On Tue, Jun 09, 2020 at 12:42:21PM +0200, Marek Szyprowski wrote: > Add a simple custom voltage regulator coupler for Exynos5800 SoCs, which > require coupling between "vdd_arm" and "vdd_int" regulators. This coupler > ensures that the voltage values don't go below the bootloader-selected > operation point during the boot process until a the clients sets their > constraints. It is achieved by assuming minimal voltage value equal to > the current value if no constraints are set. This also ensures proper > voltage balancing if any of the client driver is missing. > > The balancing code comes from regulator core.c with the You cut the sentence. > > Signed-off-by: Marek Szyprowski <m.szyprowski@xxxxxxxxxxx> > --- > This patch is yet another attempt to fix the regulator coupling on > Exynos5800/5422 SoCs. Here are links to the previous attempts and > discussions: > > https://lore.kernel.org/linux-samsung-soc/20191008101709.qVNy8eijBi0LynOteWFMnTg4GUwKG599n6OyYoX1Abs@z/ > https://lore.kernel.org/lkml/20191017102758.8104-1-m.szyprowski@xxxxxxxxxxx/ > https://lore.kernel.org/linux-pm/cover.1589528491.git.viresh.kumar@xxxxxxxxxx/ > https://lore.kernel.org/linux-pm/20200528131130.17984-1-m.szyprowski@xxxxxxxxxxx/ > https://lore.kernel.org/linux-samsung-soc/57cf3a15-5d9b-7636-4c69-60742e8cfae6@xxxxxxxxxxx/ > https://lore.kernel.org/lkml/20200605063724.9030-1-m.szyprowski@xxxxxxxxxxx/ > > The problem is with "vdd_int" regulator coupled with "vdd_arm" on Odroid > XU3/XU4 boards family. "vdd_arm" is handled by CPUfreq. "vdd_int" is > handled by devfreq. CPUfreq initialized quite early during boot and it > starts changing OPPs and "vdd_arm" value. Sometimes CPU activity during > boot goes down and some low-frequency OPPs are selected, what in turn > causes lowering "vdd_arm". This happens before devfreq applies its > requirements on "vdd_int". Regulator balancing code reduces "vdd_arm" > voltage value, what in turn causes lowering "vdd_int" value to the lowest > possible value. This is much below the operation point of the wcore bus, > which still runs at the highest frequency. > > The issue was hard to notice because in the most cases the board managed > to boot properly, even when the regulator was set to lowest value allowed > by the regulator constraints. However, it caused some random issues, > which can be observed as "Unhandled prefetch abort" or low USB stability. > > Handling this case in the generic code has been rejected, so the only way > to ensure the desired behavior on Exynos5800-based SoCs is to make a > custom regulator coupler driver. I've tried hard to extract some common > code to simplify the exynos-regulator-coupler driver as much as possible, > but the difference between it and the generic code is so deep that this > approach failed, so indead I simply copied and modified the balancing > code. > > Best regards > Marek Szyprowski > --- > arch/arm/mach-exynos/Kconfig | 1 + > drivers/soc/samsung/Kconfig | 3 + > drivers/soc/samsung/Makefile | 1 + > .../soc/samsung/exynos-regulator-coupler.c | 221 ++++++++++++++++++ > 4 files changed, 226 insertions(+) > create mode 100644 drivers/soc/samsung/exynos-regulator-coupler.c > > diff --git a/arch/arm/mach-exynos/Kconfig b/arch/arm/mach-exynos/Kconfig > index 76838255b5fa..f185cd3d4c62 100644 > --- a/arch/arm/mach-exynos/Kconfig > +++ b/arch/arm/mach-exynos/Kconfig > @@ -118,6 +118,7 @@ config SOC_EXYNOS5800 > bool "Samsung EXYNOS5800" > default y > depends on SOC_EXYNOS5420 > + select EXYNOS_REGULATOR_COUPLER > > config EXYNOS_MCPM > bool > diff --git a/drivers/soc/samsung/Kconfig b/drivers/soc/samsung/Kconfig > index 19c4d3f1437b..5d7819b52eed 100644 > --- a/drivers/soc/samsung/Kconfig > +++ b/drivers/soc/samsung/Kconfig > @@ -43,4 +43,7 @@ config EXYNOS_PM_DOMAINS > bool "Exynos PM domains" if COMPILE_TEST > depends on PM_GENERIC_DOMAINS || COMPILE_TEST > > +config EXYNOS_REGULATOR_COUPLER > + bool "Exynos SoC Regulator Coupler" if COMPILE_TEST > + depends on ARCH_EXYNOS || COMPILE_TEST > endif > diff --git a/drivers/soc/samsung/Makefile b/drivers/soc/samsung/Makefile > index 31db65cb7aa3..93285faec416 100644 > --- a/drivers/soc/samsung/Makefile > +++ b/drivers/soc/samsung/Makefile > @@ -10,3 +10,4 @@ obj-$(CONFIG_EXYNOS_PMU_ARM_DRIVERS) += exynos3250-pmu.o exynos4-pmu.o \ > exynos5250-pmu.o exynos5420-pmu.o > obj-$(CONFIG_EXYNOS_PMU_ARM64_DRIVERS) += exynos-pm.o exynos5433-pmu.o > obj-$(CONFIG_EXYNOS_PM_DOMAINS) += pm_domains.o > +obj-$(CONFIG_EXYNOS_REGULATOR_COUPLER) += exynos-regulator-coupler.o > diff --git a/drivers/soc/samsung/exynos-regulator-coupler.c b/drivers/soc/samsung/exynos-regulator-coupler.c > new file mode 100644 > index 000000000000..3cafc1738eb6 > --- /dev/null > +++ b/drivers/soc/samsung/exynos-regulator-coupler.c > @@ -0,0 +1,221 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * Copyright (c) 2020 Samsung Electronics Co., Ltd. > + * http://www.samsung.com/ > + * Author: Marek Szyprowski <m.szyprowski@xxxxxxxxxxx> > + * > + * Simplified generic volatage coupler from regulator core.c > + * The main difference is that it keeps current regulator voltage > + * if consumers didn't apply their contraints yet. > + */ > + > +#include <linux/init.h> > +#include <linux/kernel.h> > +#include <linux/of.h> > +#include <linux/regulator/coupler.h> > +#include <linux/regulator/driver.h> > +#include <linux/regulator/machine.h> > + > +static int regulator_get_optimal_voltage(struct regulator_dev *rdev, > + int *current_uV, > + int *min_uV, int *max_uV, > + suspend_state_t state) > +{ > + struct coupling_desc *c_desc = &rdev->coupling_desc; > + struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; > + struct regulation_constraints *constraints = rdev->constraints; > + int desired_min_uV = 0, desired_max_uV = INT_MAX; > + int max_current_uV = 0, min_current_uV = INT_MAX; > + int highest_min_uV = 0, target_uV, possible_uV; > + int i, ret, max_spread, n_coupled = c_desc->n_coupled; > + bool done; > + > + *current_uV = -1; > + > + /* Find highest min desired voltage */ > + for (i = 0; i < n_coupled; i++) { > + int tmp_min = 0; > + int tmp_max = INT_MAX; > + > + lockdep_assert_held_once(&c_rdevs[i]->mutex.base); > + > + ret = regulator_check_consumers(c_rdevs[i], > + &tmp_min, > + &tmp_max, state); > + if (ret < 0) > + return ret; > + > + if (tmp_min == 0) { > + ret = regulator_get_voltage_rdev(c_rdevs[i]); > + if (ret < 0) > + return ret; > + tmp_min = ret; > + } > + > + /* apply constraints */ > + ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); > + if (ret < 0) > + return ret; > + > + highest_min_uV = max(highest_min_uV, tmp_min); > + > + if (i == 0) { > + desired_min_uV = tmp_min; > + desired_max_uV = tmp_max; > + } > + } > + > + max_spread = constraints->max_spread[0]; > + > + /* > + * Let target_uV be equal to the desired one if possible. > + * If not, set it to minimum voltage, allowed by other coupled > + * regulators. > + */ > + target_uV = max(desired_min_uV, highest_min_uV - max_spread); > + > + /* > + * Find min and max voltages, which currently aren't violating > + * max_spread. > + */ > + for (i = 1; i < n_coupled; i++) { > + int tmp_act; > + > + tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); > + if (tmp_act < 0) > + return tmp_act; > + > + min_current_uV = min(tmp_act, min_current_uV); > + max_current_uV = max(tmp_act, max_current_uV); > + } > + > + /* > + * Correct target voltage, so as it currently isn't > + * violating max_spread > + */ > + possible_uV = max(target_uV, max_current_uV - max_spread); > + possible_uV = min(possible_uV, min_current_uV + max_spread); > + > + if (possible_uV > desired_max_uV) > + return -EINVAL; > + > + done = (possible_uV == target_uV); > + desired_min_uV = possible_uV; > + > + /* Set current_uV if wasn't done earlier in the code and if necessary */ > + if (*current_uV == -1) { > + ret = regulator_get_voltage_rdev(rdev); > + if (ret < 0) > + return ret; > + *current_uV = ret; > + } > + > + *min_uV = desired_min_uV; > + *max_uV = desired_max_uV; > + > + return done; > +} > + > +static int exynos_coupler_balance_voltage(struct regulator_coupler *coupler, > + struct regulator_dev *rdev, > + suspend_state_t state) > +{ > + struct regulator_dev **c_rdevs; > + struct regulator_dev *best_rdev; > + struct coupling_desc *c_desc = &rdev->coupling_desc; > + int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; > + unsigned int delta, best_delta; > + unsigned long c_rdev_done = 0; > + bool best_c_rdev_done; > + > + c_rdevs = c_desc->coupled_rdevs; > + n_coupled = c_desc->n_coupled; > + > + /* > + * Find the best possible voltage change on each loop. Leave the loop > + * if there isn't any possible change. > + */ > + do { > + best_c_rdev_done = false; > + best_delta = 0; > + best_min_uV = 0; > + best_max_uV = 0; > + best_c_rdev = 0; > + best_rdev = NULL; > + > + /* > + * Find highest difference between optimal voltage > + * and current voltage. > + */ > + for (i = 0; i < n_coupled; i++) { > + /* > + * optimal_uV is the best voltage that can be set for > + * i-th regulator at the moment without violating > + * max_spread constraint in order to balance > + * the coupled voltages. > + */ > + int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; > + > + if (test_bit(i, &c_rdev_done)) Add a sanity check at beginning that you have enough of bits for this... or use bitmap. Best regards, Krzysztof