Re: GPF in run_workqueue()/list_del_init(cwq->worklist.next) on resume

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On 11/11, Tejun Heo wrote:
>
> One thing that I can think of which might cause this early release is
> self-requeueing works which assume that only one instance of the
> function will be executed at any given time.  While preparing to bring
> down a cpu, worker threads are unbound from the cpu.  After cpu is
> brought down, the workqueue for that cpu is flushed.  This means that
> any work which was running or on queue at the time of cpu down will
> run on a different cpu.  So, let's assume there's a work function
> which looks like the following,
>
> void my_work_fn(struct work_struct *work)
> {
> 	struct my_struct *me = container_of(work, something...);
>
> 	DO SOMETHING;
>
> 	if (--me->todo)
> 		schedule_work(work);
> 	else
> 		free(me);
> }
>
> Which will work perfectly as long as all cpus stay alive as the work
> will be pinned on a single cpu and cwq guarantees that a single work
> is never executed in parallel.  However, if a cpu is brought down
> while my_work_fn() was doing SOMETHING and me->todo was above 1,
> schedule_work() will schedule itself to a different cpu which will
> happily execute the work in parallel.
>
> As worker threads become unbound, they may bounce among different cpus
> while executing and create more than two instances

Well, "more than two instances" is not possible in this particular
case.

But in general I agree. If a self-requeueing work assumes it stays on
the same CPU or it assumes it can never race with itself, it should hook
CPU_DOWN_PREPARE and cancel the work. Like slab.c does with reap_work.

This is even documented, the comment above queue_work() says:

	* We queue the work to the CPU on which it was submitted, but if the CPU dies
	* it can be processed by another CPU.

We can improve things, see http://marc.info/?l=linux-kernel&m=125562105103769

But then we should also change workqueue_cpu_callback(CPU_POST_DEAD).
Instead of flushing, we should carefully move the pending works to
another CPU, otherwise the self-requeueing work can block cpu_down().

> Another related issue is the behavior flush_work() when a work ends up
> scheduled on a different cpu.  flush_work() will only look at a single
> cpu workqueue on each flush attempt and if the work is not on the cpu
> or there but also running on other cpus, it won't do nothing about it.
> So, it's not too difficult to write code where the caller incorrectly
> assumes the work is done after flush_work() is finished while the work
> actually ended up being scheduled on a different cpu.

Yes, flush_work() is not even supposed to work "correctly" in this case.
Please note the changelog for db700897224b5ebdf852f2d38920ce428940d059
In particular:

	More precisely, it "flushes" the result of of the last
	queue_work() which is visible to the caller.

but we can add flush_work_sync().

But flush_work() do not have too much callers. Instead people often
use flush_workqueue() which just can't help if the work_struct is
self-requeueing or if it is delayed_work.

> One way to debug I can think of is to record work pointer -> function
> mapping in a percpu ring buffer

We can record work->func in work->entry.prev, which is either another
work or cwq. Please see the debugging patch I sent.

Not sure this patch will help, but I bet that the actual reason for
this bug is much simpler than the subtle races above ;)

Oleg.

_______________________________________________
linux-pm mailing list
linux-pm@xxxxxxxxxxxxxxxxxxxxxxxxxx
https://lists.linux-foundation.org/mailman/listinfo/linux-pm

[Index of Archives]     [Linux ACPI]     [Netdev]     [Ethernet Bridging]     [Linux Wireless]     [CPU Freq]     [Kernel Newbies]     [Fedora Kernel]     [Security]     [Linux for Hams]     [Netfilter]     [Bugtraq]     [Yosemite News]     [MIPS Linux]     [ARM Linux]     [Linux RAID]     [Linux Admin]     [Samba]

  Powered by Linux