Hi, For some days I have been looking for the bug that causes an easily reproducible oops in the guest when I apply my PAE support _draft_ patch (appended at the end of this mail) to lguest. This is the oops: Setting kernel variables...done. Will now mount local filesystems:. Will now activate swapfile swap:done. Cleaning /tmp... [ 84.749676] BUG: unable to handle kernel NULL pointer dereference at 00000005 [ 84.749676] IP: [<c0101f6e>] __switch_to+0xd/0x12d [ 84.749676] *pdpt = 000000001fa12001 *pde = 0000000000000000 [ 84.749676] Oops: 0000 [#1] PREEMPT [ 84.749676] last sysfs file: /sys/kernel/uevent_seqnum [ 84.749676] Modules linked in: [ 84.749676] [ 84.749676] Pid: 1066, comm: find Not tainted (2.6.30-rc2-00167-gcd97824-dirty #1) [ 84.749676] EIP: 0061:[<c0101f6e>] EFLAGS: 00000092 CPU: 0 [ 84.749676] EIP is at __switch_to+0xd/0x12d [ 84.749676] EAX: 00000001 EBX: dfa371b0 ECX: df8b0430 EDX: dfa371b0 [ 84.749676] ESI: 00000001 EDI: df887200 EBP: df865ec4 ESP: df865eac [ 84.749676] DS: 007b ES: 007b FS: 0000 GS: 0000 SS: 0069 [ 84.749676] Process find (pid: 1066, ti=df864000 task=df8b0430 task.ti=dfa0e000) [ 84.749676] Stack: [ 84.749676] 00000000 00000001 df8b0464 dfa371b0 df8b0430 df887200 df865ee0 c0101b7d [ 84.749676] 00000004 c040f544 dfa371b0 dfa13bc0 dfa13540 dfa0ff58 c03211b7 df865f28 [ 84.749676] 00000286 00000000 00393bc7 df865f20 dfa371b0 dfa37340 dfa5d8a0 dfa371b0 [ 84.749676] Call Trace: [ 84.749676] [<c0101b7d>] ? lazy_hcall1+0x32/0xac [ 84.749676] [<c03211b7>] ? __schedule+0x2c2/0x31f [ 84.749676] [<c0321226>] ? schedule+0x12/0x24 [ 84.749676] [<c01225ff>] ? do_wait+0x1ec/0x363 [ 84.749676] [<c011c4a7>] ? default_wake_function+0x0/0xd [ 84.749676] [<c020fabe>] ? copy_to_user+0x2a/0x34 [ 84.749676] [<c01227e5>] ? sys_wait4+0x6f/0x85 [ 84.749676] [<c012280e>] ? sys_waitpid+0x13/0x15 [ 84.749676] [<c01037c5>] ? syscall_call+0x7/0xb [ 84.749676] Code: 00 01 80 00 6a 00 6a 00 6a 00 8d 4d b0 31 d2 89 f0 e8 d3 d7 01 00 8d 65 f4 5b 5e 5f c9 c3 55 89 e5 57 56 53 83 ec 0c 89 c6 89 d3 <8b> 40 04 8b 40 0c a8 01 74 56 a8 10 8b be 60 02 00 00 74 1b 83 [ 84.749676] EIP: [<c0101f6e>] __switch_to+0xd/0x12d SS:ESP 0069:df865eac [ 84.749676] CR2: 0000000000000005 [ 84.749676] ---[ end trace 54cfaaa2a7bf67ca ]--- [ 84.749676] Fixing recursive fault but reboot is needed! and looking for the NULL dereference, it seems to be in __unlazy_fpu # gdb -q vmlinux (gdb) list *0xc0101f6e 0xc0101f6e is in __switch_to (/usr/src/linux-2.6/arch/x86/include/asm/i387.h:273). 268 extern int save_i387_xstate(void __user *buf); 269 extern int restore_i387_xstate(void __user *buf); 270 271 static inline void __unlazy_fpu(struct task_struct *tsk) 272 { 273 if (task_thread_info(tsk)->status & TS_USEDFPU) { 274 __save_init_fpu(tsk); 275 stts(); 276 } else 277 tsk->fpu_counter = 0; This oops disappears when I use no387 and nofxsr guest kernel parameters in lguest command invocation Now, this is only happening with my PAE patch applied, so I assume that my code is broken. But these seems to be the same symptoms discussed in this thread: http://lkml.indiana.edu/hypermail/linux/kernel/0806.2/0787.html So I thought that maybe you can help me with some hints. I really appreciate your help, Matias Here is my patch: diff --git a/arch/x86/include/asm/lguest.h b/arch/x86/include/asm/lguest.h index 1caf576..ffbf1ac 100644 --- a/arch/x86/include/asm/lguest.h +++ b/arch/x86/include/asm/lguest.h @@ -17,8 +17,13 @@ /* Pages for switcher itself, then two pages per cpu */ #define TOTAL_SWITCHER_PAGES (SHARED_SWITCHER_PAGES + 2 * nr_cpu_ids) +#ifdef CONFIG_X86_PAE +/* We map at -2M for ease of mapping into the guest (one PTE page). */ +#define SWITCHER_ADDR 0xFFE00000 +#else /* We map at -4M for ease of mapping into the guest (one PTE page). */ #define SWITCHER_ADDR 0xFFC00000 +#endif /* Found in switcher.S */ extern unsigned long default_idt_entries[]; diff --git a/arch/x86/include/asm/lguest_hcall.h b/arch/x86/include/asm/lguest_hcall.h index 0f4ee71..3860153 100644 --- a/arch/x86/include/asm/lguest_hcall.h +++ b/arch/x86/include/asm/lguest_hcall.h @@ -17,6 +17,7 @@ #define LHCALL_SET_PMD 15 #define LHCALL_LOAD_TLS 16 #define LHCALL_NOTIFY 17 +#define LHCALL_SET_PUD 18 #define LGUEST_TRAP_ENTRY 0x1F diff --git a/arch/x86/lguest/Kconfig b/arch/x86/lguest/Kconfig index 8dab8f7..3871804 100644 --- a/arch/x86/lguest/Kconfig +++ b/arch/x86/lguest/Kconfig @@ -2,7 +2,6 @@ config LGUEST_GUEST bool "Lguest guest support" select PARAVIRT depends on X86_32 - depends on !X86_PAE select VIRTIO select VIRTIO_RING select VIRTIO_CONSOLE diff --git a/arch/x86/lguest/boot.c b/arch/x86/lguest/boot.c index e94a11e..ce7b010 100644 --- a/arch/x86/lguest/boot.c +++ b/arch/x86/lguest/boot.c @@ -359,8 +359,12 @@ static void lguest_cpuid(unsigned int *ax, unsigned int *bx, case 1: /* Basic feature request. */ /* We only allow kernel to see SSE3, CMPXCHG16B and SSSE3 */ *cx &= 0x00002201; - /* SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU. */ + /* SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU, PAE. */ +#ifdef CONFIG_X86_PAE + *dx &= 0x07808151; +#else *dx &= 0x07808111; +#endif /* The Host can do a nice optimization if it knows that the * kernel mappings (addresses above 0xC0000000 or whatever * PAGE_OFFSET is set to) haven't changed. But Linux calls @@ -518,18 +522,30 @@ static void lguest_pte_update(struct mm_struct *mm, unsigned long addr, static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval) { - *ptep = pteval; + native_set_pte(ptep, pteval); lguest_pte_update(mm, addr, ptep); } +#ifdef CONFIG_X86_PAE /* The Guest calls this to set a top-level entry. Again, we set the entry then * tell the Host which top-level page we changed, and the index of the entry we * changed. */ +static void lguest_set_pud(pud_t *pudp, pud_t pudval) +{ + native_set_pud (pudp, pudval); + + /* 32 bytes aligned pdpt address. */ + lazy_hcall2(LHCALL_SET_PUD, __pa(pudp) & 0xFFFFFFE0, + (__pa(pudp) & 0x1F) / sizeof(pud_t)); +} +#endif + +/* The Guest calls this to set a PMD entry, when PAE is active */ static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval) { - *pmdp = pmdval; + native_set_pmd (pmdp, pmdval); lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK, - (__pa(pmdp) & (PAGE_SIZE - 1)) / 4); + (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t)); } /* There are a couple of legacy places where the kernel sets a PTE, but we @@ -543,11 +559,31 @@ static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval) * which brings boot back to 0.25 seconds. */ static void lguest_set_pte(pte_t *ptep, pte_t pteval) { - *ptep = pteval; + native_set_pte(ptep, pteval); + if (cr3_changed) + lazy_hcall1(LHCALL_FLUSH_TLB, 1); +} + +#ifdef CONFIG_X86_PAE +static void lguest_set_pte_atomic(pte_t *ptep, pte_t pte) +{ + native_set_pte_atomic(ptep, pte); if (cr3_changed) lazy_hcall1(LHCALL_FLUSH_TLB, 1); } +void lguest_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) +{ + native_pte_clear(mm, addr, ptep); + lazy_hcall3(LHCALL_SET_PTE, lguest_data.pgdir, addr, 0); +} + +void lguest_pmd_clear(pmd_t *pmdp) +{ + lguest_set_pmd(pmdp, __pmd(0)); +} +#endif + /* Unfortunately for Lguest, the pv_mmu_ops for page tables were based on * native page table operations. On native hardware you can set a new page * table entry whenever you want, but if you want to remove one you have to do @@ -1017,6 +1053,7 @@ __init void lguest_init(void) pv_info.name = "lguest"; pv_info.paravirt_enabled = 1; pv_info.kernel_rpl = 1; + pv_info.shared_kernel_pmd = 1; /* We set up all the lguest overrides for sensitive operations. These * are detailed with the operations themselves. */ @@ -1062,6 +1099,13 @@ __init void lguest_init(void) pv_mmu_ops.set_pte = lguest_set_pte; pv_mmu_ops.set_pte_at = lguest_set_pte_at; pv_mmu_ops.set_pmd = lguest_set_pmd; + +#ifdef CONFIG_X86_PAE + pv_mmu_ops.set_pte_atomic = lguest_set_pte_atomic; + pv_mmu_ops.pte_clear = lguest_pte_clear; + pv_mmu_ops.pmd_clear = lguest_pmd_clear; + pv_mmu_ops.set_pud = lguest_set_pud; +#endif pv_mmu_ops.read_cr2 = lguest_read_cr2; pv_mmu_ops.read_cr3 = lguest_read_cr3; pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu; diff --git a/drivers/lguest/Kconfig b/drivers/lguest/Kconfig index a3d3cba..8f63845 100644 --- a/drivers/lguest/Kconfig +++ b/drivers/lguest/Kconfig @@ -1,6 +1,6 @@ config LGUEST tristate "Linux hypervisor example code" - depends on X86_32 && EXPERIMENTAL && !X86_PAE && FUTEX + depends on X86_32 && EXPERIMENTAL && FUTEX select HVC_DRIVER ---help--- This is a very simple module which allows you to run diff --git a/drivers/lguest/hypercalls.c b/drivers/lguest/hypercalls.c index 54d66f0..c5d6678 100644 --- a/drivers/lguest/hypercalls.c +++ b/drivers/lguest/hypercalls.c @@ -78,6 +78,11 @@ static void do_hcall(struct lg_cpu *cpu, struct hcall_args *args) case LHCALL_SET_PMD: guest_set_pmd(cpu->lg, args->arg1, args->arg2); break; +#ifdef CONFIG_X86_PAE + case LHCALL_SET_PUD: + guest_set_pud(cpu->lg, args->arg1, args->arg2); + break; +#endif case LHCALL_SET_CLOCKEVENT: guest_set_clockevent(cpu, args->arg1); break; diff --git a/drivers/lguest/lg.h b/drivers/lguest/lg.h index ac8a4a3..514a6c0 100644 --- a/drivers/lguest/lg.h +++ b/drivers/lguest/lg.h @@ -18,7 +18,7 @@ int init_pagetables(struct page **switcher_page, unsigned int pages); struct pgdir { - unsigned long gpgdir; + pgd_t *gpgdir; pgd_t *pgdir; }; @@ -137,6 +137,8 @@ int run_guest(struct lg_cpu *cpu, unsigned long __user *user); * in the kernel. */ #define pgd_flags(x) (pgd_val(x) & ~PAGE_MASK) #define pgd_pfn(x) (pgd_val(x) >> PAGE_SHIFT) +#define pmd_flags(x) (pmd_val(x) & ~PAGE_MASK) +#define pmd_pfn(x) (pmd_val(x) >> PAGE_SHIFT) /* interrupts_and_traps.c: */ void maybe_do_interrupt(struct lg_cpu *cpu); @@ -168,6 +170,9 @@ int init_guest_pagetable(struct lguest *lg); void free_guest_pagetable(struct lguest *lg); void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable); void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 i); +#ifdef CONFIG_X86_PAE +void guest_set_pud(struct lguest *lg, unsigned long gpgdir, u32 i); +#endif void guest_pagetable_clear_all(struct lg_cpu *cpu); void guest_pagetable_flush_user(struct lg_cpu *cpu); void guest_set_pte(struct lg_cpu *cpu, unsigned long gpgdir, diff --git a/drivers/lguest/page_tables.c b/drivers/lguest/page_tables.c index a059cf9..77014d8 100644 --- a/drivers/lguest/page_tables.c +++ b/drivers/lguest/page_tables.c @@ -47,12 +47,20 @@ * (vii) Setting up the page tables initially. :*/ +void guest_pagetable_clear_all(struct lg_cpu *cpu); /* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is * conveniently placed at the top 4MB, so it uses a separate, complete PTE * page. */ #define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1) +/* For PAE we need the PMD index as well. We can use the last 2MB, so we + * will need the last pmd entry of the last pmd page. */ +#ifdef CONFIG_X86_PAE + +#define SWITCHER_PMD_INDEX (PTRS_PER_PMD - 1) +#endif + /* We actually need a separate PTE page for each CPU. Remember that after the * Switcher code itself comes two pages for each CPU, and we don't want this * CPU's guest to see the pages of any other CPU. */ @@ -73,39 +81,90 @@ static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr) { unsigned int index = pgd_index(vaddr); +#ifndef CONFIG_X86_PAE /* We kill any Guest trying to touch the Switcher addresses. */ if (index >= SWITCHER_PGD_INDEX) { kill_guest(cpu, "attempt to access switcher pages"); index = 0; } +#endif /* Return a pointer index'th pgd entry for the i'th page table. */ return &cpu->lg->pgdirs[i].pgdir[index]; } +#ifdef CONFIG_X86_PAE +/* This routine then takes the PGD entry given above, which contains the + * address of the PMD page. It then returns a pointer to the PMD entry for the + * given address. */ +static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr) +{ + unsigned int index = pmd_index(vaddr); + pmd_t *page; + + /* We kill any Guest trying to touch the Switcher addresses. */ + if (pgd_index(vaddr) == SWITCHER_PGD_INDEX && + index >= SWITCHER_PMD_INDEX) { + kill_guest(cpu, "attempt to access switcher pages"); + index = 0; + } + + /* You should never call this if the PGD entry wasn't valid */ + BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT)); + + page = __va(pgd_pfn(spgd) << PAGE_SHIFT); + return &page[index]; +} +#endif + /* This routine then takes the page directory entry returned above, which * contains the address of the page table entry (PTE) page. It then returns a * pointer to the PTE entry for the given address. */ -static pte_t *spte_addr(pgd_t spgd, unsigned long vaddr) +static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr) { +#ifdef CONFIG_X86_PAE + pmd_t *pmd = spmd_addr(cpu, spgd, vaddr); + pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT); + + /* You should never call this if the PMD entry wasn't valid */ + BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT)); +#else pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT); + /* You should never call this if the PGD entry wasn't valid */ BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT)); - return &page[(vaddr >> PAGE_SHIFT) % PTRS_PER_PTE]; +#endif + return &page[pte_index(vaddr)]; } /* These two functions just like the above two, except they access the Guest * page tables. Hence they return a Guest address. */ -static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr) +static pgd_t *gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr) { unsigned int index = vaddr >> (PGDIR_SHIFT); - return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t); + return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index; +} + +#ifdef CONFIG_X86_PAE +static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr) +{ + unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT; + BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT)); + return gpage + pmd_index(vaddr) * sizeof(pmd_t); } +#endif -static unsigned long gpte_addr(pgd_t gpgd, unsigned long vaddr) +static unsigned long gpte_addr(struct lg_cpu *cpu, + pgd_t gpgd, unsigned long vaddr) { +#ifdef CONFIG_X86_PAE + pmd_t gpmd = lgread(cpu, + (unsigned long) gpmd_addr(gpgd, vaddr), pmd_t); + unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT; +#else unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT; BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT)); - return gpage + ((vaddr>>PAGE_SHIFT) % PTRS_PER_PTE) * sizeof(pte_t); +#endif + return gpage + pte_index(vaddr) * sizeof(pte_t); } /*:*/ @@ -184,11 +243,24 @@ static void check_gpte(struct lg_cpu *cpu, pte_t gpte) static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd) { +#ifdef CONFIG_X86_PAE + if ((pgd_flags(gpgd) & ~_PAGE_PRESENT) || +#else if ((pgd_flags(gpgd) & ~_PAGE_TABLE) || +#endif (pgd_pfn(gpgd) >= cpu->lg->pfn_limit)) kill_guest(cpu, "bad page directory entry"); } +#ifdef CONFIG_X86_PAE +static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd) +{ + if ((pmd_flags(gpmd) & ~_PAGE_TABLE) || + (pmd_pfn(gpmd) >= cpu->lg->pfn_limit)) + kill_guest(cpu, "bad page middle directory entry"); +} +#endif + /*H:330 * (i) Looking up a page table entry when the Guest faults. * @@ -207,8 +279,14 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode) pte_t gpte; pte_t *spte; +#ifdef CONFIG_X86_PAE + pmd_t *spmd; + pmd_t gpmd; +#endif + /* First step: get the top-level Guest page table entry. */ - gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t); + gpgd = lgread(cpu, (unsigned long) gpgd_addr(cpu, vaddr), pgd_t); + /* Toplevel not present? We can't map it in. */ if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) return false; @@ -231,9 +309,38 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode) *spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd)); } +#ifdef CONFIG_X86_PAE + gpmd = lgread(cpu, (unsigned long) gpmd_addr(gpgd, vaddr), pmd_t); + /* middle level not present? We can't map it in. */ + if (!(pmd_flags(gpmd) & _PAGE_PRESENT)) + return 0; + + /* Now look at the matching shadow entry. */ + spmd = spmd_addr(cpu, *spgd, vaddr); + + if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) { + /* No shadow entry: allocate a new shadow PTE page. */ + unsigned long ptepage = get_zeroed_page(GFP_KERNEL); + + /* This is not really the Guest's fault, but killing it is + * simple for this corner case. */ + if (!ptepage) { + kill_guest(cpu, "out of memory allocating pte page"); + return 0; + } + + /* We check that the Guest pmd is OK. */ + check_gpmd(cpu, gpmd); + + /* And we copy the flags to the shadow PMD entry. The page + * number in the shadow PMD is the page we just allocated. */ + *spmd = __pmd(__pa(ptepage) | pmd_flags(gpmd)); + } +#endif + /* OK, now we look at the lower level in the Guest page table: keep its * address, because we might update it later. */ - gpte_ptr = gpte_addr(gpgd, vaddr); + gpte_ptr = gpte_addr(cpu, gpgd, vaddr); gpte = lgread(cpu, gpte_ptr, pte_t); /* If this page isn't in the Guest page tables, we can't page it in. */ @@ -259,7 +366,7 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode) gpte = pte_mkdirty(gpte); /* Get the pointer to the shadow PTE entry we're going to set. */ - spte = spte_addr(*spgd, vaddr); + spte = spte_addr(cpu, *spgd, vaddr); /* If there was a valid shadow PTE entry here before, we release it. * This can happen with a write to a previously read-only entry. */ release_pte(*spte); @@ -301,14 +408,24 @@ static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr) pgd_t *spgd; unsigned long flags; +#ifdef CONFIG_X86_PAE + pmd_t *spmd; +#endif + /* Look at the current top level entry: is it present? */ spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr); if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) return false; +#ifdef CONFIG_X86_PAE + spmd = spmd_addr(cpu, *spgd, vaddr); + if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) + return false; +#endif + /* Check the flags on the pte entry itself: it must be present and * writable. */ - flags = pte_flags(*(spte_addr(*spgd, vaddr))); + flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr))); return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW); } @@ -322,8 +439,45 @@ void pin_page(struct lg_cpu *cpu, unsigned long vaddr) kill_guest(cpu, "bad stack page %#lx", vaddr); } +#ifdef CONFIG_X86_PAE +static void release_pmd(pmd_t *spmd) +{ + /* If the entry's not present, there's nothing to release. */ + if (pmd_flags(*spmd) & _PAGE_PRESENT) { + unsigned int i; + pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT); + /* For each entry in the page, we might need to release it. */ + for (i = 0; i < PTRS_PER_PTE; i++) + release_pte(ptepage[i]); + /* Now we can free the page of PTEs */ + free_page((long)ptepage); + /* And zero out the PMD entry so we never release it twice. */ + native_set_pmd(spmd, __pmd(0)); + } +} + +/*H:450 If we chase down the release_pgd() code, it looks like this: */ +static void release_pgd(pgd_t *spgd) +{ + /* If the entry's not present, there's nothing to release. */ + if (pgd_flags(*spgd) & _PAGE_PRESENT) { + unsigned int i; + pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT); + + for (i = 0; i < PTRS_PER_PMD; i++) + release_pmd(&pmdpage[i]); + + /* Now we can free the page of PMDs */ + free_page((long)pmdpage); + /* And zero out the PGD entry so we never release it twice. */ + native_set_pud ((pud_t *)spgd, __pud(0)); + } +} + +#else /* !CONFIG_X86_PAE */ + /*H:450 If we chase down the release_pgd() code, it looks like this: */ -static void release_pgd(struct lguest *lg, pgd_t *spgd) +static void release_pgd(pgd_t *spgd) { /* If the entry's not present, there's nothing to release. */ if (pgd_flags(*spgd) & _PAGE_PRESENT) { @@ -342,15 +496,18 @@ static void release_pgd(struct lguest *lg, pgd_t *spgd) } } +#endif + /*H:445 We saw flush_user_mappings() twice: once from the flush_user_mappings() * hypercall and once in new_pgdir() when we re-used a top-level pgdir page. * It simply releases every PTE page from 0 up to the Guest's kernel address. */ static void flush_user_mappings(struct lguest *lg, int idx) { unsigned int i; + /* Release every pgd entry up to the kernel's address. */ for (i = 0; i < pgd_index(lg->kernel_address); i++) - release_pgd(lg, lg->pgdirs[idx].pgdir + i); + release_pgd(lg->pgdirs[idx].pgdir + i); } /*H:440 (v) Flushing (throwing away) page tables, @@ -370,15 +527,30 @@ unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr) pgd_t gpgd; pte_t gpte; +#ifdef CONFIG_X86_PAE + pmd_t gpmd; +#endif + + /* First step: get the top-level Guest page table entry. */ - gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t); + gpgd = lgread(cpu, (unsigned long) gpgd_addr(cpu, vaddr), pgd_t); /* Toplevel not present? We can't map it in. */ if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) { kill_guest(cpu, "Bad address %#lx", vaddr); return -1UL; } - gpte = lgread(cpu, gpte_addr(gpgd, vaddr), pte_t); + gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t); + +#ifdef CONFIG_X86_PAE + gpmd = lgread(cpu, (unsigned long) gpmd_addr(gpgd, vaddr), pmd_t); + if (!(pmd_flags(gpmd) & _PAGE_PRESENT)) + kill_guest(cpu, "Bad address %#lx", vaddr); +#endif + + gpte = lgread(cpu, (unsigned long) gpte_addr(cpu, gpgd, vaddr), pte_t); + + if (!(pte_flags(gpte) & _PAGE_PRESENT)) kill_guest(cpu, "Bad address %#lx", vaddr); @@ -388,7 +560,7 @@ unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr) /* We keep several page tables. This is a simple routine to find the page * table (if any) corresponding to this top-level address the Guest has given * us. */ -static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable) +static unsigned int find_pgdir(struct lguest *lg, pgd_t *pgtable) { unsigned int i; for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) @@ -401,10 +573,13 @@ static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable) * allocate a new one (and so the kernel parts are not there), we set * blank_pgdir. */ static unsigned int new_pgdir(struct lg_cpu *cpu, - unsigned long gpgdir, + pgd_t *gpgdir, int *blank_pgdir) { unsigned int next; +#ifdef CONFIG_X86_PAE + pmd_t *pmd_table; +#endif /* We pick one entry at random to throw out. Choosing the Least * Recently Used might be better, but this is easy. */ @@ -413,13 +588,36 @@ static unsigned int new_pgdir(struct lg_cpu *cpu, if (!cpu->lg->pgdirs[next].pgdir) { cpu->lg->pgdirs[next].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL); + /* If the allocation fails, just keep using the one we have */ if (!cpu->lg->pgdirs[next].pgdir) next = cpu->cpu_pgd; + +#ifdef CONFIG_X86_PAE + else { + /* In PAE mode, allocate a pmd page and populate the + * last pgd entry. */ + pmd_table = (pmd_t *) get_zeroed_page(GFP_KERNEL); + if (!pmd_table){ + free_page ((long) cpu->lg->pgdirs[next].pgdir); + native_set_pud((pud_t *)cpu->lg->pgdirs[next].pgdir, __pud(0)); + next = cpu->cpu_pgd; + } + else { + + native_set_pud((pud_t *) cpu->lg->pgdirs[next].pgdir + + SWITCHER_PGD_INDEX, + __pud(__pa(pmd_table) | _PAGE_PRESENT)); + + /* This is a blank page, so there are no kernel + * mappings: caller must map the stack! */ + *blank_pgdir = 1; + } + } +#else else - /* This is a blank page, so there are no kernel - * mappings: caller must map the stack! */ *blank_pgdir = 1; +#endif } /* Record which Guest toplevel this shadows. */ cpu->lg->pgdirs[next].gpgdir = gpgdir; @@ -431,7 +629,7 @@ static unsigned int new_pgdir(struct lg_cpu *cpu, /*H:430 (iv) Switching page tables * - * Now we've seen all the page table setting and manipulation, let's see what + * Now we've seen all the page table setting and manipulation, let's see * what happens when the Guest changes page tables (ie. changes the top-level * pgdir). This occurs on almost every context switch. */ void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable) @@ -439,11 +637,11 @@ void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable) int newpgdir, repin = 0; /* Look to see if we have this one already. */ - newpgdir = find_pgdir(cpu->lg, pgtable); + newpgdir = find_pgdir(cpu->lg, (pgd_t *)pgtable); /* If not, we allocate or mug an existing one: if it's a fresh one, * repin gets set to 1. */ if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs)) - newpgdir = new_pgdir(cpu, pgtable, &repin); + newpgdir = new_pgdir(cpu, (pgd_t *)pgtable, &repin); /* Change the current pgd index to the new one. */ cpu->cpu_pgd = newpgdir; /* If it was completely blank, we map in the Guest kernel stack */ @@ -456,14 +654,30 @@ void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable) * when we destroy the Guest. */ static void release_all_pagetables(struct lguest *lg) { - unsigned int i, j; + unsigned int i, j, k; + +#ifdef CONFIG_X86_PAE + pgd_t *spgd; + pmd_t *pmdpage; +#endif /* Every shadow pagetable this Guest has */ for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) - if (lg->pgdirs[i].pgdir) + if (lg->pgdirs[i].pgdir) { /* Every PGD entry except the Switcher at the top */ for (j = 0; j < SWITCHER_PGD_INDEX; j++) - release_pgd(lg, lg->pgdirs[i].pgdir + j); + release_pgd(lg->pgdirs[i].pgdir + j); +#ifdef CONFIG_X86_PAE + /* Get the last pmd page. */ + spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX; + pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT); + + /* And release the pmd entries of that pmd page, + * except for the switcher pmd. */ + for (k = 0; k < SWITCHER_PMD_INDEX; k++) + release_pmd(&pmdpage[k]); +#endif + } } /* We also throw away everything when a Guest tells us it's changed a kernel @@ -505,23 +719,39 @@ static void do_set_pte(struct lg_cpu *cpu, int idx, /* Look up the matching shadow page directory entry. */ pgd_t *spgd = spgd_addr(cpu, idx, vaddr); +#ifdef CONFIG_X86_PAE + pmd_t *spmd; +#endif + /* If the top level isn't present, there's no entry to update. */ if (pgd_flags(*spgd) & _PAGE_PRESENT) { - /* Otherwise, we start by releasing the existing entry. */ - pte_t *spte = spte_addr(*spgd, vaddr); - release_pte(*spte); - - /* If they're setting this entry as dirty or accessed, we might - * as well put that entry they've given us in now. This shaves - * 10% off a copy-on-write micro-benchmark. */ - if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) { - check_gpte(cpu, gpte); - *spte = gpte_to_spte(cpu, gpte, - pte_flags(gpte) & _PAGE_DIRTY); - } else - /* Otherwise kill it and we can demand_page() it in - * later. */ - *spte = __pte(0); + +#ifdef CONFIG_X86_PAE + spmd = spmd_addr(cpu, *spgd, vaddr); + if (pmd_flags(*spmd) & _PAGE_PRESENT) { +#endif + + /* Otherwise, we start by releasing + * the existing entry. */ + pte_t *spte = spte_addr(cpu, *spgd, vaddr); + release_pte(*spte); + + /* If they're setting this entry as dirty or accessed, + * we might as well put that entry they've given us + * in now. This shaves 10% off a + * copy-on-write micro-benchmark. */ + if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) { + check_gpte(cpu, gpte); + native_set_pte (spte, + gpte_to_spte(cpu, gpte, + pte_flags(gpte) & _PAGE_DIRTY)); + } else + /* Otherwise kill it and we can demand_page() + * it in later. */ + native_set_pte (spte, __pte(0)); +#ifdef CONFIG_X86_PAE + } +#endif } } @@ -547,7 +777,7 @@ void guest_set_pte(struct lg_cpu *cpu, do_set_pte(cpu, i, vaddr, gpte); } else { /* Is this page table one we have a shadow for? */ - int pgdir = find_pgdir(cpu->lg, gpgdir); + int pgdir = find_pgdir(cpu->lg, (pgd_t *)gpgdir); if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs)) /* If so, do the update. */ do_set_pte(cpu, pgdir, vaddr, gpte); @@ -568,9 +798,38 @@ void guest_set_pte(struct lg_cpu *cpu, * * So with that in mind here's our code to to update a (top-level) PGD entry: */ -void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 idx) + +#ifdef CONFIG_X86_PAE +void guest_set_pud(struct lguest *lg, unsigned long pudp, u32 idx) +{ + int pgdir; + pgd_t *gpgdir = (pgd_t *) pudp; + + if (idx >= SWITCHER_PGD_INDEX){ + printk ("tryied to map on the last pgd entry\n"); + return; + + } + + /* If they're talking about a page table we have a shadow for... */ + pgdir = find_pgdir(lg, gpgdir); + if (pgdir < ARRAY_SIZE(lg->pgdirs)) + /* ... throw it away. */ + release_pgd(lg->pgdirs[pgdir].pgdir + idx); + +} + +void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx) +{ + guest_pagetable_clear_all(&lg->cpus[0]); //ugly +} + +#else /*!CONFIG_X86_PAE*/ + +void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx) { int pgdir; + pgd_t *gpgdir = (pgd_t *) pmdp; /* The kernel seems to try to initialize this early on: we ignore its * attempts to map over the Switcher. */ @@ -581,8 +840,9 @@ void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 idx) pgdir = find_pgdir(lg, gpgdir); if (pgdir < ARRAY_SIZE(lg->pgdirs)) /* ... throw it away. */ - release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx); + release_pgd(lg->pgdirs[pgdir].pgdir + idx); } +#endif /* Once we know how much memory we have we can construct simple identity * (which set virtual == physical) and linear mappings @@ -596,8 +856,14 @@ static unsigned long setup_pagetables(struct lguest *lg, { pgd_t __user *pgdir; pte_t __user *linear; - unsigned int mapped_pages, i, linear_pages, phys_linear; unsigned long mem_base = (unsigned long)lg->mem_base; + unsigned int mapped_pages, i, linear_pages; +#ifdef CONFIG_X86_PAE + u64 *pmds; + unsigned int j; +#else + unsigned int phys_linear; +#endif /* We have mapped_pages frames to map, so we need * linear_pages page tables to map them. */ @@ -609,6 +875,9 @@ static unsigned long setup_pagetables(struct lguest *lg, /* Now we use the next linear_pages pages as pte pages */ linear = (void *)pgdir - linear_pages * PAGE_SIZE; +#ifdef CONFIG_X86_PAE + pmds = (void *)linear - PAGE_SIZE; +#endif /* Linear mapping is easy: put every page's address into the * mapping in order. */ @@ -619,8 +888,26 @@ static unsigned long setup_pagetables(struct lguest *lg, return -EFAULT; } +#ifdef CONFIG_X86_PAE /* The top level points to the linear page table pages above. * We setup the identity and linear mappings here. */ + for (i = 0, j = 0; i < mapped_pages; i += PTRS_PER_PTE, j++) { + pmd_t pmd; + pmd = __pmd( ((unsigned long)(linear+i) - mem_base) | + _PAGE_PRESENT | _PAGE_RW | _PAGE_USER); + if (copy_to_user(&pmds[j], &pmd, sizeof(pmd)) != 0) + return -EFAULT; + } + pgd_t pgd; + pgd = __pgd((((u32)pmds) - mem_base) | _PAGE_PRESENT); + + if (copy_to_user(&pgdir[0], &pgd, sizeof(pgd)) != 0) + return -EFAULT; + + if (copy_to_user(&pgdir[3], &pgd, sizeof(pgd)) != 0) + return -EFAULT; + +#else phys_linear = (unsigned long)linear - mem_base; for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) { pgd_t pgd; @@ -633,6 +920,7 @@ static unsigned long setup_pagetables(struct lguest *lg, &pgd, sizeof(pgd))) return -EFAULT; } +#endif /* We return the top level (guest-physical) address: remember where * this is. */ @@ -648,6 +936,10 @@ int init_guest_pagetable(struct lguest *lg) u64 mem; u32 initrd_size; struct boot_params __user *boot = (struct boot_params *)lg->mem_base; +#ifdef CONFIG_X86_PAE + pgd_t *pgd; + pmd_t *pmd_table; +#endif /* Get the Guest memory size and the ramdisk size from the boot header * located at lg->mem_base (Guest address 0). */ @@ -657,12 +949,23 @@ int init_guest_pagetable(struct lguest *lg) /* We start on the first shadow page table, and give it a blank PGD * page. */ - lg->pgdirs[0].gpgdir = setup_pagetables(lg, mem, initrd_size); - if (IS_ERR_VALUE(lg->pgdirs[0].gpgdir)) - return lg->pgdirs[0].gpgdir; + lg->pgdirs[0].gpgdir = (pgd_t *) setup_pagetables(lg, mem, initrd_size); + if (IS_ERR_VALUE((int) lg->pgdirs[0].gpgdir)) + return (int) lg->pgdirs[0].gpgdir; lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL); if (!lg->pgdirs[0].pgdir) return -ENOMEM; +#ifdef CONFIG_X86_PAE + pgd = lg->pgdirs[0].pgdir; + pmd_table = (pmd_t *) get_zeroed_page(GFP_KERNEL); + if (!pmd_table) + return -ENOMEM; + + native_set_pud((pud_t *) pgd + SWITCHER_PGD_INDEX, + __pud(__pa(pmd_table) | _PAGE_PRESENT)); + +#endif + lg->cpus[0].cpu_pgd = 0; return 0; } @@ -670,21 +973,36 @@ int init_guest_pagetable(struct lguest *lg) /* When the Guest calls LHCALL_LGUEST_INIT we do more setup. */ void page_table_guest_data_init(struct lg_cpu *cpu) { +#ifdef CONFIG_X86_PAE + const unsigned long reserve_mb = 2; +#else + const unsigned long reserve_mb = 4; +#endif + /* We get the kernel address: above this is all kernel memory. */ if (get_user(cpu->lg->kernel_address, - &cpu->lg->lguest_data->kernel_address) - /* We tell the Guest that it can't use the top 4MB of virtual - * addresses used by the Switcher. */ - || put_user(4U*1024*1024, &cpu->lg->lguest_data->reserve_mem) - || put_user(cpu->lg->pgdirs[0].gpgdir, &cpu->lg->lguest_data->pgdir)) + &cpu->lg->lguest_data->kernel_address) + /* We tell the Guest that it can't use the top 2 or 4 MB + * of virtual addresses used by the Switcher. */ + || put_user(reserve_mb * 1024 * 1024, + &cpu->lg->lguest_data->reserve_mem) + || put_user((unsigned long) cpu->lg->pgdirs[0].gpgdir, + &cpu->lg->lguest_data->pgdir)) kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data); /* In flush_user_mappings() we loop from 0 to * "pgd_index(lg->kernel_address)". This assumes it won't hit the * Switcher mappings, so check that now. */ +#ifdef CONFIG_X86_PAE + if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX) + if (pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX) + kill_guest(cpu, "bad kernel address %#lx", + cpu->lg->kernel_address); +#else if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX) kill_guest(cpu, "bad kernel address %#lx", cpu->lg->kernel_address); +#endif } /* When a Guest dies, our cleanup is fairly simple. */ @@ -708,15 +1026,28 @@ void free_guest_pagetable(struct lguest *lg) void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages) { pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages); - pgd_t switcher_pgd; pte_t regs_pte; unsigned long pfn; +#ifdef CONFIG_X86_PAE + pmd_t switcher_pmd; + pmd_t *pmd_table; + + switcher_pmd = pfn_pmd(__pa(switcher_pte_page) >> + PAGE_SHIFT, __pgprot(__PAGE_KERNEL)); + pmd_table = __va(pgd_pfn(cpu->lg-> + pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX]) + << PAGE_SHIFT); + pmd_table[SWITCHER_PMD_INDEX] = switcher_pmd; + +#else + pgd_t switcher_pgd; + /* Make the last PGD entry for this Guest point to the Switcher's PTE * page for this CPU (with appropriate flags). */ switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL); - cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd; +#endif /* We also change the Switcher PTE page. When we're running the Guest, * we want the Guest's "regs" page to appear where the first Switcher @@ -727,7 +1058,8 @@ void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages) * again. */ pfn = __pa(cpu->regs_page) >> PAGE_SHIFT; regs_pte = pfn_pte(pfn, __pgprot(__PAGE_KERNEL)); - switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte; + switcher_pte_page[(unsigned long)pages / PAGE_SIZE % PTRS_PER_PTE] + = regs_pte; } /*:*/ @@ -752,21 +1084,23 @@ static __init void populate_switcher_pte_page(unsigned int cpu, /* The first entries are easy: they map the Switcher code. */ for (i = 0; i < pages; i++) { - pte[i] = mk_pte(switcher_page[i], - __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)); + native_set_pte(&pte[i], mk_pte(switcher_page[i], + __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED))); } /* The only other thing we map is this CPU's pair of pages. */ i = pages + cpu*2; /* First page (Guest registers) is writable from the Guest */ - pte[i] = pfn_pte(page_to_pfn(switcher_page[i]), - __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)); + native_set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]), + __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW))); /* The second page contains the "struct lguest_ro_state", and is * read-only. */ - pte[i+1] = pfn_pte(page_to_pfn(switcher_page[i+1]), - __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)); + native_set_pte(&pte[i+1],pfn_pte(page_to_pfn(switcher_page[i+1]), + __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)) ); + +// look rules for set_pte at pgtable-3level.h } /* We've made it through the page table code. Perhaps our tired brains are _______________________________________________ Virtualization mailing list Virtualization@xxxxxxxxxxxxxxxxxxxxxxxxxx https://lists.linux-foundation.org/mailman/listinfo/virtualization