Hi Antti, On Friday 11 Nov 2016 09:16:04 Antti Palosaari wrote: > Hello > > On 11/09/2016 05:44 PM, Ramesh Shanmugasundaram wrote: > > +static int max2175_set_lo_freq(struct max2175 *ctx, u64 lo_freq) > > +{ > > + u64 scaled_lo_freq, scaled_npf, scaled_integer, scaled_fraction; > > + u32 frac_desired, int_desired, lo_mult = 1; > > + const u32 scale_factor = 1000000U; > > + u8 loband_bits = 0, vcodiv_bits = 0; > > + enum max2175_band band; > > + int ret; > > + > > + /* Scale to larger number for precision */ > > + scaled_lo_freq = lo_freq * scale_factor * 100; > > + band = max2175_read_bits(ctx, 5, 1, 0); > > + > > + mxm_dbg(ctx, "set_lo_freq: scaled lo_freq %llu lo_freq %llu band %d\n", > > + scaled_lo_freq, lo_freq, band); > > + > > + switch (band) { > > + case MAX2175_BAND_AM: > > + if (max2175_read_bit(ctx, 5, 7) == 0) > > + lo_mult = 16; > > else is lo_mult = 1. No idea if it is correct, but sounds very small > output divider for low freq like am band. And on the other-hand local > oscillator output divider, which I expect this to be, is usually 2 or more. > > > + break; > > + case MAX2175_BAND_FM: > > + if (lo_freq <= 74700000) { > > + lo_mult = 16; > > No meaning as you set it later 8. > > > + } else if (lo_freq > 74700000 && lo_freq <= 110000000) { > > + loband_bits = 1; > > + } else { > > + loband_bits = 1; > > + vcodiv_bits = 3; > > + } > > + lo_mult = 8; > > + break; > > + case MAX2175_BAND_VHF: > > + if (lo_freq <= 210000000) { > > + loband_bits = 2; > > + vcodiv_bits = 2; > > + } else { > > + loband_bits = 2; > > + vcodiv_bits = 1; > > + } > > + lo_mult = 4; > > + break; > > + default: > > + loband_bits = 3; > > + vcodiv_bits = 2; > > + lo_mult = 2; > > + break; > > + } > > + > > + if (band == MAX2175_BAND_L) > > + scaled_npf = div_u64(div_u64(scaled_lo_freq, ctx->xtal_freq), > > + lo_mult); > > + else > > + scaled_npf = div_u64(scaled_lo_freq, ctx->xtal_freq) * lo_mult; > > + > > + scaled_npf = div_u64(scaled_npf, 100); > > + scaled_integer = div_u64(scaled_npf, scale_factor) * scale_factor; > > + int_desired = div_u64(scaled_npf, scale_factor); > > + scaled_fraction = scaled_npf - scaled_integer; > > + frac_desired = div_u64(scaled_fraction << 20, scale_factor); > > + > > + /* Check CSM is not busy */ > > + ret = max2175_poll_csm_ready(ctx); > > + if (ret) > > + return ret; > > + > > + mxm_dbg(ctx, "loband %u vcodiv %u lo_mult %u scaled_npf %llu\n", > > + loband_bits, vcodiv_bits, lo_mult, scaled_npf); > > + mxm_dbg(ctx, "scaled int %llu frac %llu desired int %u frac %u\n", > > + scaled_integer, scaled_fraction, int_desired, frac_desired); > > + > > + /* Write the calculated values to the appropriate registers */ > > + max2175_write(ctx, 1, int_desired); > > + max2175_write_bits(ctx, 2, 3, 0, (frac_desired >> 16) & 0xf); > > + max2175_write(ctx, 3, frac_desired >> 8); > > + max2175_write(ctx, 4, frac_desired); > > + max2175_write_bits(ctx, 5, 3, 2, loband_bits); > > + max2175_write_bits(ctx, 6, 7, 6, vcodiv_bits); > > + return ret; > > +} > > That synthesizer config is hard to understand. It seems to be > fractional-N, with configurable N, K and output divider - like a school > book example. > > +----------------------------+ > v | > Fref +----+ +-------+ +------+ > ------> | PD | --> | VCO | ------> | /N.F | > +----+ +-------+ +------+ > | > | > v > +-------+ Fout > | /Rout | ------> > +-------+ > > I made following look-up table in order to understand it: > > band lo freq band vcodiv div_out > AM < 50000000 0 0 16 // reg 5 bit 7 ? > FM < 74700000 0 0 16 > FM < 110000000 1 0 8 > FM < 160000000 1 3 8 > VHF < 210000000 2 2 4 > VHF < 600000000 2 1 4 > L <2000000000 3 2 2 > > "vcodiv" looks unrelated to synth calculation, dunno what it is. > > One which makes calculation very complex looking is that it is based of > floating point calculus. On integer mathematics you should replace > fractional part with fractional modulus (usually letter "K" is used for > fractional modulus on PLL calc). > > So that ends up something like: > 1) select suitable lo output divider from desired output frequency > 2) calculate vco frequency > 3) convert vco frequency to N and K > * N = Fvco/Fref > * K = Fvco%Fref > 4) convert K to control word (looks like << 20) > 5) program values > > Result should be calculus without scaling. Thanks for reviewing this part. I'd like to add that we already have two PLL helpers in the media subsystem, in drivers/media/i2c/aptina-pll.c and drivers/media/i2c/smiapp-pll.c. As the PLL used here seems to be a classic one, it would make sense to also extract the code in a helper function that could be shared between drivers. -- Regards, Laurent Pinchart