Re: [PATCH] scsi: lpfc: use memcpy_toio instead of writeq

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Fri, Feb 23, 2018 at 6:51 PM, Andy Shevchenko
<andy.shevchenko@xxxxxxxxx> wrote:
> On Fri, Feb 23, 2018 at 6:41 PM, David Laight <David.Laight@xxxxxxxxxx> wrote:
>> From: Arnd Bergmann
>>> Sent: 23 February 2018 15:37
>>>
>>> 32-bit architectures generally cannot use writeq(), so we now get a build
>>> failure for the lpfc driver:
>>>
>>> drivers/scsi/lpfc/lpfc_sli.c: In function 'lpfc_sli4_wq_put':
>>> drivers/scsi/lpfc/lpfc_sli.c:145:4: error: implicit declaration of function 'writeq'; did you mean
>>> 'writeb'? [-Werror=implicit-function-declaration]
>>>
>>> Another problem here is that writing out actual data (unlike accessing
>>> mmio registers) means we must write the data with the same endianess
>>> that we have read from memory, but writeq() will perform byte swaps
>>> and add barriers inbetween accesses as we do for registers.
>>>
>>> Using memcpy_toio() should do the right thing here, using register
>>> sized stores with correct endianess conversion and barriers (i.e. none),
>>> but on some architectures might fall back to byte-size access.
>> ...
>>
>> Have you looked at the performance impact of this on x86?
>> Last time I looked memcpy_toio() aliased directly to memcpy().
>> memcpy() is run-time patched between several different algorithms.
>> On recent Intel cpus memcpy() is implemented as 'rep movsb' relying
>> on the hardware to DTRT.
>> For uncached accesses (typical for io) the 'RT' has to be byte transfers.
>> So instead of the 8 byte transfers (on 64 bit) you get single bytes.
>> This won't be what is intended!
>> memcpy_toio() should probably use 'rep movsd' for the bulk of the transfer.
>
> Maybe I'm wrong but it uses movsq on 64-bit and movsl on 32-bit.
>
> The side-effect I referred previously is about tails, i.e. unaligned
> bytes are transferred in portions
> like
>   7 on 64-bit will be  4 + 2 + 1,
>   5 = 4 + 1
> etc
>
> Similar way on 32-bit.

Same for leading bytes as well.

arch/x86/lib/memcpy_64.S

So, I *hope* that in the code in question there is no unaligned access is used.

-- 
With Best Regards,
Andy Shevchenko



[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
[Index of Archives]     [SCSI Target Devel]     [Linux SCSI Target Infrastructure]     [Kernel Newbies]     [IDE]     [Security]     [Git]     [Netfilter]     [Bugtraq]     [Yosemite News]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Linux ATA RAID]     [Linux IIO]     [Samba]     [Device Mapper]

  Powered by Linux