There was also a discussion about how the UART node and the clock-controller node could be wrapped together in a new binding [1, 2]. As explained there, this is not possible if we want to keep backwards compatibility with existing bootloaders, and thus we are doing this by putting the UART clock-controller node inside the UART1 node. [1] https://lore.kernel.org/linux-serial/20220120000651.in7s6nazif5qjkme@pali/ [2] https://lore.kernel.org/linux-serial/20220125204006.A6D09C340E0@xxxxxxxxxxxxxxx/ Signed-off-by: Pali Rohár <pali@xxxxxxxxxx> Reviewed-by: Marek Behún <kabel@xxxxxxxxxx> Signed-off-by: Marek Behún <kabel@xxxxxxxxxx> --- Changes since v7: - commit message was rewritten - changed comments a little - fixed indentation at some places - added Marek's Reviewed-by tag --- drivers/tty/serial/Kconfig | 1 + drivers/tty/serial/mvebu-uart.c | 521 +++++++++++++++++++++++++++++++- 2 files changed, 520 insertions(+), 2 deletions(-) diff --git a/drivers/tty/serial/Kconfig b/drivers/tty/serial/Kconfig index 0e5ccb25bdb1..9bc1325dd7ba 100644 --- a/drivers/tty/serial/Kconfig +++ b/drivers/tty/serial/Kconfig @@ -1445,6 +1445,7 @@ config SERIAL_STM32_CONSOLE config SERIAL_MVEBU_UART bool "Marvell EBU serial port support" depends on ARCH_MVEBU || COMPILE_TEST + depends on COMMON_CLK select SERIAL_CORE help This driver is for Marvell EBU SoC's UART. If you have a machine diff --git a/drivers/tty/serial/mvebu-uart.c b/drivers/tty/serial/mvebu-uart.c index ab226da75f7b..56278b29f5f5 100644 --- a/drivers/tty/serial/mvebu-uart.c +++ b/drivers/tty/serial/mvebu-uart.c @@ -8,12 +8,14 @@ */ #include <linux/clk.h> +#include <linux/clk-provider.h> #include <linux/console.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/init.h> #include <linux/io.h> #include <linux/iopoll.h> +#include <linux/math64.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_device.h> @@ -68,8 +70,31 @@ #define STAT_BRK_ERR (STAT_BRK_DET | STAT_FRM_ERR \ | STAT_PAR_ERR | STAT_OVR_ERR) +/* + * Marvell Armada 3700 Functional Specifications describes that bit 21 of UART + * Clock Control register controls UART1 and bit 20 controls UART2. But in + * reality bit 21 controls UART2 and bit 20 controls UART1. This seems to be an + * error in Marvell's documentation. Hence following CLK_DIS macros are swapped. + */ + #define UART_BRDV 0x10 +/* These bits are located in UART1 address space and control UART2 */ +#define UART2_CLK_DIS BIT(21) +/* These bits are located in UART1 address space and control UART1 */ +#define UART1_CLK_DIS BIT(20) +/* These bits are located in UART1 address space and control both UARTs */ +#define CLK_NO_XTAL BIT(19) +#define CLK_TBG_DIV1_SHIFT 15 +#define CLK_TBG_DIV1_MASK 0x7 +#define CLK_TBG_DIV1_MAX 6 +#define CLK_TBG_DIV2_SHIFT 12 +#define CLK_TBG_DIV2_MASK 0x7 +#define CLK_TBG_DIV2_MAX 6 +#define CLK_TBG_SEL_SHIFT 10 +#define CLK_TBG_SEL_MASK 0x3 +/* These bits are located in both UARTs address space */ #define BRDV_BAUD_MASK 0x3FF +#define BRDV_BAUD_MAX BRDV_BAUD_MASK #define UART_OSAMP 0x14 #define OSAMP_DEFAULT_DIVISOR 16 @@ -153,6 +178,8 @@ static struct mvebu_uart *to_mvuart(struct uart_port *port) static struct uart_port mvebu_uart_ports[MVEBU_NR_UARTS]; +static DEFINE_SPINLOCK(mvebu_uart_lock); + /* Core UART Driver Operations */ static unsigned int mvebu_uart_tx_empty(struct uart_port *port) { @@ -445,6 +472,7 @@ static void mvebu_uart_shutdown(struct uart_port *port) static int mvebu_uart_baud_rate_set(struct uart_port *port, unsigned int baud) { unsigned int d_divisor, m_divisor; + unsigned long flags; u32 brdv, osamp; if (!port->uartclk) @@ -463,10 +491,12 @@ static int mvebu_uart_baud_rate_set(struct uart_port *port, unsigned int baud) m_divisor = OSAMP_DEFAULT_DIVISOR; d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor); + spin_lock_irqsave(&mvebu_uart_lock, flags); brdv = readl(port->membase + UART_BRDV); brdv &= ~BRDV_BAUD_MASK; brdv |= d_divisor; writel(brdv, port->membase + UART_BRDV); + spin_unlock_irqrestore(&mvebu_uart_lock, flags); osamp = readl(port->membase + UART_OSAMP); osamp &= ~OSAMP_DIVISORS_MASK; @@ -762,6 +792,7 @@ static int mvebu_uart_suspend(struct device *dev) { struct mvebu_uart *mvuart = dev_get_drvdata(dev); struct uart_port *port = mvuart->port; + unsigned long flags; uart_suspend_port(&mvebu_uart_driver, port); @@ -770,7 +801,9 @@ static int mvebu_uart_suspend(struct device *dev) mvuart->pm_regs.ctrl = readl(port->membase + UART_CTRL(port)); mvuart->pm_regs.intr = readl(port->membase + UART_INTR(port)); mvuart->pm_regs.stat = readl(port->membase + UART_STAT); + spin_lock_irqsave(&mvebu_uart_lock, flags); mvuart->pm_regs.brdv = readl(port->membase + UART_BRDV); + spin_unlock_irqrestore(&mvebu_uart_lock, flags); mvuart->pm_regs.osamp = readl(port->membase + UART_OSAMP); device_set_wakeup_enable(dev, true); @@ -782,13 +815,16 @@ static int mvebu_uart_resume(struct device *dev) { struct mvebu_uart *mvuart = dev_get_drvdata(dev); struct uart_port *port = mvuart->port; + unsigned long flags; writel(mvuart->pm_regs.rbr, port->membase + UART_RBR(port)); writel(mvuart->pm_regs.tsh, port->membase + UART_TSH(port)); writel(mvuart->pm_regs.ctrl, port->membase + UART_CTRL(port)); writel(mvuart->pm_regs.intr, port->membase + UART_INTR(port)); writel(mvuart->pm_regs.stat, port->membase + UART_STAT); + spin_lock_irqsave(&mvebu_uart_lock, flags); writel(mvuart->pm_regs.brdv, port->membase + UART_BRDV); + spin_unlock_irqrestore(&mvebu_uart_lock, flags); writel(mvuart->pm_regs.osamp, port->membase + UART_OSAMP); uart_resume_port(&mvebu_uart_driver, port); @@ -972,6 +1008,478 @@ static struct platform_driver mvebu_uart_platform_driver = { }, }; +/* This code is based on clk-fixed-factor.c driver and modified. */ + +struct mvebu_uart_clock { + struct clk_hw clk_hw; + int clock_idx; + u32 pm_context_reg1; + u32 pm_context_reg2; +}; + +struct mvebu_uart_clock_base { + struct mvebu_uart_clock clocks[2]; + unsigned int parent_rates[5]; + int parent_idx; + unsigned int div; + void __iomem *reg1; + void __iomem *reg2; + bool configured; +}; + +#define PARENT_CLOCK_XTAL 4 + +#define to_uart_clock(hw) container_of(hw, struct mvebu_uart_clock, clk_hw) +#define to_uart_clock_base(uart_clock) container_of(uart_clock, \ + struct mvebu_uart_clock_base, clocks[uart_clock->clock_idx]) + +static int mvebu_uart_clock_prepare(struct clk_hw *hw) +{ + struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); + struct mvebu_uart_clock_base *uart_clock_base = + to_uart_clock_base(uart_clock); + unsigned int prev_clock_idx, prev_clock_rate, prev_d1d2; + unsigned int parent_clock_idx, parent_clock_rate; + unsigned long flags; + unsigned int d1, d2; + u64 divisor; + u32 val; + + /* + * This function just reconfigures UART Clock Control register (located + * in UART1 address space which controls both UART1 and UART2) to + * selected UART base clock and recalculates current UART1/UART2 + * divisors in their address spaces, so that final baudrate will not be + * changed by switching UART parent clock. This is required for + * otherwise kernel's boot log stops working - we need to ensure that + * UART baudrate does not change during this setup. It is a one time + * operation, it will execute only once and set `configured` to true, + * and be skipped on subsequent calls. Because this UART Clock Control + * register (UART_BRDV) is shared between UART1 baudrate function, + * UART1 clock selector and UART2 clock selector, every access to + * UART_BRDV (reg1) needs to be protected by a lock. + */ + + spin_lock_irqsave(&mvebu_uart_lock, flags); + + if (uart_clock_base->configured) { + spin_unlock_irqrestore(&mvebu_uart_lock, flags); + return 0; + } + + parent_clock_idx = uart_clock_base->parent_idx; + parent_clock_rate = uart_clock_base->parent_rates[parent_clock_idx]; + + val = readl(uart_clock_base->reg1); + + if (uart_clock_base->div > CLK_TBG_DIV1_MAX) { + d1 = CLK_TBG_DIV1_MAX; + d2 = uart_clock_base->div / CLK_TBG_DIV1_MAX; + } else { + d1 = uart_clock_base->div; + d2 = 1; + } + + if (val & CLK_NO_XTAL) { + prev_clock_idx = (val >> CLK_TBG_SEL_SHIFT) & CLK_TBG_SEL_MASK; + prev_d1d2 = ((val >> CLK_TBG_DIV1_SHIFT) & CLK_TBG_DIV1_MASK) * + ((val >> CLK_TBG_DIV2_SHIFT) & CLK_TBG_DIV2_MASK); + } else { + prev_clock_idx = PARENT_CLOCK_XTAL; + prev_d1d2 = 1; + } + + /* Note that uart_clock_base->parent_rates[i] may not be available */ + prev_clock_rate = uart_clock_base->parent_rates[prev_clock_idx]; + + /* Recalculate UART1 divisor so UART1 baudrate does not change */ + if (prev_clock_rate) { + divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) * + parent_clock_rate * prev_d1d2, + prev_clock_rate * d1 * d2); + if (divisor < 1) + divisor = 1; + else if (divisor > BRDV_BAUD_MAX) + divisor = BRDV_BAUD_MAX; + val = (val & ~BRDV_BAUD_MASK) | divisor; + } + + if (parent_clock_idx != PARENT_CLOCK_XTAL) { + /* Do not use XTAL, select TBG clock and TBG d1 * d2 divisors */ + val |= CLK_NO_XTAL; + val &= ~(CLK_TBG_DIV1_MASK << CLK_TBG_DIV1_SHIFT); + val |= d1 << CLK_TBG_DIV1_SHIFT; + val &= ~(CLK_TBG_DIV2_MASK << CLK_TBG_DIV2_SHIFT); + val |= d2 << CLK_TBG_DIV2_SHIFT; + val &= ~(CLK_TBG_SEL_MASK << CLK_TBG_SEL_SHIFT); + val |= parent_clock_idx << CLK_TBG_SEL_SHIFT; + } else { + /* Use XTAL, TBG bits are then ignored */ + val &= ~CLK_NO_XTAL; + } + + writel(val, uart_clock_base->reg1); + + /* Recalculate UART2 divisor so UART2 baudrate does not change */ + if (prev_clock_rate) { + val = readl(uart_clock_base->reg2); + divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) * + parent_clock_rate * prev_d1d2, + prev_clock_rate * d1 * d2); + if (divisor < 1) + divisor = 1; + else if (divisor > BRDV_BAUD_MAX) + divisor = BRDV_BAUD_MAX; + val = (val & ~BRDV_BAUD_MASK) | divisor; + writel(val, uart_clock_base->reg2); + } + + uart_clock_base->configured = true; + + spin_unlock_irqrestore(&mvebu_uart_lock, flags); + + return 0; +} + +static int mvebu_uart_clock_enable(struct clk_hw *hw) +{ + struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); + struct mvebu_uart_clock_base *uart_clock_base = + to_uart_clock_base(uart_clock); + unsigned long flags; + u32 val; + + spin_lock_irqsave(&mvebu_uart_lock, flags); + + val = readl(uart_clock_base->reg1); + + if (uart_clock->clock_idx == 0) + val &= ~UART1_CLK_DIS; + else + val &= ~UART2_CLK_DIS; + + writel(val, uart_clock_base->reg1); + + spin_unlock_irqrestore(&mvebu_uart_lock, flags); + + return 0; +} + +static void mvebu_uart_clock_disable(struct clk_hw *hw) +{ + struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); + struct mvebu_uart_clock_base *uart_clock_base = + to_uart_clock_base(uart_clock); + unsigned long flags; + u32 val; + + spin_lock_irqsave(&mvebu_uart_lock, flags); + + val = readl(uart_clock_base->reg1); + + if (uart_clock->clock_idx == 0) + val |= UART1_CLK_DIS; + else + val |= UART2_CLK_DIS; + + writel(val, uart_clock_base->reg1); + + spin_unlock_irqrestore(&mvebu_uart_lock, flags); +} + +static int mvebu_uart_clock_is_enabled(struct clk_hw *hw) +{ + struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); + struct mvebu_uart_clock_base *uart_clock_base = + to_uart_clock_base(uart_clock); + u32 val; + + val = readl(uart_clock_base->reg1); + + if (uart_clock->clock_idx == 0) + return !(val & UART1_CLK_DIS); + else + return !(val & UART2_CLK_DIS); +} + +static int mvebu_uart_clock_save_context(struct clk_hw *hw) +{ + struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); + struct mvebu_uart_clock_base *uart_clock_base = + to_uart_clock_base(uart_clock); + unsigned long flags; + + spin_lock_irqsave(&mvebu_uart_lock, flags); + uart_clock->pm_context_reg1 = readl(uart_clock_base->reg1); + uart_clock->pm_context_reg2 = readl(uart_clock_base->reg2); + spin_unlock_irqrestore(&mvebu_uart_lock, flags); + + return 0; +} + +static void mvebu_uart_clock_restore_context(struct clk_hw *hw) +{ + struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); + struct mvebu_uart_clock_base *uart_clock_base = + to_uart_clock_base(uart_clock); + unsigned long flags; + + spin_lock_irqsave(&mvebu_uart_lock, flags); + writel(uart_clock->pm_context_reg1, uart_clock_base->reg1); + writel(uart_clock->pm_context_reg2, uart_clock_base->reg2); + spin_unlock_irqrestore(&mvebu_uart_lock, flags); +} + +static unsigned long mvebu_uart_clock_recalc_rate(struct clk_hw *hw, + unsigned long parent_rate) +{ + struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); + struct mvebu_uart_clock_base *uart_clock_base = + to_uart_clock_base(uart_clock); + + return parent_rate / uart_clock_base->div; +} + +static long mvebu_uart_clock_round_rate(struct clk_hw *hw, unsigned long rate, + unsigned long *parent_rate) +{ + struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); + struct mvebu_uart_clock_base *uart_clock_base = + to_uart_clock_base(uart_clock); + + return *parent_rate / uart_clock_base->div; +} + +static int mvebu_uart_clock_set_rate(struct clk_hw *hw, unsigned long rate, + unsigned long parent_rate) +{ + /* + * We must report success but we can do so unconditionally because + * mvebu_uart_clock_round_rate returns values that ensure this call is a + * nop. + */ + + return 0; +} + +static const struct clk_ops mvebu_uart_clock_ops = { + .prepare = mvebu_uart_clock_prepare, + .enable = mvebu_uart_clock_enable, + .disable = mvebu_uart_clock_disable, + .is_enabled = mvebu_uart_clock_is_enabled, + .save_context = mvebu_uart_clock_save_context, + .restore_context = mvebu_uart_clock_restore_context, + .round_rate = mvebu_uart_clock_round_rate, + .set_rate = mvebu_uart_clock_set_rate, + .recalc_rate = mvebu_uart_clock_recalc_rate, +}; + +static int mvebu_uart_clock_register(struct device *dev, + struct mvebu_uart_clock *uart_clock, + const char *name, + const char *parent_name) +{ + struct clk_init_data init = { }; + + uart_clock->clk_hw.init = &init; + + init.name = name; + init.ops = &mvebu_uart_clock_ops; + init.flags = 0; + init.num_parents = 1; + init.parent_names = &parent_name; + + return devm_clk_hw_register(dev, &uart_clock->clk_hw); +} + +static int mvebu_uart_clock_probe(struct platform_device *pdev) +{ + static const char *const uart_clk_names[] = { "uart_1", "uart_2" }; + static const char *const parent_clk_names[] = { "TBG-A-P", "TBG-B-P", + "TBG-A-S", "TBG-B-S", + "xtal" }; + struct clk *parent_clks[ARRAY_SIZE(parent_clk_names)]; + struct mvebu_uart_clock_base *uart_clock_base; + struct clk_hw_onecell_data *hw_clk_data; + struct device *dev = &pdev->dev; + int i, parent_clk_idx, ret; + unsigned long div, rate; + struct resource *res; + unsigned int d1, d2; + + BUILD_BUG_ON(ARRAY_SIZE(uart_clk_names) != + ARRAY_SIZE(uart_clock_base->clocks)); + BUILD_BUG_ON(ARRAY_SIZE(parent_clk_names) != + ARRAY_SIZE(uart_clock_base->parent_rates)); + + uart_clock_base = devm_kzalloc(dev, + sizeof(*uart_clock_base), + GFP_KERNEL); + if (!uart_clock_base) + return -ENOMEM; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!res) { + dev_err(dev, "Couldn't get first register\n"); + return -ENOENT; + } + + /* + * UART Clock Control register (reg1 / UART_BRDV) is in the address + * space of UART1 (standard UART variant), controls parent clock and + * dividers for both UART1 and UART2 and is supplied via DT as the first + * resource. Therefore use ioremap() rather than ioremap_resource() to + * avoid conflicts with UART1 driver. Access to UART_BRDV is protected + * by a lock shared between clock and UART driver. + */ + uart_clock_base->reg1 = devm_ioremap(dev, res->start, + resource_size(res)); + if (IS_ERR(uart_clock_base->reg1)) + return PTR_ERR(uart_clock_base->reg1); + + res = platform_get_resource(pdev, IORESOURCE_MEM, 1); + if (!res) { + dev_err(dev, "Couldn't get second register\n"); + return -ENOENT; + } + + /* + * UART 2 Baud Rate Divisor register (reg2 / UART_BRDV) is in address + * space of UART2 (extended UART variant), controls only one UART2 + * specific divider and is supplied via DT as second resource. + * Therefore use ioremap() rather than ioremap_resource() to avoid + * conflicts with UART2 driver. Access to UART_BRDV is protected by a + * by lock shared between clock and UART driver. + */ + uart_clock_base->reg2 = devm_ioremap(dev, res->start, + resource_size(res)); + if (IS_ERR(uart_clock_base->reg2)) + return PTR_ERR(uart_clock_base->reg2); + + hw_clk_data = devm_kzalloc(dev, + struct_size(hw_clk_data, hws, + ARRAY_SIZE(uart_clk_names)), + GFP_KERNEL); + if (!hw_clk_data) + return -ENOMEM; + + hw_clk_data->num = ARRAY_SIZE(uart_clk_names); + for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) { + hw_clk_data->hws[i] = &uart_clock_base->clocks[i].clk_hw; + uart_clock_base->clocks[i].clock_idx = i; + } + + parent_clk_idx = -1; + + for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) { + parent_clks[i] = devm_clk_get(dev, parent_clk_names[i]); + if (IS_ERR(parent_clks[i])) { + if (PTR_ERR(parent_clks[i]) == -EPROBE_DEFER) + return -EPROBE_DEFER; + dev_warn(dev, "Couldn't get the parent clock %s: %ld\n", + parent_clk_names[i], PTR_ERR(parent_clks[i])); + continue; + } + + ret = clk_prepare_enable(parent_clks[i]); + if (ret) { + dev_warn(dev, "Couldn't enable parent clock %s: %d\n", + parent_clk_names[i], ret); + continue; + } + rate = clk_get_rate(parent_clks[i]); + uart_clock_base->parent_rates[i] = rate; + + if (i != PARENT_CLOCK_XTAL) { + /* + * Calculate the smallest TBG d1 and d2 divisors that + * still can provide 9600 baudrate. + */ + d1 = DIV_ROUND_UP(rate, 9600 * OSAMP_DEFAULT_DIVISOR * + BRDV_BAUD_MAX); + if (d1 < 1) + d1 = 1; + else if (d1 > CLK_TBG_DIV1_MAX) + d1 = CLK_TBG_DIV1_MAX; + + d2 = DIV_ROUND_UP(rate, 9600 * OSAMP_DEFAULT_DIVISOR * + BRDV_BAUD_MAX * d1); + if (d2 < 1) + d2 = 1; + else if (d2 > CLK_TBG_DIV2_MAX) + d2 = CLK_TBG_DIV2_MAX; + } else { + /* + * When UART clock uses XTAL clock as a source then it + * is not possible to use d1 and d2 divisors. + */ + d1 = d2 = 1; + } + + /* Skip clock source which cannot provide 9600 baudrate */ + if (rate > 9600 * OSAMP_DEFAULT_DIVISOR * BRDV_BAUD_MAX * d1 * + d2) + continue; + + /* + * Choose TBG clock source with the smallest divisors. Use XTAL + * clock source only in case TBG is not available as XTAL cannot + * be used for baudrates higher than 230400. + */ + if (parent_clk_idx == -1 || + (i != PARENT_CLOCK_XTAL && div > d1 * d2)) { + parent_clk_idx = i; + div = d1 * d2; + } + } + + for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) { + if (i == parent_clk_idx || IS_ERR(parent_clks[i])) + continue; + clk_disable_unprepare(parent_clks[i]); + devm_clk_put(dev, parent_clks[i]); + } + + if (parent_clk_idx == -1) { + dev_err(dev, "No usable parent clock\n"); + return -ENOENT; + } + + uart_clock_base->parent_idx = parent_clk_idx; + uart_clock_base->div = div; + + dev_notice(dev, "Using parent clock %s as base UART clock\n", + __clk_get_name(parent_clks[parent_clk_idx])); + + for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) { + ret = mvebu_uart_clock_register(dev, + &uart_clock_base->clocks[i], + uart_clk_names[i], + __clk_get_name(parent_clks[parent_clk_idx])); + if (ret) { + dev_err(dev, "Can't register UART clock %d: %d\n", + i, ret); + return ret; + } + } + + return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, + hw_clk_data); +} + +static const struct of_device_id mvebu_uart_clock_of_match[] = { + { .compatible = "marvell,armada-3700-uart-clock", }, + { } +}; + +static struct platform_driver mvebu_uart_clock_platform_driver = { + .probe = mvebu_uart_clock_probe, + .driver = { + .name = "mvebu-uart-clock", + .of_match_table = mvebu_uart_clock_of_match, + }, +}; + static int __init mvebu_uart_init(void) { int ret; @@ -980,10 +1488,19 @@ static int __init mvebu_uart_init(void) if (ret) return ret; + ret = platform_driver_register(&mvebu_uart_clock_platform_driver); + if (ret) { + uart_unregister_driver(&mvebu_uart_driver); + return ret; + } + ret = platform_driver_register(&mvebu_uart_platform_driver); - if (ret) + if (ret) { + platform_driver_unregister(&mvebu_uart_clock_platform_driver); uart_unregister_driver(&mvebu_uart_driver); + return ret; + } - return ret; + return 0; } arch_initcall(mvebu_uart_init); -- 2.34.1