + msg_bin[31] = vdata[31]; > + memcpy(msg_bin + 32, vdata + 33, SPECTRAL_HT20_NUM_BINS - 32); > + sd->stats.datalen_p2m1++; > + break; > + } > + > + /* global data */ > + nl_msg->freq = sd->center_freq; > + nl_msg->rssi = rssi; > + nl_msg->noise_floor = ah->noise; //ah->caldata->nfCalHist[0].privNF; > + nl_msg->tstamp = fulltsf; > + > + /* extract magnitude scaling data */ > + nl_msg->max_magnitude = (mag->max_mag_bits29 << 2) | > + ((mag->all_bins1 & 0xc0) >> 6) | > + ((mag->all_bins2 & 0x03) << 10); > + nl_msg->bitmap_weight = mag->all_bins1 & 0x3f; > + nl_msg->max_index = fix_max_index(mag->all_bins2 & 0x3f); > + nl_msg->max_exp = mag->max_exp & 0x0f; > +} Thanks a lot for sharing! > > In my system the post-processed FFT raw data is transferred via a netlink > interface to a spectral_proxy, that forwards it to a connected host for real-time > inspection and visualization. > > The interpretation of the data is as follows: the reported values are given as > magnitudes, which need to be scaled and converted to absolute power values based > on the packet's noise floor and RSSI values as follows: > bin_sum = 10*log(sum[i=1..56](b(i)^2) > power(i) = noise_floor + RSSI + 10*log(b(i)^2) - bin_sum > Ah, very nice. My intepretation code actually looks similar, different factors and different summing thou. With the fixes in the data (as above) and this, the visualization will hopefully become clearer. :) I'll fix my visualization program [1] accordingly. [1] https://github.com/simonwunderlich/FFT_eval/wiki > The code fragment to convert magnitude to absolute power values looks like this > (assuming you transferred the FFT and magnitude data to user space): > bool convert_data(struct spectral_ht20_msg *msg) > +{ > + u_int8_t *bin_pwr = msg->bin; > + u_int8_t *dc_pwr = msg->bin + SPECTRAL_NUM_BINS / 2; > + int pwr_count = SPECTRAL_NUM_BINS; > + int8_t rssi = msg->rssi; > + int8_t max_scale = 1 << msg->max_exp; > + int16_t max_mag = msg->max_magnitude; > + int i; > + int nf0 = msg->noise_floor; > + > + float bsum = 0.0; > + > + // DC value is invalid -> interpolate > + *dc_pwr = (dc_pwr[-1] + dc_pwr[1]) / 2; > + > + for (i = 0; i < pwr_count; i++) > + bsum += (bin_pwr[i] * max_scale) * (bin_pwr[i] * max_scale); > + bsum = log10f(bsum) * 10; > + > + for (i = 0; i < pwr_count; i++) { > + float pwr_val; > + int16_t val = bin_pwr[i]; > + > + if (val == 0) > + val = 1; > + > + pwr_val = 20 * log10f((float) val * max_scale); > + pwr_val += nf0 + rssi - bsum; > + > + val = pwr_val; > + bin_pwr[i] = val; > + } > + return true; > +} > > > That's it, now you should be able to feed the raw data to whatever visualization, > statistics and classification back-ends. > > > Hope this helps somewhat. My implementation is quite application specific (like > operational only as monitor, dedicated netlink interface, proxy-forwarding, etc.) > and not usable for the generic user. That's why I am not posting it here and > polluting the mailing list. If you (or anybody else out there) would like to test > it as proof-of-concept, I can provide you the complete OpenWRT integration. Yes, that helped very much, especially the varying data part was something I had no clue about. This might also fix the "weird high numbers in the middle of the dump" problem I was seeing. I'll change the patch according to your explanations, so that only 56 byte data samples are returned (at least for HT20). Thank you very much! Simon
Attachment:
signature.asc
Description: Digital signature