Hi Piotr, Piotr Sroka <piotrs@xxxxxxxxxxx> wrote on Thu, 25 Jul 2019 16:00:12 +0100: Subject should be: mtd: rawnand: Last few nits in your driver which overall looks good (see below). Now I'm waiting for Rob's ack on the bindings. This driver should be a good candidate for 5.5. > Add new Cadence NAND driver to MTD subsystem > > Signed-off-by: Piotr Sroka <piotrs@xxxxxxxxxxx> > --- > Changes for v5: > - fix "ecc config strength" field size > - remove unused macros > - fix address of timing2 register > - add guard for accessing data_control_size register > - simplify the driver by use the same function > for accessing main area and oob area > - add comment to the driver describing main controller modes > - change compatible name from cdns,hpnfc to cdns,hp-nfc > Changes for v4: > - fix comments issues like typos, missing capitals, missing dots etc. > - remove unnecessary PHY options phy_dll_aging and phy_per_bit_deskew > - replace all register access functions to "relaxed" version > - remove all unnecessary variables initializations > - handle error inside cadence_nand_get_ecc_strength_idx function in case > correnction strength is not found > - add commit message > Changes for v3: > - remove definitions of unused registers > - remove configuring registers which are not expected to be configured in > asynchronous mode > - remove not needed function reading timing registers > - remove information about oob size and write size from cdns_nand_chip type > and use vales from mtd_info directly > - use nand_cleanup instead of nand_release if mtd device is not registered yet > - fix cadence_nand_chips_init function add garbage collection > if a chip init fails > - simplify PHY calculations > Changes for v2: > - create one universal wait function for all events instead of one > function per event. > - split one big function executing nand operations to separate > functions one per each type of operation. > - add erase atomic operation to nand operation parser > - remove unnecessary includes. > - remove unused register defines > - add support for multiple nand chips > - remove all code using legacy functions > - remove chip dependents parameters from dts bindings, they were > attached to the SoC specific compatible at the driver level > - simplify interrupt handling > - simplify timing calculations > - fix calculation of maximum supported cs signals > - simplify ecc size calculation > - remove header file and put whole code to one c file > --- > drivers/mtd/nand/raw/Kconfig | 7 + > drivers/mtd/nand/raw/Makefile | 1 + > drivers/mtd/nand/raw/cadence-nand-controller.c | 3021 ++++++++++++++++++++++++ > 3 files changed, 3029 insertions(+) > create mode 100644 drivers/mtd/nand/raw/cadence-nand-controller.c > > diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig > index e604625e2dfa..4d2ce3b5b2ae 100644 > --- a/drivers/mtd/nand/raw/Kconfig > +++ b/drivers/mtd/nand/raw/Kconfig > @@ -557,5 +557,12 @@ config MTD_NAND_MESON > help > Enables support for NAND controller on Amlogic's Meson SoCs. > This controller is found on Meson SoCs. Missing space? > +config MTD_NAND_CADENCE > + tristate "Support Cadence NAND (HPNFC) controller" > + depends on OF || COMPILE_TEST > + help > + Enable the driver for NAND flash on platforms using a Cadence NAND > + controller. > + > > endif # MTD_NAND > diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile > index 5a5a72f0793e..f4b099f276f7 100644 > --- a/drivers/mtd/nand/raw/Makefile > +++ b/drivers/mtd/nand/raw/Makefile > @@ -58,6 +58,7 @@ obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o > obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o > obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o > obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o > +obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o > > nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o > nand-objs += nand_onfi.o > diff --git a/drivers/mtd/nand/raw/cadence-nand-controller.c b/drivers/mtd/nand/raw/cadence-nand-controller.c > new file mode 100644 > index 000000000000..a7ff4e4585d3 > --- /dev/null > +++ b/drivers/mtd/nand/raw/cadence-nand-controller.c > @@ -0,0 +1,3021 @@ > +// SPDX-License-Identifier: GPL-2.0+ > +/* > + * Cadence NAND flash controller driver > + * > + * Copyright (C) 2019 Cadence I guess you deserve the Author: entry here :) > + */ > + > +#include <linux/bitfield.h> > +#include <linux/clk.h> > +#include <linux/dma-mapping.h> > +#include <linux/dmaengine.h> > +#include <linux/interrupt.h> > +#include <linux/module.h> > +#include <linux/mtd/mtd.h> > +#include <linux/mtd/rawnand.h> > +#include <linux/of_device.h> > +#include <linux/iopoll.h> > + > +/* > + * HPNFC can work in 3 modes: > + * - PIO - can work in master or slave DMA. > + * - CDMA - needs Master DMA for accessing command descriptors. > + * - Generic mode - can use only slave DMA. > + * CDMA and PIO modes can be used to execute only base commands. > + * Generic mode can be used to execute any command > + * on NAND flash memory. Driver uses CDMA mode for > + * block erasing, page reading, page programing. > + * Generic mode is used for executing rest of commands. > + */ > + > +#define MAX_OOB_SIZE_PER_SECTOR 32 > +#define MAX_ADDRESS_CYC 6 > +#define MAX_ERASE_ADDRESS_CYC 3 > +#define MAX_DATA_SIZE 0xFFFC > + > +/* Register definition. */ > +/* > + * Command register 0. > + * Writing data to this register will initiate a new transaction > + * of the NF controller. > + */ > +#define CMD_REG0 0x0000 > +/* Command type field mask. */ > +#define CMD_REG0_CT GENMASK(31, 30) > +/* Command type CDMA. */ > +#define CMD_REG0_CT_CDMA 0uL > +/* Command type generic. */ > +#define CMD_REG0_CT_GEN 3uL > +/* Command thread number field mask. */ > +#define CMD_REG0_TN GENMASK(27, 24) > + > +/* Command register 2. */ > +#define CMD_REG2 0x0008 > +/* Command register 3. */ > +#define CMD_REG3 0x000C > +/* Pointer register to select which thread status will be selected. */ > +#define CMD_STATUS_PTR 0x0010 > +/* Command status register for selected thread. */ > +#define CMD_STATUS 0x0014 > + > +/* Interrupt status register. */ > +#define INTR_STATUS 0x0110 > +#define INTR_STATUS_SDMA_ERR BIT(22) > +#define INTR_STATUS_SDMA_TRIGG BIT(21) > +#define INTR_STATUS_UNSUPP_CMD BIT(19) > +#define INTR_STATUS_DDMA_TERR BIT(18) > +#define INTR_STATUS_CDMA_TERR BIT(17) > +#define INTR_STATUS_CDMA_IDL BIT(16) > + > +/* Interrupt enable register. */ > +#define INTR_ENABLE 0x0114 > +#define INTR_ENABLE_INTR_EN BIT(31) > +#define INTR_ENABLE_SDMA_ERR_EN BIT(22) > +#define INTR_ENABLE_SDMA_TRIGG_EN BIT(21) > +#define INTR_ENABLE_UNSUPP_CMD_EN BIT(19) > +#define INTR_ENABLE_DDMA_TERR_EN BIT(18) > +#define INTR_ENABLE_CDMA_TERR_EN BIT(17) > +#define INTR_ENABLE_CDMA_IDLE_EN BIT(16) > + > +/* Controller internal state. */ > +#define CTRL_STATUS 0x0118 > +#define CTRL_STATUS_INIT_COMP BIT(9) > +#define CTRL_STATUS_CTRL_BUSY BIT(8) > + > +/* Command Engine threads state. */ > +#define TRD_STATUS 0x0120 > + > +/* Command Engine interrupt thread error status. */ > +#define TRD_ERR_INT_STATUS 0x0128 > +/* Command Engine interrupt thread error enable. */ > +#define TRD_ERR_INT_STATUS_EN 0x0130 > +/* Command Engine interrupt thread complete status. */ > +#define TRD_COMP_INT_STATUS 0x0138 > + > +/* > + * Transfer config 0 register. > + * Configures data transfer parameters. > + */ > +#define TRAN_CFG_0 0x0400 > +/* Offset value from the beginning of the page. */ > +#define TRAN_CFG_0_OFFSET GENMASK(31, 16) > +/* Numbers of sectors to transfer within singlNF device's page. */ > +#define TRAN_CFG_0_SEC_CNT GENMASK(7, 0) > + > +/* > + * Transfer config 1 register. > + * Configures data transfer parameters. > + */ > +#define TRAN_CFG_1 0x0404 > +/* Size of last data sector. */ > +#define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16) > +/* Size of not-last data sector. */ > +#define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0) > + > +/* ECC engine configuration register 0. */ > +#define ECC_CONFIG_0 0x0428 > +/* Correction strength. */ > +#define ECC_CONFIG_0_CORR_STR GENMASK(10, 8) > +/* Enable erased pages detection mechanism. */ > +#define ECC_CONFIG_0_ERASE_DET_EN BIT(1) > +/* Enable controller ECC check bits generation and correction. */ > +#define ECC_CONFIG_0_ECC_EN BIT(0) > + > +/* ECC engine configuration register 1. */ > +#define ECC_CONFIG_1 0x042C > + > +/* Multiplane settings register. */ > +#define MULTIPLANE_CFG 0x0434 > +/* Cache operation settings. */ > +#define CACHE_CFG 0x0438 > + > +/* DMA settings register. */ > +#define DMA_SETINGS 0x043C > +/* Enable SDMA error report on access unprepared slave DMA interface. */ > +#define DMA_SETINGS_SDMA_ERR_RSP BIT(17) > + > +/* Transferred data block size for the slave DMA module. */ > +#define SDMA_SIZE 0x0440 > + > +/* Thread number associated with transferred data block > + * for the slave DMA module. > + */ > +#define SDMA_TRD_NUM 0x0444 > +/* Thread number mask. */ > +#define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0) > + > +#define CONTROL_DATA_CTRL 0x0494 > +/* Thread number mask. */ > +#define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0) > + > +#define CTRL_VERSION 0x800 > + > +/* Available hardware features of the controller. */ > +#define CTRL_FEATURES 0x804 > +/* Support for NV-DDR2/3 work mode. */ > +#define CTRL_FEATURES_NVDDR_2_3 BIT(28) > +/* Support for NV-DDR work mode. */ > +#define CTRL_FEATURES_NVDDR BIT(27) > +/* Support for asynchronous work mode. */ > +#define CTRL_FEATURES_ASYNC BIT(26) > +/* Support for asynchronous work mode. */ > +#define CTRL_FEATURES_N_BANKS GENMASK(25, 24) > +/* Slave and Master DMA data width. */ > +#define CTRL_FEATURES_DMA_DWITH64 BIT(21) > +/* Availability of Control Data feature.*/ > +#define CTRL_FEATURES_CONTROL_DATA BIT(10) > + > +/* BCH Engine identification register 0 - correction strengths. */ > +#define BCH_CFG_0 0x838 > +#define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0) > +#define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8) > +#define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16) > +#define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24) > + > +/* BCH Engine identification register 1 - correction strengths. */ > +#define BCH_CFG_1 0x83C > +#define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0) > +#define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8) > +#define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16) > +#define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24) > + > +/* BCH Engine identification register 2 - sector sizes. */ > +#define BCH_CFG_2 0x840 > +#define BCH_CFG_2_SECT_0 GENMASK(15, 0) > +#define BCH_CFG_2_SECT_1 GENMASK(31, 16) > + > +/* BCH Engine identification register 3. */ > +#define BCH_CFG_3 0x844 > + > +/* Ready/Busy# line status. */ > +#define RBN_SETINGS 0x1004 > + > +/* Common settings. */ > +#define COMMON_SET 0x1008 > +/* 16 bit device connected to the NAND Flash interface. */ > +#define COMMON_SET_DEVICE_16BIT BIT(8) > + > +/* Skip_bytes registers. */ > +#define SKIP_BYTES_CONF 0x100C > +#define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16) > +#define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0) > + > +#define SKIP_BYTES_OFFSET 0x1010 > +#define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0) > + > +/* Timings configuration. */ > +#define ASYNC_TOGGLE_TIMINGS 0x101c > +#define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24) > +#define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16) > +#define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8) > +#define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0) > + > +#define TIMINGS0 0x1024 > +#define TIMINGS0_TADL GENMASK(31, 24) > +#define TIMINGS0_TCCS GENMASK(23, 16) > +#define TIMINGS0_TWHR GENMASK(15, 8) > +#define TIMINGS0_TRHW GENMASK(7, 0) > + > +#define TIMINGS1 0x1028 > +#define TIMINGS1_TRHZ GENMASK(31, 24) > +#define TIMINGS1_TWB GENMASK(23, 16) > +#define TIMINGS1_TVDLY GENMASK(7, 0) > + > +#define TIMINGS2 0x102c > +#define TIMINGS2_TFEAT GENMASK(25, 16) > +#define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8) > +#define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0) > + > +/* Configuration of the resynchronization of slave DLL of PHY. */ > +#define DLL_PHY_CTRL 0x1034 > +#define DLL_PHY_CTRL_DLL_RST_N BIT(24) > +#define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17) > +#define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16) > +#define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8) > +#define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0) > + > +/* Register controlling DQ related timing. */ > +#define PHY_DQ_TIMING 0x2000 > +/* Register controlling DSQ related timing. */ > +#define PHY_DQS_TIMING 0x2004 > +#define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0) > +#define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16) > +#define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20) > + > +/* Register controlling the gate and loopback control related timing. */ > +#define PHY_GATE_LPBK_CTRL 0x2008 > +#define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19) > + > +/* Register holds the control for the master DLL logic. */ > +#define PHY_DLL_MASTER_CTRL 0x200C > +#define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23) > + > +/* Register holds the control for the slave DLL logic. */ > +#define PHY_DLL_SLAVE_CTRL 0x2010 > + > +/* This register handles the global control settings for the PHY. */ > +#define PHY_CTRL 0x2080 > +#define PHY_CTRL_SDR_DQS BIT(14) > +#define PHY_CTRL_PHONY_DQS GENMASK(9, 4) > + > +/* > + * This register handles the global control settings > + * for the termination selects for reads. > + */ > +#define PHY_TSEL 0x2084 > + > +/* Generic command layout. */ > +#define GCMD_LAY_CS GENMASK_ULL(11, 8) > +/* > + * This bit informs the minicotroller if it has to wait for tWB > + * after sending the last CMD/ADDR/DATA in the sequence. > + */ > +#define GCMD_LAY_TWB BIT_ULL(6) > +/* Type of generic instruction. */ > +#define GCMD_LAY_INSTR GENMASK_ULL(5, 0) > + > +/* Generic CMD sequence type. */ > +#define GCMD_LAY_INSTR_CMD 0 > +/* Generic ADDR sequence type. */ > +#define GCMD_LAY_INSTR_ADDR 1 > +/* Generic data transfer sequence type. */ > +#define GCMD_LAY_INSTR_DATA 2 > + > +/* Input part of generic command type of input is command. */ > +#define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16) > + > +/* Generic command address sequence - address fields. */ > +#define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16) > +/* Generic command address sequence - address size. */ > +#define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11) > + > +/* Transfer direction field of generic command data sequence. */ > +#define GCMD_DIR BIT_ULL(11) > +/* Read transfer direction of generic command data sequence. */ > +#define GCMD_DIR_READ 0 > +/* Write transfer direction of generic command data sequence. */ > +#define GCMD_DIR_WRITE 1 > + > +/* ECC enabled flag of generic command data sequence - ECC enabled. */ > +#define GCMD_ECC_EN BIT_ULL(12) > +/* Generic command data sequence - sector size. */ > +#define GCMD_SECT_SIZE GENMASK_ULL(31, 16) > +/* Generic command data sequence - sector count. */ > +#define GCMD_SECT_CNT GENMASK_ULL(39, 32) > +/* Generic command data sequence - last sector size. */ > +#define GCMD_LAST_SIZE GENMASK_ULL(55, 40) > + > +/* CDMA descriptor fields. */ > +/* Erase command type of CDMA descriptor. */ > +#define CDMA_CT_ERASE 0x1000 > +/* Program page command type of CDMA descriptor. */ > +#define CDMA_CT_WR 0x2100 > +/* Read page command type of CDMA descriptor. */ > +#define CDMA_CT_RD 0x2200 > + > +/* Flash pointer memory shift. */ > +#define CDMA_CFPTR_MEM_SHIFT 24 > +/* Flash pointer memory mask. */ > +#define CDMA_CFPTR_MEM GENMASK(26, 24) > + > +/* > + * Command DMA descriptor flags. If set causes issue interrupt after > + * the completion of descriptor processing. > + */ > +#define CDMA_CF_INT BIT(8) > +/* > + * Command DMA descriptor flags - the next descriptor > + * address field is valid and descriptor processing should continue. > + */ > +#define CDMA_CF_CONT BIT(9) > +/* DMA master flag of command DMA descriptor. */ > +#define CDMA_CF_DMA_MASTER BIT(10) > + > +/* Operation complete status of command descriptor. */ > +#define CDMA_CS_COMP BIT(15) > +/* Operation complete status of command descriptor. */ > +/* Command descriptor status - operation fail. */ > +#define CDMA_CS_FAIL BIT(14) > +/* Command descriptor status - page erased. */ > +#define CDMA_CS_ERP BIT(11) > +/* Command descriptor status - timeout occurred. */ > +#define CDMA_CS_TOUT BIT(10) > +/* > + * Maximum amount of correction applied to one ECC sector. > + * It is part of command descriptor status. > + */ > +#define CDMA_CS_MAXERR GENMASK(9, 2) > +/* Command descriptor status - uncorrectable ECC error. */ > +#define CDMA_CS_UNCE BIT(1) > +/* Command descriptor status - descriptor error. */ > +#define CDMA_CS_ERR BIT(0) > + > +/* Status of operation - OK. */ > +#define STAT_OK 0 > +/* Status of operation - FAIL. */ > +#define STAT_FAIL 2 > +/* Status of operation - uncorrectable ECC error. */ > +#define STAT_ECC_UNCORR 3 > +/* Status of operation - page erased. */ > +#define STAT_ERASED 5 > +/* Status of operation - correctable ECC error. */ > +#define STAT_ECC_CORR 6 > +/* Status of operation - unsuspected state. */ > +#define STAT_UNKNOWN 7 > +/* Status of operation - operation is not completed yet. */ > +#define STAT_BUSY 0xFF > + > +#define BCH_MAX_NUM_CORR_CAPS 8 > +#define BCH_MAX_NUM_SECTOR_SIZES 2 > + > +struct cadence_nand_timings { > + u32 async_toggle_timings; > + u32 timings0; > + u32 timings1; > + u32 timings2; > + u32 dll_phy_ctrl; > + u32 phy_ctrl; > + u32 phy_dqs_timing; > + u32 phy_gate_lpbk_ctrl; > +}; > + > +/* Command DMA descriptor. */ > +struct cadence_nand_cdma_desc { > + /* Next descriptor address. */ > + u64 next_pointer; > + > + /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */ > + u32 flash_pointer; > + u32 rsvd0; > + > + /* Operation the controller needs to perform. */ > + u16 command_type; > + u16 rsvd1; > + /* Flags for operation of this command. */ > + u16 command_flags; > + u16 rsvd2; > + > + /* System/host memory address required for data DMA commands. */ > + u64 memory_pointer; > + > + /* Status of operation. */ > + u32 status; > + u32 rsvd3; > + > + /* Address pointer to sync buffer location. */ > + u64 sync_flag_pointer; > + > + /* Controls the buffer sync mechanism. */ > + u32 sync_arguments; > + u32 rsvd4; > + > + /* Control data pointer. */ > + u64 ctrl_data_ptr; > +}; > + > +/* Interrupt status. */ > +struct cadence_nand_irq_status { > + /* Thread operation complete status. */ > + u32 trd_status; > + /* Thread operation error. */ > + u32 trd_error; > + /* Controller status. */ > + u32 status; > +}; > + > +/* Cadence NAND flash controller capabilities get from driver data. */ > +struct cadence_nand_dt_devdata { > + /* Skew value of the output signals of the NAND Flash interface. */ > + u32 if_skew; > + /* It informs if slave DMA interface is connected to DMA engine. */ > + unsigned int has_dma:1; > +}; > + > +/* Cadence NAND flash controller capabilities read from registers. */ > +struct cdns_nand_caps { > + /* Maximum number of banks supported by hardware. */ > + u8 max_banks; > + /* Slave and Master DMA data width in bytes (4 or 8). */ > + u8 data_dma_width; > + /* Control Data feature supported. */ > + u8 data_control_supp; > + /* Is PHY type DLL. */ > + u8 is_phy_type_dll; > +}; > + > +struct cdns_nand_ctrl { > + struct device *dev; > + struct nand_controller controller; > + struct cadence_nand_cdma_desc *cdma_desc; > + /* IP capability. */ > + const struct cadence_nand_dt_devdata *caps1; > + struct cdns_nand_caps caps2; > + dma_addr_t dma_cdma_desc; > + u8 *buf; > + u32 buf_size; > + u8 curr_corr_str_idx; > + > + /* Register interface. */ > + void __iomem *reg; > + > + struct { > + void __iomem *virt; > + dma_addr_t dma; > + } io; > + > + int irq; > + /* Interrupts that have happened. */ > + struct cadence_nand_irq_status irq_status; > + /* Interrupts we are waiting for. */ > + struct cadence_nand_irq_status irq_mask; > + struct completion complete; > + /* Protect irq_mask and irq_status. */ > + spinlock_t irq_lock; > + > + int ecc_strengths[BCH_MAX_NUM_CORR_CAPS]; > + struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES]; > + struct nand_ecc_caps ecc_caps; > + > + int curr_trans_type; > + > + struct dma_chan *dmac; > + > + u32 nf_clk_rate; > + /* > + * Estimated Board delay. The value includes the total > + * round trip delay for the signals and is used for deciding on values > + * associated with data read capture. > + */ > + u32 board_delay; > + > + struct nand_chip *selected_chip; > + > + unsigned long assigned_cs; > + struct list_head chips; > +}; > + > +struct cdns_nand_chip { > + struct cadence_nand_timings timings; > + struct nand_chip chip; > + u8 nsels; > + struct list_head node; > + > + /* > + * part of oob area of NAND flash memory page. > + * This part is available for user to read or write. > + */ > + u32 avail_oob_size; > + > + /* Sector size. There are few sectors per mtd->writesize */ > + u32 sector_size; > + u32 sector_count; > + > + /* Offset of BBM. */ > + u8 bbm_offs; > + /* Number of bytes reserved for BBM. */ > + u8 bbm_len; > + /* ECC strength index. */ > + u8 corr_str_idx; > + > + u8 cs[]; > +}; > + > +struct ecc_info { > + int (*calc_ecc_bytes)(int step_size, int strength); > + int max_step_size; > +}; > + > +static inline struct > +cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip) > +{ > + return container_of(chip, struct cdns_nand_chip, chip); > +} > + > +static inline struct > +cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller) > +{ > + return container_of(controller, struct cdns_nand_ctrl, controller); > +} > + > +static bool > +cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf, > + u32 buf_len) > +{ > + u8 data_dma_width = cdns_ctrl->caps2.data_dma_width; > + > + return buf && virt_addr_valid(buf) && > + likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) && > + likely(IS_ALIGNED(buf_len, data_dma_width)); > +} > + > +static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl, > + u32 reg_offset, u32 timeout_us, > + u32 mask, bool is_clear) > +{ > + u32 val; > + int ret; > + > + ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset, > + val, !(val & mask) == is_clear, > + 10, timeout_us); > + > + if (ret < 0) { > + dev_err(cdns_ctrl->dev, > + "Timeout while waiting for reg %x with mask %x is clear %d\n", > + reg_offset, mask, is_clear); > + } > + > + return ret; > +} > + > +static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl, > + bool enable) > +{ > + u32 reg; > + > + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, > + 1000000, > + CTRL_STATUS_CTRL_BUSY, true)) > + return -ETIMEDOUT; > + > + reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); > + > + if (enable) > + reg |= ECC_CONFIG_0_ECC_EN; > + else > + reg &= ~ECC_CONFIG_0_ECC_EN; > + > + writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); > + > + return 0; > +} > + > +static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl, > + u8 corr_str_idx) > +{ > + u32 reg; > + > + if (cdns_ctrl->curr_corr_str_idx == corr_str_idx) > + return; > + > + reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); > + reg &= ~ECC_CONFIG_0_CORR_STR; > + reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx); > + writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); > + > + cdns_ctrl->curr_corr_str_idx = corr_str_idx; > +} > + > +static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl, > + u8 strength) > +{ > + int i, corr_str_idx = -1; > + > + for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { > + if (cdns_ctrl->ecc_strengths[i] == strength) { > + corr_str_idx = i; > + break; > + } > + } > + > + return corr_str_idx; > +} > + > +static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl, > + u16 marker_value) > +{ > + u32 reg; > + > + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, > + 1000000, > + CTRL_STATUS_CTRL_BUSY, true)) > + return -ETIMEDOUT; > + > + reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); > + reg &= ~SKIP_BYTES_MARKER_VALUE; > + reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE, > + marker_value); > + > + writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); > + > + return 0; > +} > + > +static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl, > + u8 num_of_bytes, > + u32 offset_value, > + int enable) > +{ > + u32 reg, skip_bytes_offset; > + > + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, > + 1000000, > + CTRL_STATUS_CTRL_BUSY, true)) > + return -ETIMEDOUT; > + > + if (!enable) { > + num_of_bytes = 0; > + offset_value = 0; > + } > + > + reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); > + reg &= ~SKIP_BYTES_NUM_OF_BYTES; > + reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES, > + num_of_bytes); > + skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE, > + offset_value); > + > + writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); > + writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET); > + > + return 0; > +} > + > +/* Functions enables/disables hardware detection of erased data */ > +static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl, > + bool enable, > + u8 bitflips_threshold) > +{ > + u32 reg; > + > + reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); > + > + if (enable) > + reg |= ECC_CONFIG_0_ERASE_DET_EN; > + else > + reg &= ~ECC_CONFIG_0_ERASE_DET_EN; > + > + writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); > + writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1); > +} > + > +static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl, > + bool bit_bus16) > +{ > + u32 reg; > + > + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, > + 1000000, > + CTRL_STATUS_CTRL_BUSY, true)) > + return -ETIMEDOUT; > + > + reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET); > + > + if (!bit_bus16) > + reg &= ~COMMON_SET_DEVICE_16BIT; > + else > + reg |= COMMON_SET_DEVICE_16BIT; > + writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET); > + > + return 0; > +} > + > +static void > +cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl, > + struct cadence_nand_irq_status *irq_status) > +{ > + writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS); > + writel_relaxed(irq_status->trd_status, > + cdns_ctrl->reg + TRD_COMP_INT_STATUS); > + writel_relaxed(irq_status->trd_error, > + cdns_ctrl->reg + TRD_ERR_INT_STATUS); > +} > + > +static void > +cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl, > + struct cadence_nand_irq_status *irq_status) > +{ > + irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS); > + irq_status->trd_status = readl_relaxed(cdns_ctrl->reg > + + TRD_COMP_INT_STATUS); > + irq_status->trd_error = readl_relaxed(cdns_ctrl->reg > + + TRD_ERR_INT_STATUS); > +} > + > +static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl, > + struct cadence_nand_irq_status *irq_status) > +{ > + cadence_nand_read_int_status(cdns_ctrl, irq_status); > + > + return irq_status->status || irq_status->trd_status || > + irq_status->trd_error; > +} > + > +static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl) > +{ > + spin_lock(&cdns_ctrl->irq_lock); > + memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status)); > + memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask)); > + spin_unlock(&cdns_ctrl->irq_lock); > +} > + > +/* > + * This is the interrupt service routine. It handles all interrupts > + * sent to this device. > + */ > +static irqreturn_t cadence_nand_isr(int irq, void *dev_id) > +{ > + struct cdns_nand_ctrl *cdns_ctrl = dev_id; > + struct cadence_nand_irq_status irq_status; > + irqreturn_t result = IRQ_NONE; > + > + spin_lock(&cdns_ctrl->irq_lock); > + > + if (irq_detected(cdns_ctrl, &irq_status)) { > + /* Handle interrupt. */ > + /* First acknowledge it. */ > + cadence_nand_clear_interrupt(cdns_ctrl, &irq_status); > + /* Status in the device context for someone to read. */ > + cdns_ctrl->irq_status.status |= irq_status.status; > + cdns_ctrl->irq_status.trd_status |= irq_status.trd_status; > + cdns_ctrl->irq_status.trd_error |= irq_status.trd_error; > + /* Notify anyone who cares that it happened. */ > + complete(&cdns_ctrl->complete); > + /* Tell the OS that we've handled this. */ > + result = IRQ_HANDLED; > + } > + spin_unlock(&cdns_ctrl->irq_lock); Your locking scheme seems wrong (maybe I'm not going deep enough in the code), can you please try with LOCKDEP enabled? > + > + return result; > +} > + > +static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl, > + struct cadence_nand_irq_status *irq_mask) > +{ > + writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status, > + cdns_ctrl->reg + INTR_ENABLE); > + > + writel_relaxed(irq_mask->trd_error, > + cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN); > +} > + > +static void > +cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl, > + struct cadence_nand_irq_status *irq_mask, > + struct cadence_nand_irq_status *irq_status) > +{ > + unsigned long timeout = msecs_to_jiffies(10000); > + unsigned long time_left; > + > + time_left = wait_for_completion_timeout(&cdns_ctrl->complete, > + timeout); > + > + *irq_status = cdns_ctrl->irq_status; > + if (time_left == 0) { > + /* Timeout error. */ > + dev_err(cdns_ctrl->dev, "timeout occurred:\n"); > + dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n", > + irq_status->status, irq_mask->status); > + dev_err(cdns_ctrl->dev, > + "\ttrd_status = 0x%x, trd_status mask = 0x%x\n", > + irq_status->trd_status, irq_mask->trd_status); > + dev_err(cdns_ctrl->dev, > + "\t trd_error = 0x%x, trd_error mask = 0x%x\n", > + irq_status->trd_error, irq_mask->trd_error); > + } > +} > + > +static void > +cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl) > +{ > + /* Disable interrupts. */ > + writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE); > +} Would you mind moving this helper to the bottom, where it is used (closer to the remove/cleanup functions). > + > +/* Execute generic command on NAND controller. */ > +static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl, > + u8 chip_nr, > + u64 mini_ctrl_cmd) > +{ > + u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg; > + > + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr); > + mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF; > + mini_ctrl_cmd_h = mini_ctrl_cmd >> 32; > + > + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, > + 1000000, > + CTRL_STATUS_CTRL_BUSY, true)) > + return -ETIMEDOUT; > + > + cadence_nand_reset_irq(cdns_ctrl); > + > + writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2); > + writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3); > + > + /* Select generic command. */ > + reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN); > + /* Thread number. */ > + reg |= FIELD_PREP(CMD_REG0_TN, 0); > + > + /* Issue command. */ > + writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); > + > + return 0; > +} > + > +/* Wait for data on slave DMA interface. */ > +static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl, > + u8 *out_sdma_trd, > + u32 *out_sdma_size) > +{ > + struct cadence_nand_irq_status irq_mask, irq_status; > + > + irq_mask.trd_status = 0; > + irq_mask.trd_error = 0; > + irq_mask.status = INTR_STATUS_SDMA_TRIGG > + | INTR_STATUS_SDMA_ERR > + | INTR_STATUS_UNSUPP_CMD; > + > + cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); > + cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); > + if (irq_status.status == 0) { > + dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n"); > + return -ETIMEDOUT; > + } > + > + if (irq_status.status & INTR_STATUS_SDMA_TRIGG) { > + *out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE); > + *out_sdma_trd = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM); > + *out_sdma_trd = > + FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd); > + } else { > + dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n", > + irq_status.status); > + return -EIO; > + } > + > + return 0; > +} > + > +static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl) > +{ > + u32 reg; > + > + reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES); > + > + cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg); > + > + if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg)) > + cdns_ctrl->caps2.data_dma_width = 8; > + else > + cdns_ctrl->caps2.data_dma_width = 4; > + > + if (reg & CTRL_FEATURES_CONTROL_DATA) > + cdns_ctrl->caps2.data_control_supp = 1; > + > + if (reg & (CTRL_FEATURES_NVDDR_2_3 > + | CTRL_FEATURES_NVDDR)) > + cdns_ctrl->caps2.is_phy_type_dll = 1; > +} > + > +/* Prepare CDMA descriptor. */ > +static void > +cadence_nand_cdma_desc_prepare(struct cadence_nand_cdma_desc *cdma_desc, > + char nf_mem, u32 flash_ptr, char *mem_ptr, > + char *ctrl_data_ptr, u16 ctype) > +{ > + memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc)); > + > + /* Set fields for one descriptor. */ > + cdma_desc->flash_pointer = (nf_mem << CDMA_CFPTR_MEM_SHIFT) > + + flash_ptr; > + cdma_desc->command_flags |= CDMA_CF_DMA_MASTER; > + cdma_desc->command_flags |= CDMA_CF_INT; > + > + cdma_desc->memory_pointer = (uintptr_t)mem_ptr; > + cdma_desc->status = 0; > + cdma_desc->sync_flag_pointer = 0; > + cdma_desc->sync_arguments = 0; > + > + cdma_desc->command_type = ctype; > + cdma_desc->ctrl_data_ptr = (uintptr_t)ctrl_data_ptr; > +} > + > +static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl, > + u32 desc_status) > +{ > + if (desc_status & CDMA_CS_ERP) > + return STAT_ERASED; > + > + if (desc_status & CDMA_CS_UNCE) > + return STAT_ECC_UNCORR; > + > + if (desc_status & CDMA_CS_ERR) { > + dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n"); > + return STAT_FAIL; > + } > + > + if (FIELD_GET(CDMA_CS_MAXERR, desc_status)) > + return STAT_ECC_CORR; > + > + return STAT_FAIL; > +} > + > +static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl, > + struct cadence_nand_cdma_desc *cdma_desc) > +{ > + struct cadence_nand_cdma_desc *desc_ptr = cdma_desc; > + u8 status = STAT_BUSY; > + > + if (desc_ptr->status & CDMA_CS_FAIL) { > + status = cadence_nand_check_desc_error(cdns_ctrl, > + desc_ptr->status); > + dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status); > + } else if (desc_ptr->status & CDMA_CS_COMP) { > + /* Descriptor finished with no errors. */ > + if (desc_ptr->command_flags & CDMA_CF_CONT) { > + dev_info(cdns_ctrl->dev, "DMA unsupported flag is set"); > + status = STAT_UNKNOWN; > + } else { > + /* Last descriptor. */ > + status = STAT_OK; > + } > + } > + > + return status; > +} > + > +static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl, > + u8 thread) > +{ > + u32 reg; > + int status; > + > + /* Wait for thread ready. */ > + status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS, > + 1000000, > + 1U << thread, true); > + if (status) > + return status; > + > + cadence_nand_reset_irq(cdns_ctrl); > + > + writel_relaxed((u32)cdns_ctrl->dma_cdma_desc, > + cdns_ctrl->reg + CMD_REG2); > + writel_relaxed(0, cdns_ctrl->reg + CMD_REG3); > + > + /* Select CDMA mode. */ > + reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA); > + /* Thread number. */ > + reg |= FIELD_PREP(CMD_REG0_TN, thread); > + /* Issue command. */ > + writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); > + > + return 0; > +} > + > +/* Send SDMA command and wait for finish. */ > +static u32 > +cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl, > + u8 thread) > +{ > + struct cadence_nand_irq_status irq_mask, irq_status = {0}; > + int status; > + > + irq_mask.trd_status = 1 << thread; > + irq_mask.trd_error = 1 << thread; > + irq_mask.status = INTR_STATUS_CDMA_TERR; > + > + cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); > + > + status = cadence_nand_cdma_send(cdns_ctrl, thread); > + if (status) > + return status; > + > + cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); > + > + if (irq_status.status == 0 && irq_status.trd_status == 0 && > + irq_status.trd_error == 0) { > + dev_err(cdns_ctrl->dev, "CDMA command timeout\n"); > + return -ETIMEDOUT; > + } > + if (irq_status.status & irq_mask.status) { > + dev_err(cdns_ctrl->dev, "CDMA command failed\n"); > + return -EIO; > + } > + > + return 0; > +} > + > +/* > + * ECC size depends on configured ECC strength and on maximum supported > + * ECC step size. > + */ > +static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength) > +{ > + int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8); > + > + return ALIGN(nbytes, 2); > +} > + > +#define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \ > + static int \ > + cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \ > + int strength)\ > + {\ > + return cadence_nand_calc_ecc_bytes(max_step_size, strength);\ > + } > + > +CADENCE_NAND_CALC_ECC_BYTES(256) > +CADENCE_NAND_CALC_ECC_BYTES(512) > +CADENCE_NAND_CALC_ECC_BYTES(1024) > +CADENCE_NAND_CALC_ECC_BYTES(2048) > +CADENCE_NAND_CALC_ECC_BYTES(4096) > + > +/* Function reads BCH capabilities. */ > +static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl) > +{ > + struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps; > + int max_step_size = 0, nstrengths, i; > + u32 reg; > + > + reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0); > + cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg); > + cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg); > + cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg); > + cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg); > + > + reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1); > + cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg); > + cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg); > + cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg); > + cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg); > + > + reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2); > + cdns_ctrl->ecc_stepinfos[0].stepsize = > + FIELD_GET(BCH_CFG_2_SECT_0, reg); > + > + cdns_ctrl->ecc_stepinfos[1].stepsize = > + FIELD_GET(BCH_CFG_2_SECT_1, reg); > + > + nstrengths = 0; > + for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { > + if (cdns_ctrl->ecc_strengths[i] != 0) > + nstrengths++; > + } > + > + ecc_caps->nstepinfos = 0; > + for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) { > + /* ECC strengths are common for all step infos. */ > + cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths; > + cdns_ctrl->ecc_stepinfos[i].strengths = > + cdns_ctrl->ecc_strengths; > + > + if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0) > + ecc_caps->nstepinfos++; > + > + if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size) > + max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize; > + } > + ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0]; > + > + switch (max_step_size) { > + case 256: > + ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256; > + break; > + case 512: > + ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512; > + break; > + case 1024: > + ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024; > + break; > + case 2048: > + ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048; > + break; > + case 4096: > + ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096; > + break; > + default: > + dev_err(cdns_ctrl->dev, > + "Unsupported sector size(ecc step size) %d\n", > + max_step_size); > + return -EIO; > + } > + > + return 0; > +} > + > +/* Hardware initialization. */ > +static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl) > +{ > + int status; > + u32 reg; > + > + status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, > + 1000000, > + CTRL_STATUS_INIT_COMP, false); > + if (status) > + return status; > + > + reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION); > + > + dev_info(cdns_ctrl->dev, > + "%s: cadence nand controller version reg %x\n", > + __func__, reg); > + > + /* Disable cache and multiplane. */ > + writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG); > + writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG); Cache? > + > + /* Clear all interrupts. */ > + writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS); > + > + cadence_nand_get_caps(cdns_ctrl); > + cadence_nand_read_bch_caps(cdns_ctrl); > + > + /* > + * Set IO width access to 8. > + * It is because during SW device discovering width access > + * is expected to be 8. > + */ > + status = cadence_nand_set_access_width16(cdns_ctrl, false); > + > + return status; > +} > + > +#define TT_MAIN_OOB_AREAS 2 > +#define TT_RAW_PAGE 3 > +#define TT_BBM 4 > +#define TT_MAIN_OOB_AREA_EXT 5 > + > +/* Prepare size of data to transfer. */ > +static void > +cadence_nand_prepare_data_size(struct nand_chip *chip, > + int transfer_type) > +{ > + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); > + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); > + struct mtd_info *mtd = nand_to_mtd(chip); > + u32 sec_size = 0, offset = 0, sec_cnt = 1; > + u32 last_sec_size = cdns_chip->sector_size; > + u32 ecc_size = chip->ecc.bytes; > + u32 data_ctrl_size = 0; > + u32 reg = 0; > + > + if (cdns_ctrl->curr_trans_type == transfer_type) > + return; > + > + switch (transfer_type) { > + case TT_MAIN_OOB_AREA_EXT: > + sec_cnt = cdns_chip->sector_count; > + sec_size = cdns_chip->sector_size; > + data_ctrl_size = cdns_chip->avail_oob_size; > + break; > + case TT_MAIN_OOB_AREAS: > + sec_cnt = cdns_chip->sector_count; > + last_sec_size = cdns_chip->sector_size > + + cdns_chip->avail_oob_size; > + sec_size = cdns_chip->sector_size; > + break; > + case TT_RAW_PAGE: > + last_sec_size = mtd->writesize + mtd->oobsize; > + break; > + case TT_BBM: > + offset = mtd->writesize + cdns_chip->bbm_offs; > + last_sec_size = 8; > + break; > + } > + > + reg = 0; > + reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset); > + reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt); > + writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0); > + > + reg = 0; > + reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size); > + reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size); > + writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1); > + > + if (cdns_ctrl->caps2.data_control_supp == 1) { > + reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL); > + reg &= ~CONTROL_DATA_CTRL_SIZE; > + reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size); > + writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL); > + } > + > + cdns_ctrl->curr_trans_type = transfer_type; > +} > + > +static int > +cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr, > + int page, void *buf, void *ctrl_dat, u32 buf_size, > + u32 ctrl_dat_size, enum dma_data_direction dir, > + bool with_ecc) > +{ > + struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc; > + dma_addr_t dma_buf, dma_ctrl_dat = 0; > + u8 thread_nr = chip_nr; > + int status; > + u16 ctype; > + > + if (dir == DMA_FROM_DEVICE) > + ctype = CDMA_CT_RD; > + else > + ctype = CDMA_CT_WR; > + > + cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc); > + > + dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir); > + if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) { > + dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); > + return -EIO; > + } > + > + if (ctrl_dat && ctrl_dat_size) { > + dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat, > + ctrl_dat_size, dir); > + if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) { > + dma_unmap_single(cdns_ctrl->dev, dma_buf, > + buf_size, dir); > + dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); > + return -EIO; > + } > + } > + > + cadence_nand_cdma_desc_prepare(cdma_desc, chip_nr, page, > + (void *)dma_buf, (void *)dma_ctrl_dat, > + ctype); > + > + status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); > + > + dma_unmap_single(cdns_ctrl->dev, dma_buf, > + buf_size, dir); > + > + if (ctrl_dat && ctrl_dat_size) > + dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat, > + ctrl_dat_size, dir); > + if (status) > + return status; > + > + return cadence_nand_cdma_finish(cdns_ctrl, cdns_ctrl->cdma_desc); > +} > + > +static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl, > + struct cadence_nand_timings *t) > +{ > + writel_relaxed(t->async_toggle_timings, > + cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS); > + writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0); > + writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1); > + writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2); > + > + if (cdns_ctrl->caps2.is_phy_type_dll) > + writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL); > + > + writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL); > + > + if (cdns_ctrl->caps2.is_phy_type_dll) { > + writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL); > + writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING); > + writel_relaxed(t->phy_dqs_timing, > + cdns_ctrl->reg + PHY_DQS_TIMING); > + writel_relaxed(t->phy_gate_lpbk_ctrl, > + cdns_ctrl->reg + PHY_GATE_LPBK_CTRL); > + writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE, > + cdns_ctrl->reg + PHY_DLL_MASTER_CTRL); > + writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL); > + } > +} > + > +static int cadence_nand_select_target(struct nand_chip *chip) > +{ > + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); > + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); > + > + if (chip == cdns_ctrl->selected_chip) > + return 0; > + > + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, > + 1000000, > + CTRL_STATUS_CTRL_BUSY, true)) > + return -ETIMEDOUT; > + > + cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings); > + > + cadence_nand_set_ecc_strength(cdns_ctrl, > + cdns_chip->corr_str_idx); > + > + cadence_nand_set_erase_detection(cdns_ctrl, true, > + chip->ecc.strength); > + > + cdns_ctrl->curr_trans_type = -1; > + cdns_ctrl->selected_chip = chip; > + > + return 0; > +} > + > +static int cadence_nand_erase(struct nand_chip *chip, u32 page) > +{ > + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); > + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); > + int status; > + u8 thread_nr = cdns_chip->cs[chip->cur_cs]; > + > + cadence_nand_cdma_desc_prepare(cdns_ctrl->cdma_desc, > + cdns_chip->cs[chip->cur_cs], > + page, NULL, NULL, > + CDMA_CT_ERASE); > + status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); > + if (status) { > + dev_err(cdns_ctrl->dev, "erase operation failed\n"); > + return -EIO; > + } > + > + status = cadence_nand_cdma_finish(cdns_ctrl, cdns_ctrl->cdma_desc); > + if (status) > + return status; > + > + return 0; > +} > + > +static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf) > +{ > + int status; > + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); > + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); > + struct mtd_info *mtd = nand_to_mtd(chip); > + > + cadence_nand_prepare_data_size(chip, TT_BBM); > + > + cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); > + > + /* > + * Read only bad block marker from offset > + * defined by a memory manufacturer. > + */ > + status = cadence_nand_cdma_transfer(cdns_ctrl, > + cdns_chip->cs[chip->cur_cs], > + page, cdns_ctrl->buf, NULL, > + mtd->oobsize, > + 0, DMA_FROM_DEVICE, false); > + if (status) { > + dev_err(cdns_ctrl->dev, "read BBM failed\n"); > + return -EIO; > + } > + > + memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len); > + > + return 0; > +} Not sure this function is relevant, see below. > + > +static int cadence_nand_write_page(struct nand_chip *chip, > + const u8 *buf, int oob_required, > + int page) > +{ > + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); > + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); > + struct mtd_info *mtd = nand_to_mtd(chip); > + int status; > + u16 marker_val = 0xFFFF; > + > + status = cadence_nand_select_target(chip); > + if (status) > + return status; > + > + cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, > + mtd->writesize > + + cdns_chip->bbm_offs, > + 1); > + > + if (oob_required) { > + marker_val = *(u16 *)(chip->oob_poi > + + cdns_chip->bbm_offs); > + } else { > + /* Set oob data to 0xFF. */ > + memset(cdns_ctrl->buf + mtd->writesize, 0xFF, > + cdns_chip->avail_oob_size); > + } > + > + cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val); > + > + cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); > + > + if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && > + cdns_ctrl->caps2.data_control_supp) { > + u8 *oob; > + > + if (oob_required) > + oob = chip->oob_poi; > + else > + oob = cdns_ctrl->buf + mtd->writesize; > + > + status = cadence_nand_cdma_transfer(cdns_ctrl, > + cdns_chip->cs[chip->cur_cs], > + page, (void *)buf, oob, > + mtd->writesize, > + cdns_chip->avail_oob_size, > + DMA_TO_DEVICE, true); > + if (status) { > + dev_err(cdns_ctrl->dev, "write page failed\n"); > + return -EIO; > + } > + > + return 0; > + } > + > + if (oob_required) { > + /* Transfer the data to the oob area. */ > + memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi, > + cdns_chip->avail_oob_size); > + } > + > + memcpy(cdns_ctrl->buf, buf, mtd->writesize); > + > + cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); > + > + return cadence_nand_cdma_transfer(cdns_ctrl, > + cdns_chip->cs[chip->cur_cs], > + page, cdns_ctrl->buf, NULL, > + mtd->writesize > + + cdns_chip->avail_oob_size, > + 0, DMA_TO_DEVICE, true); > +} > + > +static int cadence_nand_write_oob(struct nand_chip *chip, int page) > +{ > + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); > + struct mtd_info *mtd = nand_to_mtd(chip); > + > + memset(cdns_ctrl->buf, 0xFF, mtd->writesize); > + > + return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page); > +} > + > +static int cadence_nand_write_page_raw(struct nand_chip *chip, > + const u8 *buf, int oob_required, > + int page) > +{ > + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); > + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); > + struct mtd_info *mtd = nand_to_mtd(chip); > + int writesize = mtd->writesize; > + int oobsize = mtd->oobsize; > + int ecc_steps = chip->ecc.steps; > + int ecc_size = chip->ecc.size; > + int ecc_bytes = chip->ecc.bytes; > + void *tmp_buf = cdns_ctrl->buf; > + int oob_skip = cdns_chip->bbm_len; > + size_t size = writesize + oobsize; > + int i, pos, len; > + int status = 0; > + > + status = cadence_nand_select_target(chip); > + if (status) > + return status; > + > + /* > + * Fill the buffer with 0xff first except the full page transfer. > + * This simplifies the logic. > + */ > + if (!buf || !oob_required) > + memset(tmp_buf, 0xff, size); > + > + cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); > + > + /* Arrange the buffer for syndrome payload/ecc layout. */ > + if (buf) { > + for (i = 0; i < ecc_steps; i++) { > + pos = i * (ecc_size + ecc_bytes); > + len = ecc_size; > + > + if (pos >= writesize) > + pos += oob_skip; > + else if (pos + len > writesize) > + len = writesize - pos; > + > + memcpy(tmp_buf + pos, buf, len); > + buf += len; > + if (len < ecc_size) { > + len = ecc_size - len; > + memcpy(tmp_buf + writesize + oob_skip, buf, > + len); > + buf += len; > + } > + } > + } > + > + if (oob_required) { > + const u8 *oob = chip->oob_poi; > + u32 oob_data_offset = (cdns_chip->sector_count - 1) * > + (cdns_chip->sector_size + chip->ecc.bytes) > + + cdns_chip->sector_size + oob_skip; > + > + /* BBM at the beginning of the OOB area. */ > + memcpy(tmp_buf + writesize, oob, oob_skip); > + > + /* OOB free. */ > + memcpy(tmp_buf + oob_data_offset, oob, > + cdns_chip->avail_oob_size); > + oob += cdns_chip->avail_oob_size; > + > + /* OOB ECC. */ > + for (i = 0; i < ecc_steps; i++) { > + pos = ecc_size + i * (ecc_size + ecc_bytes); > + if (i == (ecc_steps - 1)) > + pos += cdns_chip->avail_oob_size; > + > + len = ecc_bytes; > + > + if (pos >= writesize) > + pos += oob_skip; > + else if (pos + len > writesize) > + len = writesize - pos; > + > + memcpy(tmp_buf + pos, oob, len); > + oob += len; > + if (len < ecc_bytes) { > + len = ecc_bytes - len; > + memcpy(tmp_buf + writesize + oob_skip, oob, > + len); > + oob += len; > + } > + } > + } > + > + cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); > + > + return cadence_nand_cdma_transfer(cdns_ctrl, > + cdns_chip->cs[chip->cur_cs], > + page, cdns_ctrl->buf, NULL, > + mtd->writesize + > + mtd->oobsize, > + 0, DMA_TO_DEVICE, false); > +} > + > +static int cadence_nand_write_oob_raw(struct nand_chip *chip, > + int page) > +{ > + return cadence_nand_write_page_raw(chip, NULL, true, page); > +} > + > +static int cadence_nand_read_page(struct nand_chip *chip, > + u8 *buf, int oob_required, int page) > +{ > + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); > + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); > + struct mtd_info *mtd = nand_to_mtd(chip); > + int status = 0; > + int ecc_err_count = 0; > + > + status = cadence_nand_select_target(chip); > + if (status) > + return status; > + > + cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, > + mtd->writesize > + + cdns_chip->bbm_offs, 1); > + > + /* > + * If data buffer can be accessed by DMA and data_control feature > + * is supported then transfer data and oob directly. > + */ > + if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && > + cdns_ctrl->caps2.data_control_supp) { > + u8 *oob; > + > + if (oob_required) > + oob = chip->oob_poi; > + else > + oob = cdns_ctrl->buf + mtd->writesize; > + > + cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); > + status = cadence_nand_cdma_transfer(cdns_ctrl, > + cdns_chip->cs[chip->cur_cs], > + page, buf, oob, > + mtd->writesize, > + cdns_chip->avail_oob_size, > + DMA_FROM_DEVICE, true); > + /* Otherwise use bounce buffer. */ > + } else { > + cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); > + status = cadence_nand_cdma_transfer(cdns_ctrl, > + cdns_chip->cs[chip->cur_cs], > + page, cdns_ctrl->buf, > + NULL, mtd->writesize > + + cdns_chip->avail_oob_size, > + 0, DMA_FROM_DEVICE, true); > + > + memcpy(buf, cdns_ctrl->buf, mtd->writesize); > + if (oob_required) > + memcpy(chip->oob_poi, > + cdns_ctrl->buf + mtd->writesize, > + mtd->oobsize); > + } > + > + switch (status) { > + case STAT_ECC_UNCORR: > + mtd->ecc_stats.failed++; > + ecc_err_count++; > + break; > + case STAT_ECC_CORR: > + ecc_err_count = FIELD_GET(CDMA_CS_MAXERR, > + cdns_ctrl->cdma_desc->status); > + mtd->ecc_stats.corrected += ecc_err_count; Is this value the maximum number of bitflips in each chunk of the page? If it returns the total number of bitflips corrected in the entire page we have a problem. > + break; > + case STAT_ERASED: > + case STAT_OK: > + break; > + default: > + dev_err(cdns_ctrl->dev, "read page failed\n"); > + return -EIO; > + } > + > + if (oob_required) > + if (cadence_nand_read_bbm(chip, page, chip->oob_poi)) > + return -EIO; Do we really care about the BBM at this level? If we are requested to read the page, I suppose we must do what is in our hands to return the data? Normally this is handled in userspace directly. > + > + return ecc_err_count; > +} > + > +/* Reads OOB data from the device. */ > +static int cadence_nand_read_oob(struct nand_chip *chip, int page) > +{ > + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); > + > + return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page); > +} > + > +static int cadence_nand_read_page_raw(struct nand_chip *chip, > + u8 *buf, int oob_required, int page) > +{ > + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); > + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); > + struct mtd_info *mtd = nand_to_mtd(chip); > + int oob_skip = cdns_chip->bbm_len; > + int writesize = mtd->writesize; > + int ecc_steps = chip->ecc.steps; > + int ecc_size = chip->ecc.size; > + int ecc_bytes = chip->ecc.bytes; > + void *tmp_buf = cdns_ctrl->buf; > + int i, pos, len; > + int status = 0; > + > + status = cadence_nand_select_target(chip); > + if (status) > + return status; > + > + cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); > + > + cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); > + status = cadence_nand_cdma_transfer(cdns_ctrl, > + cdns_chip->cs[chip->cur_cs], > + page, cdns_ctrl->buf, NULL, > + mtd->writesize > + + mtd->oobsize, > + 0, DMA_FROM_DEVICE, false); > + > + switch (status) { > + case STAT_ERASED: > + case STAT_OK: > + break; > + default: > + dev_err(cdns_ctrl->dev, "read raw page failed\n"); > + return -EIO; > + } > + > + /* Arrange the buffer for syndrome payload/ecc layout. */ > + if (buf) { > + for (i = 0; i < ecc_steps; i++) { > + pos = i * (ecc_size + ecc_bytes); > + len = ecc_size; > + > + if (pos >= writesize) > + pos += oob_skip; > + else if (pos + len > writesize) > + len = writesize - pos; > + > + memcpy(buf, tmp_buf + pos, len); > + buf += len; > + if (len < ecc_size) { > + len = ecc_size - len; > + memcpy(buf, tmp_buf + writesize + oob_skip, > + len); > + buf += len; > + } > + } > + } > + > + if (oob_required) { > + u8 *oob = chip->oob_poi; > + u32 oob_data_offset = (cdns_chip->sector_count - 1) * > + (cdns_chip->sector_size + chip->ecc.bytes) > + + cdns_chip->sector_size + oob_skip; > + > + /* OOB free. */ > + memcpy(oob, tmp_buf + oob_data_offset, > + cdns_chip->avail_oob_size); > + > + /* BBM at the beginning of the OOB area. */ > + memcpy(oob, tmp_buf + writesize, oob_skip); > + > + oob += cdns_chip->avail_oob_size; > + > + /* OOB ECC */ > + for (i = 0; i < ecc_steps; i++) { > + pos = ecc_size + i * (ecc_size + ecc_bytes); > + len = ecc_bytes; > + > + if (i == (ecc_steps - 1)) > + pos += cdns_chip->avail_oob_size; > + > + if (pos >= writesize) > + pos += oob_skip; > + else if (pos + len > writesize) > + len = writesize - pos; > + > + memcpy(oob, tmp_buf + pos, len); > + oob += len; > + if (len < ecc_bytes) { > + len = ecc_bytes - len; > + memcpy(oob, tmp_buf + writesize + oob_skip, > + len); > + oob += len; > + } > + } > + } > + > + return 0; > +} > + > +static int cadence_nand_read_oob_raw(struct nand_chip *chip, > + int page) > +{ > + return cadence_nand_read_page_raw(chip, NULL, true, page); > +} > + > +static void cadence_nand_slave_dma_transfer_finished(void *data) > +{ > + struct completion *finished = data; > + > + complete(finished); > +} > + > +static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl, > + void *buf, > + dma_addr_t dev_dma, size_t len, > + enum dma_data_direction dir) > +{ > + DECLARE_COMPLETION_ONSTACK(finished); > + struct dma_chan *chan; > + struct dma_device *dma_dev; > + dma_addr_t src_dma, dst_dma, buf_dma; > + struct dma_async_tx_descriptor *tx; > + dma_cookie_t cookie; > + > + chan = cdns_ctrl->dmac; > + dma_dev = chan->device; > + > + buf_dma = dma_map_single(dma_dev->dev, buf, len, dir); > + if (dma_mapping_error(dma_dev->dev, buf_dma)) { > + dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); > + goto err; > + } > + > + if (dir == DMA_FROM_DEVICE) { > + src_dma = cdns_ctrl->io.dma; > + dst_dma = buf_dma; > + } else { > + src_dma = buf_dma; > + dst_dma = cdns_ctrl->io.dma; > + } > + > + tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len, > + DMA_CTRL_ACK | DMA_PREP_INTERRUPT); > + if (!tx) { > + dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n"); > + goto err_unmap; > + } > + > + tx->callback = cadence_nand_slave_dma_transfer_finished; > + tx->callback_param = &finished; > + > + cookie = dmaengine_submit(tx); > + if (dma_submit_error(cookie)) { > + dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n"); > + goto err_unmap; > + } > + > + dma_async_issue_pending(cdns_ctrl->dmac); > + wait_for_completion(&finished); > + > + dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); > + > + return 0; > + > +err_unmap: > + dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); > + > +err: > + dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n"); > + > + return -EIO; > +} > + > +static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl, > + u8 *buf, int len) > +{ > + int len_aligned = ALIGN(len, cdns_ctrl->caps2.data_dma_width); > + u8 thread_nr = 0; > + u32 sdma_size; > + int status; > + > + if (!cdns_ctrl->caps1->has_dma) { > + if (len & 3) { > + dev_err(cdns_ctrl->dev, "unaligned data\n"); > + return -EIO; > + } > + readsl(cdns_ctrl->io.virt, buf, len / 4); > + return 0; > + } > + > + /* Wait until slave DMA interface is ready to data transfer. */ > + status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); > + if (status) > + return status; > + > + if (sdma_size != len_aligned) { > + dev_err(cdns_ctrl->dev, "unexpected scenario\n"); > + return -EIO; > + } > + > + if (cdns_ctrl->dmac && cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { > + status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf, > + cdns_ctrl->io.dma, > + len, DMA_FROM_DEVICE); > + if (status == 0) > + return 0; > + > + dev_warn(cdns_ctrl->dev, > + "Slave DMA transfer failed. Try again using bounce buffer."); > + } > + > + /* If DMA transfer is not possible or failed then use bounce buffer. */ > + status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, > + cdns_ctrl->io.dma, > + len_aligned, DMA_FROM_DEVICE); > + > + if (status) { > + dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); > + return status; > + } > + > + memcpy(buf, cdns_ctrl->buf, len); > + > + return 0; > +} > + > +static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl, > + const u8 *buf, int len) > +{ > + u8 thread_nr = 0; > + u32 sdma_size; > + int status; > + int len_aligned = ALIGN(len, cdns_ctrl->caps2.data_dma_width); > + > + if (!cdns_ctrl->caps1->has_dma) { > + if (len & 3) { > + dev_err(cdns_ctrl->dev, "unaligned data\n"); > + return -EIO; > + } > + writesl(cdns_ctrl->io.virt, buf, len / 4); > + return 0; > + } > + > + /* Wait until slave DMA interface is ready to data transfer. */ > + status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); > + if (status) > + return status; > + > + if (sdma_size != len_aligned) { > + dev_err(cdns_ctrl->dev, "Error unexpected scenario\n"); > + return -EIO; > + } > + > + if (cdns_ctrl->dmac && cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { > + status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf, > + cdns_ctrl->io.dma, > + len, DMA_TO_DEVICE); > + if (status == 0) > + return 0; > + > + dev_warn(cdns_ctrl->dev, > + "Slave DMA transfer failed. Try again using bounce buffer."); > + } > + > + /* If DMA transfer is not possible or failed then use bounce buffer. */ > + memcpy(cdns_ctrl->buf, buf, len); > + > + status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, > + cdns_ctrl->io.dma, > + len_aligned, DMA_TO_DEVICE); > + > + if (status) > + dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); > + > + return status; > +} > + > +static int cadence_nand_force_byte_access(struct nand_chip *chip, > + bool force_8bit) > +{ > + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); > + int status; > + > + /* > + * Callers of this function do not verify if the NAND is using a 16-bit > + * an 8-bit bus for normal operations, so we need to take care of that > + * here by leaving the configuration unchanged if the NAND does not have > + * the NAND_BUSWIDTH_16 flag set. > + */ > + if (!(chip->options & NAND_BUSWIDTH_16)) > + return 0; > + > + status = cadence_nand_set_access_width16(cdns_ctrl, !force_8bit); > + > + return status; > +} > + > +static int cadence_nand_cmd_opcode(struct nand_chip *chip, > + const struct nand_subop *subop) > +{ > + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); > + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); > + const struct nand_op_instr *instr; > + unsigned int op_id = 0; > + u64 mini_ctrl_cmd = 0; > + int ret; > + > + instr = &subop->instrs[op_id]; > + > + if (instr->delay_ns > 0) > + mini_ctrl_cmd |= GCMD_LAY_TWB; > + > + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, > + GCMD_LAY_INSTR_CMD); > + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD, > + instr->ctx.cmd.opcode); > + > + ret = cadence_nand_generic_cmd_send(cdns_ctrl, > + cdns_chip->cs[chip->cur_cs], > + mini_ctrl_cmd); > + if (ret) > + dev_err(cdns_ctrl->dev, "send cmd %x failed\n", > + instr->ctx.cmd.opcode); > + > + return ret; > +} > + > +static int cadence_nand_cmd_address(struct nand_chip *chip, > + const struct nand_subop *subop) > +{ > + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); > + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); > + const struct nand_op_instr *instr; > + unsigned int op_id = 0; > + u64 mini_ctrl_cmd = 0; > + unsigned int offset, naddrs; > + u64 address = 0; > + const u8 *addrs; > + int ret; > + int i; > + > + instr = &subop->instrs[op_id]; > + > + if (instr->delay_ns > 0) > + mini_ctrl_cmd |= GCMD_LAY_TWB; > + > + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, > + GCMD_LAY_INSTR_ADDR); > + > + offset = nand_subop_get_addr_start_off(subop, op_id); > + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); > + addrs = &instr->ctx.addr.addrs[offset]; > + > + for (i = 0; i < naddrs; i++) > + address |= (u64)addrs[i] << (8 * i); > + > + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR, > + address); > + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE, > + naddrs - 1); > + > + ret = cadence_nand_generic_cmd_send(cdns_ctrl, > + cdns_chip->cs[chip->cur_cs], > + mini_ctrl_cmd); > + if (ret) > + dev_err(cdns_ctrl->dev, "send address %llx failed\n", address); > + > + return ret; > +} > + > +static int cadence_nand_cmd_erase(struct nand_chip *chip, > + const struct nand_subop *subop) > +{ > + unsigned int op_id; > + > + if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) { > + int i; > + const struct nand_op_instr *instr = NULL; > + unsigned int offset, naddrs; > + const u8 *addrs; > + u32 page = 0; > + > + instr = &subop->instrs[1]; > + offset = nand_subop_get_addr_start_off(subop, 1); > + naddrs = nand_subop_get_num_addr_cyc(subop, 1); > + addrs = &instr->ctx.addr.addrs[offset]; > + > + for (i = 0; i < naddrs; i++) > + page |= (u32)addrs[i] << (8 * i); > + > + return cadence_nand_erase(chip, page); > + } > + > + /* > + * If it is not an erase operation then handle operation > + * by calling exec_op function. > + */ > + for (op_id = 0; op_id < subop->ninstrs; op_id++) { > + int ret; > + const struct nand_operation nand_op = { > + .cs = chip->cur_cs, > + .instrs = &subop->instrs[op_id], > + .ninstrs = 1}; > + ret = chip->controller->ops->exec_op(chip, &nand_op, false); > + if (ret) > + return ret; > + } > + > + return 0; > +} > + > +static int cadence_nand_cmd_data(struct nand_chip *chip, > + const struct nand_subop *subop) > +{ > + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); > + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); > + const struct nand_op_instr *instr; > + unsigned int offset, op_id = 0; > + u64 mini_ctrl_cmd = 0; > + int len = 0; > + int ret; > + > + instr = &subop->instrs[op_id]; > + > + if (instr->delay_ns > 0) > + mini_ctrl_cmd |= GCMD_LAY_TWB; > + > + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, > + GCMD_LAY_INSTR_DATA); > + > + if (instr->type == NAND_OP_DATA_OUT_INSTR) > + mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR, > + GCMD_DIR_WRITE); > + > + len = nand_subop_get_data_len(subop, op_id); > + offset = nand_subop_get_data_start_off(subop, op_id); > + mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1); > + mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len); > + if (instr->ctx.data.force_8bit) { > + ret = cadence_nand_force_byte_access(chip, true); > + if (ret) { > + dev_err(cdns_ctrl->dev, > + "cannot change byte access generic data cmd failed\n"); > + return ret; > + } > + } > + > + ret = cadence_nand_generic_cmd_send(cdns_ctrl, > + cdns_chip->cs[chip->cur_cs], > + mini_ctrl_cmd); > + if (ret) { > + dev_err(cdns_ctrl->dev, "send generic data cmd failed\n"); > + return ret; > + } > + > + if (instr->type == NAND_OP_DATA_IN_INSTR) { > + void *buf = instr->ctx.data.buf.in + offset; > + > + ret = cadence_nand_read_buf(cdns_ctrl, buf, len); > + } else { > + const void *buf = instr->ctx.data.buf.out + offset; > + > + ret = cadence_nand_write_buf(cdns_ctrl, buf, len); > + } > + > + if (ret) { > + dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n"); > + return ret; > + } > + > + if (instr->ctx.data.force_8bit) { > + ret = cadence_nand_force_byte_access(chip, false); > + if (ret) { > + dev_err(cdns_ctrl->dev, > + "cannot change byte access generic data cmd failed\n"); > + } > + } > + > + return ret; > +} > + > +static int cadence_nand_cmd_waitrdy(struct nand_chip *chip, > + const struct nand_subop *subop) > +{ > + int status; > + unsigned int op_id = 0; > + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); > + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); > + const struct nand_op_instr *instr = &subop->instrs[op_id]; > + u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000; > + > + status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS, > + timeout_us, > + 1U << cdns_chip->cs[chip->cur_cs], BIT() ? > + false); > + return status; > +} > + > +static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER( > + NAND_OP_PARSER_PATTERN( > + cadence_nand_cmd_erase, > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC), > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), > + NAND_OP_PARSER_PATTERN( > + cadence_nand_cmd_opcode, > + NAND_OP_PARSER_PAT_CMD_ELEM(false)), > + NAND_OP_PARSER_PATTERN( > + cadence_nand_cmd_address, > + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)), > + NAND_OP_PARSER_PATTERN( > + cadence_nand_cmd_data, > + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)), > + NAND_OP_PARSER_PATTERN( > + cadence_nand_cmd_data, > + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)), > + NAND_OP_PARSER_PATTERN( > + cadence_nand_cmd_waitrdy, > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)) > + ); > + > +static int cadence_nand_exec_op(struct nand_chip *chip, > + const struct nand_operation *op, > + bool check_only) > +{ > + int status = cadence_nand_select_target(chip); > + > + if (status) > + return status; > + > + return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op, > + check_only); > +} > + > +static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section, > + struct mtd_oob_region *oobregion) > +{ > + struct nand_chip *chip = mtd_to_nand(mtd); > + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); > + > + if (section) > + return -ERANGE; > + > + oobregion->offset = cdns_chip->bbm_len; > + oobregion->length = cdns_chip->avail_oob_size > + - cdns_chip->bbm_len; > + > + return 0; > +} > + > +static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section, > + struct mtd_oob_region *oobregion) > +{ > + struct nand_chip *chip = mtd_to_nand(mtd); > + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); > + > + if (section) > + return -ERANGE; > + > + oobregion->offset = cdns_chip->avail_oob_size; > + oobregion->length = chip->ecc.total; > + > + return 0; > +} > + > +static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = { > + .free = cadence_nand_ooblayout_free, > + .ecc = cadence_nand_ooblayout_ecc, > +}; > + > +static int calc_cycl(u32 timing, u32 clock) > +{ > + if (timing == 0 || clock == 0) > + return 0; > + > + if ((timing % clock) > 0) > + return timing / clock; > + else > + return timing / clock - 1; > +} > + > +/* Calculate max data valid window. */ > +static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min, > + u32 board_delay_skew_min, u32 ext_mode) > +{ > + if (ext_mode == 0) > + clk_period /= 2; > + > + return (trp_cnt + 1) * clk_period + trhoh_min + > + board_delay_skew_min; > +} > + > +/* Calculate data valid window. */ > +static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min, > + u32 trea_max, u32 ext_mode) > +{ > + if (ext_mode == 0) > + clk_period /= 2; > + > + return (trp_cnt + 1) * clk_period + trhoh_min - trea_max; > +} > + > +static int > +cadence_nand_setup_data_interface(struct nand_chip *chip, int chipnr, > + const struct nand_data_interface *conf) > +{ > + const struct nand_sdr_timings *sdr; > + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); > + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); > + struct cadence_nand_timings *t = &cdns_chip->timings; > + u32 reg; > + u32 board_delay = cdns_ctrl->board_delay; > + u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL, > + cdns_ctrl->nf_clk_rate); > + u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt; > + u32 tfeat_cnt, trhz_cnt, tvdly_cnt; > + u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt; > + u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0; > + u32 if_skew = cdns_ctrl->caps1->if_skew; > + u32 board_delay_skew_min = board_delay - if_skew; > + u32 board_delay_skew_max = board_delay + if_skew; > + u32 dqs_sampl_res, phony_dqs_mod; > + u32 tdvw, tdvw_min, tdvw_max; > + u32 ext_rd_mode, ext_wr_mode; > + u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0; > + u32 sampling_point; > + > + sdr = nand_get_sdr_timings(conf); > + if (IS_ERR(sdr)) > + return PTR_ERR(sdr); > + > + memset(t, 0, sizeof(*t)); > + /* Sampling point calculation. */ > + > + if (cdns_ctrl->caps2.is_phy_type_dll) > + phony_dqs_mod = 2; > + else > + phony_dqs_mod = 1; > + > + dqs_sampl_res = clk_period / phony_dqs_mod; > + > + tdvw_min = sdr->tREA_max + board_delay_skew_max; > + /* > + * The idea of those calculation is to get the optimum value > + * for tRP and tRH timings. If it is NOT possible to sample data > + * with optimal tRP/tRH settings, the parameters will be extended. > + * If clk_period is 50ns (the lowest value) this condition is met > + * for asynchronous timing modes 1, 2, 3, 4 and 5. > + * If clk_period is 20ns the condition is met only > + * for asynchronous timing mode 5. > + */ > + if (sdr->tRC_min <= clk_period && > + sdr->tRP_min <= (clk_period / 2) && > + sdr->tREH_min <= (clk_period / 2)) { > + /* Performance mode. */ > + ext_rd_mode = 0; > + tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, > + sdr->tREA_max, ext_rd_mode); > + tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min, > + board_delay_skew_min, > + ext_rd_mode); > + /* > + * Check if data valid window and sampling point can be found > + * and is not on the edge (ie. we have hold margin). > + * If not extend the tRP timings. > + */ > + if (tdvw > 0) { > + if (tdvw_max <= tdvw_min || > + (tdvw_max % dqs_sampl_res) == 0) { > + /* > + * No valid sampling point so the RE pulse need > + * to be widen widening by half clock cycle. > + */ > + ext_rd_mode = 1; > + } > + } else { > + /* > + * There is no valid window > + * to be able to sample data the tRP need to be widen. > + * Very safe calculations are performed here. > + */ > + trp_cnt = (sdr->tREA_max + board_delay_skew_max > + + dqs_sampl_res) / clk_period; > + ext_rd_mode = 1; > + } > + > + } else { > + /* Extended read mode. */ > + u32 trh; > + > + ext_rd_mode = 1; > + trp_cnt = calc_cycl(sdr->tRP_min, clk_period); > + trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period); > + if (sdr->tREH_min >= trh) > + trh_cnt = calc_cycl(sdr->tREH_min, clk_period); > + else > + trh_cnt = calc_cycl(trh, clk_period); > + > + tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, > + sdr->tREA_max, ext_rd_mode); > + /* > + * Check if data valid window and sampling point can be found > + * or if it is at the edge check if previous is valid > + * - if not extend the tRP timings. > + */ > + if (tdvw > 0) { > + tdvw_max = calc_tdvw_max(trp_cnt, clk_period, > + sdr->tRHOH_min, > + board_delay_skew_min, > + ext_rd_mode); > + > + if ((((tdvw_max / dqs_sampl_res) > + * dqs_sampl_res) <= tdvw_min) || > + (((tdvw_max % dqs_sampl_res) == 0) && > + (((tdvw_max / dqs_sampl_res - 1) > + * dqs_sampl_res) <= tdvw_min))) { > + /* > + * Data valid window width is lower than > + * sampling resolution and do not hit any > + * sampling point to be sure the sampling point > + * will be found the RE low pulse width will be > + * extended by one clock cycle. > + */ > + trp_cnt = trp_cnt + 1; > + } > + } else { > + /* > + * There is no valid window to be able to sample data. > + * The tRP need to be widen. > + * Very safe calculations are performed here. > + */ > + trp_cnt = (sdr->tREA_max + board_delay_skew_max > + + dqs_sampl_res) / clk_period; > + } > + } > + > + tdvw_max = calc_tdvw_max(trp_cnt, clk_period, > + sdr->tRHOH_min, > + board_delay_skew_min, ext_rd_mode); > + > + if (sdr->tWC_min <= clk_period && > + (sdr->tWP_min + if_skew) <= (clk_period / 2) && > + (sdr->tWH_min + if_skew) <= (clk_period / 2)) { > + ext_wr_mode = 0; > + } else { > + u32 twh; > + > + ext_wr_mode = 1; > + twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period); > + if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew)) > + twp_cnt = calc_cycl(sdr->tALS_min + if_skew, > + clk_period); > + > + twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period); > + if (sdr->tWH_min >= twh) > + twh = sdr->tWH_min; > + > + twh_cnt = calc_cycl(twh + if_skew, clk_period); > + } > + > + reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt); > + reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt); > + reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt); > + reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt); > + t->async_toggle_timings = reg; > + dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg); > + > + tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period); > + tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period); > + twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period); > + trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period); > + reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt); > + > + /* > + * If timing exceeds delay field in timing register > + * then use maximum value. > + */ > + if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt)) > + reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt); > + else > + reg |= TIMINGS0_TCCS; > + > + reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt); > + reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt); > + t->timings0 = reg; > + dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg); > + > + /* The following is related to single signal so skew is not needed. */ > + trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period); > + trhz_cnt = trhz_cnt + 1; > + twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period); > + /* > + * Because of the two stage syncflop the value must be increased by 3 > + * first value is related with sync, second value is related > + * with output if delay. > + */ > + twb_cnt = twb_cnt + 3 + 5; > + /* > + * The following is related to the we edge of the random data input > + * sequence so skew is not needed. > + */ > + tvdly_cnt = calc_cycl(500000 + if_skew, clk_period); > + reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt); > + reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt); > + reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt); > + t->timings1 = reg; > + dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg); > + > + tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period); > + if (tfeat_cnt < twb_cnt) > + tfeat_cnt = twb_cnt; > + > + tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period); > + tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period); > + > + reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt); > + reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt); > + reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt); > + t->timings2 = reg; > + dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg); > + > + if (cdns_ctrl->caps2.is_phy_type_dll) { > + reg = DLL_PHY_CTRL_DLL_RST_N; > + if (ext_wr_mode) > + reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE; > + if (ext_rd_mode) > + reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE; > + > + reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7); > + reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7); > + t->dll_phy_ctrl = reg; > + dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg); > + } > + > + /* Sampling point calculation. */ > + if ((tdvw_max % dqs_sampl_res) > 0) > + sampling_point = tdvw_max / dqs_sampl_res; > + else > + sampling_point = (tdvw_max / dqs_sampl_res - 1); > + > + if (sampling_point * dqs_sampl_res > tdvw_min) { > + dll_phy_dqs_timing = > + FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4); > + dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS; > + phony_dqs_timing = sampling_point / phony_dqs_mod; > + > + if ((sampling_point % 2) > 0) { > + dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL; > + if ((tdvw_max % dqs_sampl_res) == 0) > + /* > + * Calculation for sampling point at the edge > + * of data and being odd number. > + */ > + phony_dqs_timing = (tdvw_max / dqs_sampl_res) > + / phony_dqs_mod - 1; > + > + if (!cdns_ctrl->caps2.is_phy_type_dll) > + phony_dqs_timing--; > + > + } else { > + phony_dqs_timing--; > + } > + rd_del_sel = phony_dqs_timing + 3; > + } else { > + dev_warn(cdns_ctrl->dev, > + "ERROR : cannot find valid sampling point\n"); > + } > + > + reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing); > + if (cdns_ctrl->caps2.is_phy_type_dll) > + reg |= PHY_CTRL_SDR_DQS; > + t->phy_ctrl = reg; > + dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg); > + > + if (cdns_ctrl->caps2.is_phy_type_dll) { > + dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0); > + dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2); > + dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n", > + dll_phy_dqs_timing); > + t->phy_dqs_timing = dll_phy_dqs_timing; > + > + reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel); > + dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n", > + reg); > + t->phy_gate_lpbk_ctrl = reg; > + > + dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n", > + PHY_DLL_MASTER_CTRL_BYPASS_MODE); > + dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0); > + } > + > + return 0; > +} > + > +int cadence_nand_attach_chip(struct nand_chip *chip) > +{ > + struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); > + struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); > + struct mtd_info *mtd = nand_to_mtd(chip); > + u32 max_oob_data_size; > + int ret; > + > + if (chip->options & NAND_BUSWIDTH_16) { > + ret = cadence_nand_set_access_width16(cdns_ctrl, true); > + if (ret) > + goto free_buf; > + } > + > + chip->bbt_options |= NAND_BBT_USE_FLASH; > + chip->bbt_options |= NAND_BBT_NO_OOB; > + chip->ecc.mode = NAND_ECC_HW; > + > + chip->options |= NAND_NO_SUBPAGE_WRITE; > + > + cdns_chip->bbm_offs = chip->badblockpos; > + if (chip->options & NAND_BUSWIDTH_16) { > + cdns_chip->bbm_offs &= ~0x01; > + cdns_chip->bbm_len = 2; > + } else { > + cdns_chip->bbm_len = 1; > + } > + > + ret = nand_ecc_choose_conf(chip, > + &cdns_ctrl->ecc_caps, > + mtd->oobsize - cdns_chip->bbm_len); > + if (ret) { > + dev_err(cdns_ctrl->dev, "ECC configuration failed\n"); > + goto free_buf; > + } > + > + dev_dbg(cdns_ctrl->dev, > + "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", > + chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); > + > + /* Error correction configuration. */ > + cdns_chip->sector_size = chip->ecc.size; > + cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size; > + > + cdns_chip->avail_oob_size = mtd->oobsize > + - cdns_chip->sector_count * chip->ecc.bytes; > + > + max_oob_data_size = MAX_OOB_SIZE_PER_SECTOR; > + > + if (cdns_chip->avail_oob_size > max_oob_data_size) > + cdns_chip->avail_oob_size = max_oob_data_size; > + > + if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len > + + cdns_chip->sector_count > + * chip->ecc.bytes) > mtd->oobsize) If the line is not readable enough you can use intermediate variables. Also the priority of the '*' operator could be enforced with parenthesis. Really this is just a nit pick :) > + cdns_chip->avail_oob_size -= 4; > + > + cdns_chip->corr_str_idx = > + cadence_nand_get_ecc_strength_idx(cdns_ctrl, > + chip->ecc.strength); > + if (cdns_chip->corr_str_idx < 0) > + return -EINVAL; > + > + if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, > + 1000000, > + CTRL_STATUS_CTRL_BUSY, true)) > + return -ETIMEDOUT; > + > + cadence_nand_set_ecc_strength(cdns_ctrl, > + cdns_chip->corr_str_idx); > + > + cadence_nand_set_erase_detection(cdns_ctrl, true, > + chip->ecc.strength); > + > + /* Override the default read operations. */ > + chip->ecc.read_page = cadence_nand_read_page; > + chip->ecc.read_page_raw = cadence_nand_read_page_raw; > + chip->ecc.write_page = cadence_nand_write_page; > + chip->ecc.write_page_raw = cadence_nand_write_page_raw; > + chip->ecc.read_oob = cadence_nand_read_oob; > + chip->ecc.write_oob = cadence_nand_write_oob; > + chip->ecc.read_oob_raw = cadence_nand_read_oob_raw; > + chip->ecc.write_oob_raw = cadence_nand_write_oob_raw; > + > + if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size) { > + cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize; > + kfree(cdns_ctrl->buf); > + cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL); > + if (!cdns_ctrl->buf) { > + ret = -ENOMEM; > + goto free_buf; > + } > + } > + > + /* Is 32-bit DMA supported? */ > + ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32)); > + if (ret) { > + dev_err(cdns_ctrl->dev, "no usable DMA configuration\n"); > + goto free_buf; > + } > + > + mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops); > + > + return 0; > + > +free_buf: > + kfree(cdns_ctrl->buf); > + > + return ret; > +} > + > +static const struct nand_controller_ops cadence_nand_controller_ops = { > + .attach_chip = cadence_nand_attach_chip, > + .exec_op = cadence_nand_exec_op, > + .setup_data_interface = cadence_nand_setup_data_interface, > +}; > + > +static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl, > + struct device_node *np) > +{ > + struct cdns_nand_chip *cdns_chip; > + struct mtd_info *mtd; > + struct nand_chip *chip; > + int nsels, ret, i; > + u32 cs; > + > + nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); > + if (nsels <= 0) { > + dev_err(cdns_ctrl->dev, "missing/invalid reg property\n"); > + return -EINVAL; > + } > + > + /* Allocate the nand chip structure. */ > + cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) + > + (nsels * sizeof(u8)), > + GFP_KERNEL); > + if (!cdns_chip) { > + dev_err(cdns_ctrl->dev, "could not allocate chip structure\n"); > + return -ENOMEM; > + } > + > + cdns_chip->nsels = nsels; > + > + for (i = 0; i < nsels; i++) { > + /* Retrieve CS id. */ > + ret = of_property_read_u32_index(np, "reg", i, &cs); > + if (ret) { > + dev_err(cdns_ctrl->dev, > + "could not retrieve reg property: %d\n", > + ret); > + return ret; > + } > + > + if (cs >= cdns_ctrl->caps2.max_banks) { > + dev_err(cdns_ctrl->dev, > + "invalid reg value: %u (max CS = %d)\n", > + cs, cdns_ctrl->caps2.max_banks); > + return -EINVAL; > + } > + > + if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) { > + dev_err(cdns_ctrl->dev, > + "CS %d already assigned\n", cs); > + return -EINVAL; > + } > + > + cdns_chip->cs[i] = cs; > + } > + > + chip = &cdns_chip->chip; > + chip->controller = &cdns_ctrl->controller; > + nand_set_flash_node(chip, np); > + > + mtd = nand_to_mtd(chip); > + mtd->dev.parent = cdns_ctrl->dev; > + > + /* > + * Default to HW ECC engine mode. If the nand-ecc-mode property is given > + * in the DT node, this entry will be overwritten in nand_scan_ident(). > + */ > + chip->ecc.mode = NAND_ECC_HW; > + > + ret = nand_scan(chip, cdns_chip->nsels); > + if (ret) { > + dev_err(cdns_ctrl->dev, "could not scan the nand chip\n"); > + return ret; > + } > + > + ret = mtd_device_register(mtd, NULL, 0); > + if (ret) { > + dev_err(cdns_ctrl->dev, > + "failed to register mtd device: %d\n", ret); > + nand_cleanup(chip); > + return ret; > + } > + > + list_add_tail(&cdns_chip->node, &cdns_ctrl->chips); > + > + return 0; > +} > + > +static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl) > +{ > + struct cdns_nand_chip *entry, *temp; > + > + list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) { > + nand_release(&entry->chip); > + list_del(&entry->node); > + } > +} > + > +static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl) > +{ > + struct device_node *np = cdns_ctrl->dev->of_node; > + struct device_node *nand_np; > + int max_cs = cdns_ctrl->caps2.max_banks; > + int nchips, ret; > + > + nchips = of_get_child_count(np); > + > + if (nchips > max_cs) { > + dev_err(cdns_ctrl->dev, > + "too many NAND chips: %d (max = %d CS)\n", > + nchips, max_cs); > + return -EINVAL; > + } > + > + for_each_child_of_node(np, nand_np) { > + ret = cadence_nand_chip_init(cdns_ctrl, nand_np); > + if (ret) { > + of_node_put(nand_np); > + cadence_nand_chips_cleanup(cdns_ctrl); > + return ret; > + } > + } > + > + return 0; > +} > + > +static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl) > +{ > + dma_cap_mask_t mask; > + int ret; > + > + cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev, > + sizeof(*cdns_ctrl->cdma_desc), > + &cdns_ctrl->dma_cdma_desc, > + GFP_KERNEL); > + if (!cdns_ctrl->dma_cdma_desc) > + return -ENOMEM; > + > + cdns_ctrl->buf_size = SZ_16K; > + cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL); > + if (!cdns_ctrl->buf) { > + goto free_buf_desc; > + ret = -ENOMEM; > + } > + > + if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr, > + IRQF_SHARED, "cadence-nand-controller", > + cdns_ctrl)) { > + dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n"); > + ret = -ENODEV; > + goto free_buf; > + } > + > + spin_lock_init(&cdns_ctrl->irq_lock); > + init_completion(&cdns_ctrl->complete); > + > + ret = cadence_nand_hw_init(cdns_ctrl); > + if (ret) > + goto disable_irq; > + > + dma_cap_zero(mask); > + dma_cap_set(DMA_MEMCPY, mask); > + > + if (cdns_ctrl->caps1->has_dma) { > + cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL); > + if (!cdns_ctrl->dmac) { > + dev_err(cdns_ctrl->dev, > + "Unable to get a DMA channel\n"); > + ret = -EBUSY; > + goto disable_irq; > + } > + } > + > + nand_controller_init(&cdns_ctrl->controller); > + INIT_LIST_HEAD(&cdns_ctrl->chips); > + > + cdns_ctrl->controller.ops = &cadence_nand_controller_ops; > + cdns_ctrl->curr_corr_str_idx = 0xFF; > + > + ret = cadence_nand_chips_init(cdns_ctrl); > + if (ret) { > + dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n", > + ret); > + goto dma_release_chnl; > + } > + > + return 0; > + > +dma_release_chnl: > + if (cdns_ctrl->dmac) > + dma_release_channel(cdns_ctrl->dmac); > + > +disable_irq: > + cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); > + > +free_buf: > + kfree(cdns_ctrl->buf); > + > +free_buf_desc: > + dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), > + cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); > + > + return ret; > +} > + > +/* Driver exit point. */ > +static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl) > +{ > + cadence_nand_chips_cleanup(cdns_ctrl); > + cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); > + kfree(cdns_ctrl->buf); > + dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), > + cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); > + > + if (cdns_ctrl->dmac) > + dma_release_channel(cdns_ctrl->dmac); > +} > + > +struct cadence_nand_dt { > + struct cdns_nand_ctrl cdns_ctrl; > + struct clk *clk; > +}; > + > +static const struct cadence_nand_dt_devdata cadence_nand_default = { > + .if_skew = 0, > + .has_dma = 1, > +}; > + > +static const struct of_device_id cadence_nand_dt_ids[] = { > + { > + .compatible = "cdns,hp-nfc", > + .data = &cadence_nand_default > + }, {} > +}; > + > +MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids); > + > +static int cadence_nand_dt_probe(struct platform_device *ofdev) > +{ > + struct resource *res; > + struct cadence_nand_dt *dt; > + struct cdns_nand_ctrl *cdns_ctrl; > + int ret; > + const struct of_device_id *of_id; > + const struct cadence_nand_dt_devdata *devdata; > + u32 val; > + > + of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev); > + if (of_id) { > + ofdev->id_entry = of_id->data; > + devdata = of_id->data; > + } else { > + pr_err("Failed to find the right device id.\n"); > + return -ENOMEM; > + } > + > + dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL); > + if (!dt) > + return -ENOMEM; > + > + cdns_ctrl = &dt->cdns_ctrl; > + cdns_ctrl->caps1 = devdata; > + > + cdns_ctrl->dev = &ofdev->dev; > + cdns_ctrl->irq = platform_get_irq(ofdev, 0); > + if (cdns_ctrl->irq < 0) { > + dev_err(&ofdev->dev, "no irq defined\n"); > + return cdns_ctrl->irq; > + } > + dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq); > + > + res = platform_get_resource(ofdev, IORESOURCE_MEM, 0); > + cdns_ctrl->reg = devm_ioremap_resource(cdns_ctrl->dev, res); I think this will be refused by robots, you have to squash the two lines into cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0); > + if (IS_ERR(cdns_ctrl->reg)) { > + dev_err(&ofdev->dev, "devm_ioremap_resource res 0 failed\n"); > + return PTR_ERR(cdns_ctrl->reg); > + } > + > + res = platform_get_resource(ofdev, IORESOURCE_MEM, 1); > + cdns_ctrl->io.dma = res->start; > + cdns_ctrl->io.virt = devm_ioremap_resource(&ofdev->dev, res); > + if (IS_ERR(cdns_ctrl->io.virt)) { > + dev_err(cdns_ctrl->dev, "devm_ioremap_resource res 1 failed\n"); > + return PTR_ERR(cdns_ctrl->io.virt); > + } > + > + dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk"); > + if (IS_ERR(dt->clk)) > + return PTR_ERR(dt->clk); > + > + cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk); > + > + ret = of_property_read_u32(ofdev->dev.of_node, > + "cdns,board-delay-ps", &val); > + if (ret) { > + dev_warn(cdns_ctrl->dev, "missing cdns,board-delay-ps property\n"); Maybe you could turn this property into an optional one, with a default value? > + val = 0; > + } > + cdns_ctrl->board_delay = val; > + > + ret = cadence_nand_init(cdns_ctrl); > + if (ret) > + return ret; > + > + platform_set_drvdata(ofdev, dt); > + return 0; > +} > + > +static int cadence_nand_dt_remove(struct platform_device *ofdev) > +{ > + struct cadence_nand_dt *dt = platform_get_drvdata(ofdev); > + > + cadence_nand_remove(&dt->cdns_ctrl); > + > + return 0; > +} > + > +static struct platform_driver cadence_nand_dt_driver = { > + .probe = cadence_nand_dt_probe, > + .remove = cadence_nand_dt_remove, > + .driver = { > + .name = "cadence-nand-controller", > + .of_match_table = cadence_nand_dt_ids, > + }, > +}; > + > +module_platform_driver(cadence_nand_dt_driver); > + > +MODULE_AUTHOR("Piotr Sroka <piotrs@xxxxxxxxxxx>"); > +MODULE_LICENSE("GPL v2"); > +MODULE_DESCRIPTION("Driver for Cadence NAND flash controller"); > + Would you mind adding yourself in MAINTAINERS for this driver (+ bindings)? Thanks, Miquèl ______________________________________________________ Linux MTD discussion mailing list http://lists.infradead.org/mailman/listinfo/linux-mtd/