Hi Helmut, > -----Original Message----- > From: Helmut Grohne <helmut.grohne@xxxxxxxxxx> > Sent: Friday, June 21, 2019 2:12 PM > To: Naga Sureshkumar Relli <nagasure@xxxxxxxxxx> > Cc: miquel.raynal@xxxxxxxxxxx; richard@xxxxxx; dwmw2@xxxxxxxxxxxxx; > computersforpeace@xxxxxxxxx; marek.vasut@xxxxxxxxx; vigneshr@xxxxxx; linux- > mtd@xxxxxxxxxxxxxxxxxxx; linux-kernel@xxxxxxxxxxxxxxx; Michal Simek <michals@xxxxxxxxxx> > Subject: Re: [LINUX PATCH v16] mtd: rawnand: pl353: Add basic driver for arm pl353 smc > nand interface > > Hi, > > On Mon, Jun 17, 2019 at 02:50:02AM -0600, Naga Sureshkumar Relli wrote: > > Add driver for arm pl353 static memory controller nand interface with > > HW ECC support. This controller is used in Xilinx Zynq SoC for > > interfacing the NAND flash memory. > > Thank you for the update. > > > -> Tested Micron MT29F2G08ABAEAWP (On-die capable) and AMD/Spansion > S34ML01G1. > Thank you for your effort on testing. > I've tested this driver with the same Micron MT29F2G08ABAEAWP using I haven't tried jffs2 previously. I tried it now and I also seen the similar behavior. I found one issue in nand_micron.c and in pl353_nand.c where in micron_nand_init(), without checking if (!chip->ecc.read_page), it is over writing The driver's read_page(). So I have added check like below in nand_micron.c @@ -500,8 +500,11 @@ static int micron_nand_init(struct nand_chip *chip) chip->ecc.size = 512; chip->ecc.strength = chip->base.eccreq.strength; chip->ecc.algo = NAND_ECC_BCH; - chip->ecc.read_page = micron_nand_read_page_on_die_ecc; - chip->ecc.write_page = micron_nand_write_page_on_die_ecc; + if (!chip->ecc.read_page) + chip->ecc.read_page = micron_nand_read_page_on_die_ecc; + + if (!chip->ecc.write_page) + chip->ecc.write_page = micron_nand_write_page_on_die_ecc; And in pl353_nand.c driver, @@ -1024,6 +1028,8 @@ static int pl353_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc, ecc->read_oob = pl353_nand_read_oob; ecc->write_oob = pl353_nand_write_oob; if (ecc_mode == NAND_ECC_ON_DIE) { + ecc->write_page = pl353_nand_write_page_raw; + ecc->read_page = pl353_nand_read_page_raw; ecc->write_page_raw = pl353_nand_write_page_raw; ecc->read_page_raw = pl353_nand_read_page_raw; with this changes, jffs2 is also working fine(able to mount and unmount and data integrity is working fine) I will update and send the updated patches. > v5.2-rc5 and I am still seeing lots of ecc errors aka mtd_read returning -EBADMSG. I traced > the source of these errors to > micron_nand_on_die_ecc_status_4 where the NAND_STATUS_FAIL bit is often found. I > reproduced this symptom on multiple boards. An older version of the driver (against v4.14) > does not show this behaviour on the same devices. I was able to reliably reproduce this > behaviour using the following sequence: > * flash_erase -j /dev/mtdN 0 0 > * mount -t jffs2 /dev/mtdblockN /mnt > * touch /mnt/foo > * umount /mnt > * mount -t jffs2 /dev/mtdblockN /mnt > The relevant kernel message is: > > jffs2: mtd->read(0xXXX bytes from 0xXXXXXXX) returned ECC error > > I also occasionally saw errors from nandtest ("Byte 0xXXXXX is XX should be XX"). They > only reproduce when running nandtest multiple times (less than 10). When such errors > happen, they are not simple bit flips. Lots of consecutive bytes differ entirely. Again, I am > unable to reproduce these errors with the older driver. > > Possibly I'm wrongly configuring the flash. Can you share a correct device tree for it? Given > my reading of the driver, the nand-ecc-algo is irrelevant, because nand_micron.c forces bch for > on-die ecc-mode anyway. > The ecc-strength thus becomes 4. So I'm left wondering what needs to be configured beyond > nand-ecc-mode = "on-die" and nand-bus-width = <8>? Below one I am using for testing. flash@e1000000 { status = "okay"; compatible = "arm,pl353-nand-r2p1"; reg = <0xe1000000 0x1000000>; #address-cells = <0x1>; #size-cells = <0x1>; nand-ecc-mode = "on-die"; nand-bus-width = <0x8>; partition@nand-fsbl-uboot { label = "nand-fsbl-uboot"; reg = <0x0 0x2000000>; }; partition@nand-linux { label = "nand-linux"; reg = <0x100000 0x500000>; }; partition@nand-device-tree { label = "nand-device-tree"; reg = <0x600000 0x20000>; }; partition@nand-rootfs { label = "nand-rootfs"; reg = <0x620000 0x5e0000>; }; partition@nand-bitstream { label = "nand-bitstream"; reg = <0xc00000 0x400000>; }; }; > > In addition to testing the driver, I looked at the source again. > > > Changes in v15: > > It seems that this version lost the Kconfig and Makefile integration. Sorry, will update it. > > > --- /dev/null > > +++ b/drivers/mtd/nand/raw/pl353_nand.c > > @@ -0,0 +1,1306 @@ > > +// SPDX-License-Identifier: GPL-2.0 > > +/* > > + * ARM PL353 NAND flash controller driver > > + * > > + * Copyright (C) 2017 Xilinx, Inc > > + * Author: Punnaiah chowdary kalluri <punnaiah@xxxxxxxxxx> > > + * Author: Naga Sureshkumar Relli <nagasure@xxxxxxxxxx> > > + * > > + */ > > + > > +#include <linux/err.h> > > +#include <linux/delay.h> > > +#include <linux/interrupt.h> > > +#include <linux/io.h> > > +#include <linux/ioport.h> > > +#include <linux/irq.h> > > +#include <linux/module.h> > > +#include <linux/moduleparam.h> > > +#include <linux/mtd/mtd.h> > > +#include <linux/mtd/rawnand.h> > > +#include <linux/mtd/nand_ecc.h> > > +#include <linux/mtd/partitions.h> > > +#include <linux/of_address.h> > > +#include <linux/of_device.h> > > +#include <linux/of_platform.h> > > +#include <linux/platform_device.h> > > +#include <linux/slab.h> > > +#include <linux/pl353-smc.h> > > +#include <linux/clk.h> > > + > > +#define PL353_NAND_DRIVER_NAME "pl353-nand" > > + > > +/* NAND flash driver defines */ > > +#define PL353_NAND_ECC_SIZE 512 /* Size of data for ECC operation */ > > + > > +/* AXI Address definitions */ > > +#define START_CMD_SHIFT 3 > > +#define END_CMD_SHIFT 11 > > +#define END_CMD_VALID_SHIFT 20 > > +#define ADDR_CYCLES_SHIFT 21 > > +#define CLEAR_CS_SHIFT 21 > > +#define ECC_LAST_SHIFT 10 > > +#define COMMAND_PHASE (0 << 19) > > +#define DATA_PHASE BIT(19) > > + > > +#define PL353_NAND_ECC_LAST BIT(ECC_LAST_SHIFT) /* Set > ECC_Last */ > > +#define PL353_NAND_CLEAR_CS BIT(CLEAR_CS_SHIFT) /* Clear chip > select */ > > + > > +#define PL353_NAND_ECC_BUSY_TIMEOUT (1 * HZ) > > +#define PL353_NAND_DEV_BUSY_TIMEOUT (1 * HZ) > > +#define PL353_NAND_LAST_TRANSFER_LENGTH 4 > > +#define PL353_NAND_ECC_VALID_SHIFT 24 > > +#define PL353_NAND_ECC_VALID_MASK 0x40 > > +#define PL353_ECC_BITS_BYTEOFF_MASK 0x1FF > > +#define PL353_ECC_BITS_BITOFF_MASK 0x7 > > +#define PL353_ECC_BIT_MASK 0xFFF > > +#define PL353_TREA_MAX_VALUE 1 > > +#define PL353_MAX_ECC_CHUNKS 4 > > +#define PL353_MAX_ECC_BYTES 3 > > + > > +struct pl353_nfc_op { > > + u32 cmnds[2]; > > + u32 addrs; > > + u32 naddrs; > > + u16 addrs_56; /* Address cycles 5 and 6 */ > > + unsigned int data_instr_idx; > > + unsigned int rdy_timeout_ms; > > + unsigned int rdy_delay_ns; > > + const struct nand_op_instr *data_instr; }; > > + > > +/** > > + * struct pl353_nand_controller - Defines the NAND flash controller driver > > + * instance > > + * @controller: NAND controller structure > > + * @chip: NAND chip information structure > > + * @dev: Parent device (used to print error messages) > > + * @regs: Virtual address of the NAND flash device > > + * @dataphase_addrflags:Flags required for data phase transfers > > + * @addr_cycles: Address cycles > > + * @mclk: Memory controller clock > > + * @mclk_rate: Clock rate of the Memory controller > > + * @buswidth: Bus width 8 or 16 > > + */ > > +struct pl353_nand_controller { > > + struct nand_controller controller; > > + struct nand_chip chip; > > + struct device *dev; > > + void __iomem *regs; > > + u32 dataphase_addrflags; > > + u8 addr_cycles; > > + struct clk *mclk; > > The mclk attribute is only referenced in pl353_nand_probe. There is no need to store it in this > struct. Ok. will remove it. > > > + ulong mclk_rate; > > + u32 buswidth; > > +}; > > + > > +static inline struct pl353_nand_controller * > > + to_pl353_nand(struct nand_chip *chip) { > > + return container_of(chip, struct pl353_nand_controller, chip); } > > + > > +static int pl353_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section, > > + struct mtd_oob_region *oobregion) { > > + struct nand_chip *chip = mtd_to_nand(mtd); > > + > > + if (section >= chip->ecc.steps) > > + return -ERANGE; > > + > > + oobregion->offset = (section * chip->ecc.bytes); > > + oobregion->length = chip->ecc.bytes; > > + > > + return 0; > > +} > > + > > +static int pl353_ecc_ooblayout16_free(struct mtd_info *mtd, int section, > > + struct mtd_oob_region *oobregion) { > > + struct nand_chip *chip = mtd_to_nand(mtd); > > + > > + if (section >= chip->ecc.steps) > > + return -ERANGE; > > + > > + oobregion->offset = (section * chip->ecc.bytes) + 8; > > + oobregion->length = 8; > > + > > + return 0; > > +} > > + > > +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout16_ops = { > > + .ecc = pl353_ecc_ooblayout16_ecc, > > + .free = pl353_ecc_ooblayout16_free, > > +}; > > + > > +static int pl353_ecc_ooblayout64_ecc(struct mtd_info *mtd, int section, > > + struct mtd_oob_region *oobregion) { > > + struct nand_chip *chip = mtd_to_nand(mtd); > > + > > + if (section) > > + return -ERANGE; > > + > > + oobregion->offset = (section * chip->ecc.bytes) + 52; > > You already know that `section == 0` here. Is there an advantage of including the `(0 * > something) +` here? Ok. will update this. > > > + oobregion->length = chip->ecc.bytes; > > + > > + return 0; > > +} > > + > > +static int pl353_ecc_ooblayout64_free(struct mtd_info *mtd, int section, > > + struct mtd_oob_region *oobregion) { > > + struct nand_chip *chip = mtd_to_nand(mtd); > > + > > + if (section) > > + return -ERANGE; > > + > > + oobregion->offset = (section * chip->ecc.bytes) + 2; > > Dito. Ok. will update this. > > > + oobregion->length = 50; > > + > > + return 0; > > +} > > + > > +static const struct mtd_ooblayout_ops pl353_ecc_ooblayout64_ops = { > > + .ecc = pl353_ecc_ooblayout64_ecc, > > + .free = pl353_ecc_ooblayout64_free, > > +}; > > + > > +/* Generic flash bbt decriptors */ > > +static u8 bbt_pattern[] = { 'B', 'b', 't', '0' }; static u8 > > +mirror_pattern[] = { '1', 't', 'b', 'B' }; > > + > > +static struct nand_bbt_descr bbt_main_descr = { > > + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | > NAND_BBT_WRITE > > + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, > > + .offs = 4, > > + .len = 4, > > + .veroffs = 20, > > + .maxblocks = 4, > > + .pattern = bbt_pattern > > +}; > > + > > +static struct nand_bbt_descr bbt_mirror_descr = { > > + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | > NAND_BBT_WRITE > > + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, > > + .offs = 4, > > + .len = 4, > > + .veroffs = 20, > > + .maxblocks = 4, > > + .pattern = mirror_pattern > > +}; > > + > > +static void pl353_nfc_force_byte_access(struct nand_chip *chip, > > + bool force_8bit) > > +{ > > + int ret; > > + struct pl353_nand_controller *xnfc = > > + container_of(chip, struct pl353_nand_controller, chip); > > + > > + if (xnfc->buswidth == 8) > > + return; > > + > > + if (force_8bit) > > + ret = pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_8); > > + else > > + ret = pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16); > > + > > + if (ret) > > + dev_err(xnfc->dev, "Error in Buswidth\n"); } > > + > > +static inline int pl353_wait_for_dev_ready(struct nand_chip *chip) { > > + unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT; > > + > > + while (!pl353_smc_get_nand_int_status_raw()) { > > + if (time_after_eq(jiffies, timeout)) { > > + pr_err("%s timed out\n", __func__); > > + return -ETIMEDOUT; > > + } > > + cond_resched(); > > + } > > + > > + pl353_smc_clr_nand_int(); > > + > > + return 0; > > +} > > + > > +/** > > + * pl353_nand_read_data_op - read chip data into buffer > > + * @chip: Pointer to the NAND chip info structure > > + * @in: Pointer to the buffer to store read data > > + * @len: Number of bytes to read > > + * @force_8bit: Force 8-bit bus access > > + * Return: Always return zero > > + */ > > +static void pl353_nand_read_data_op(struct nand_chip *chip, u8 *in, > > + unsigned int len, bool force_8bit) { > > + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); > > + int i; > > + > > + if (force_8bit) > > + pl353_nfc_force_byte_access(chip, true); > > + > > + if ((IS_ALIGNED((uint32_t)in, sizeof(uint32_t)) && > > + IS_ALIGNED(len, sizeof(uint32_t))) || !force_8bit) { > > Do you really mean `||` here? It seems that when `in` and `len` are properly aligned, there is no > way to force 8bit access with this implementation. Ok. I will check it and update. > > > + u32 *ptr = (u32 *)in; > > + > > + len /= 4; > > + for (i = 0; i < len; i++) > > + ptr[i] = readl(xnfc->regs + xnfc->dataphase_addrflags); > > + } else { > > + for (i = 0; i < len; i++) > > + in[i] = readb(xnfc->regs + xnfc->dataphase_addrflags); > > + } > > + > > + if (force_8bit) > > + pl353_nfc_force_byte_access(chip, false); } > > + > > +/** > > + * pl353_nand_write_buf - write buffer to chip > > + * @chip: Pointer to the nand_chip structure > > + * @buf: Pointer to the buffer to store write data > > + * @len: Number of bytes to write > > + * @force_8bit: Force 8-bit bus access > > + */ > > +static void pl353_nand_write_data_op(struct nand_chip *chip, const u8 *buf, > > + int len, bool force_8bit) > > +{ > > + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); > > + int i; > > + > > + if (force_8bit) > > + pl353_nfc_force_byte_access(chip, true); > > + > > + if ((IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && > > + IS_ALIGNED(len, sizeof(uint32_t))) || !force_8bit) { > > Dito. Ok. will update this. > > > + u32 *ptr = (u32 *)buf; > > + > > + len /= 4; > > + for (i = 0; i < len; i++) > > + writel(ptr[i], xnfc->regs + xnfc->dataphase_addrflags); > > + } else { > > + for (i = 0; i < len; i++) > > + writeb(buf[i], xnfc->regs + xnfc->dataphase_addrflags); > > + } > > + > > + if (force_8bit) > > + pl353_nfc_force_byte_access(chip, false); } > > + > > +static inline int pl353_wait_for_ecc_done(void) { > > + unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT; > > + > > + while (pl353_smc_ecc_is_busy()) { > > + if (time_after_eq(jiffies, timeout)) { > > + pr_err("%s timed out\n", __func__); > > + return -ETIMEDOUT; > > + } > > + cond_resched(); > > + } > > + > > + return 0; > > +} > > + > > +/** > > + * pl353_nand_calculate_hwecc - Calculate Hardware ECC > > + * @chip: Pointer to the nand_chip structure > > + * @data: Pointer to the page data > > + * @ecc: Pointer to the ECC buffer where ECC data needs to be stored > > + * > > + * This function retrieves the Hardware ECC data from the controller > > +and returns > > + * ECC data back to the MTD subsystem. > > + * It operates on a number of 512 byte blocks of NAND memory and can > > +be > > + * programmed to store the ECC codes after the data in memory. For > > +writes, > > + * the ECC is written to the spare area of the page. For reads, the > > +result of > > + * a block ECC check are made available to the device driver. > > + * > > + * ------------------------------------------------------------------------ > > + * | n * 512 blocks | extra | ecc | | > > + * | | block | codes | | > > + * > > +--------------------------------------------------------------------- > > +--- > > + * > > + * The ECC calculation uses a simple Hamming code, using 1-bit > > +correction 2-bit > > + * detection. It starts when a valid read or write command with a 512 > > +byte > > + * aligned address is detected on the memory interface. > > + * > > + * Return: 0 on success or error value on failure > > + */ > > +static int pl353_nand_calculate_hwecc(struct nand_chip *chip, > > + const u8 *data, u8 *ecc) > > +{ > > + u32 ecc_value; > > + u8 chunk, ecc_byte, ecc_status; > > + > > + for (chunk = 0; chunk < PL353_MAX_ECC_CHUNKS; chunk++) { > > + /* Read ECC value for each block */ > > + ecc_value = pl353_smc_get_ecc_val(chunk); > > + ecc_status = (ecc_value >> PL353_NAND_ECC_VALID_SHIFT); > > + > > + /* ECC value valid */ > > + if (ecc_status & PL353_NAND_ECC_VALID_MASK) { > > + for (ecc_byte = 0; ecc_byte < PL353_MAX_ECC_BYTES; > > + ecc_byte++) { > > + /* Copy ECC bytes to MTD buffer */ > > + *ecc = ~ecc_value & 0xFF; > > + ecc_value = ecc_value >> 8; > > + ecc++; > > + } > > + } else { > > + pr_warn("%s status failed\n", __func__); > > + return -1; > > + } > > + } > > + > > + return 0; > > +} > > + > > +/** > > + * pl353_nand_correct_data - ECC correction function > > + * @chip: Pointer to the nand_chip structure > > + * @buf: Pointer to the page data > > + * @read_ecc: Pointer to the ECC value read from spare data area > > + * @calc_ecc: Pointer to the calculated ECC value > > + * > > + * This function corrects the ECC single bit errors & detects 2-bit errors. > > + * > > + * Return: 0 if no ECC errors found > > + * 1 if single bit error found and corrected. > > + * -1 if multiple uncorrectable ECC errors found. > > + */ > > +static int pl353_nand_correct_data(struct nand_chip *chip, unsigned char *buf, > > + unsigned char *read_ecc, > > + unsigned char *calc_ecc) > > +{ > > + unsigned char bit_addr; > > + unsigned int byte_addr; > > + unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper; > > + unsigned short calc_ecc_lower, calc_ecc_upper; > > + > > + read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & > > + PL353_ECC_BIT_MASK; > > + read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & > > + PL353_ECC_BIT_MASK; > > + > > + calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & > > + PL353_ECC_BIT_MASK; > > + calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & > > + PL353_ECC_BIT_MASK; > > + > > + ecc_odd = read_ecc_lower ^ calc_ecc_lower; > > + ecc_even = read_ecc_upper ^ calc_ecc_upper; > > + > > + /* no error */ > > + if (!ecc_odd && !ecc_even) > > + return 0; > > + > > + if (ecc_odd == (~ecc_even & PL353_ECC_BIT_MASK)) { > > + /* bits [11:3] of error code is byte offset */ > > + byte_addr = (ecc_odd >> 3) & PL353_ECC_BITS_BYTEOFF_MASK; > > + /* bits [2:0] of error code is bit offset */ > > + bit_addr = ecc_odd & PL353_ECC_BITS_BITOFF_MASK; > > + /* Toggling error bit */ > > + buf[byte_addr] ^= (BIT(bit_addr)); > > + return 1; > > + } > > + > > + /* one error in parity */ > > + if (hweight32(ecc_odd | ecc_even) == 1) > > + return 1; > > + > > + /* Uncorrectable error */ > > + return -1; > > +} > > + > > +static void pl353_prepare_cmd(struct nand_chip *chip, > > + int page, int column, int start_cmd, int end_cmd, > > + bool read) > > +{ > > + struct mtd_info *mtd = nand_to_mtd(chip); > > + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); > > + unsigned long cmd_phase_data = 0; > > + u32 end_cmd_valid = 0, cmdphase_addrflags; > > + > > + end_cmd_valid = read ? 1 : 0; > > + cmdphase_addrflags = ((xnfc->addr_cycles > > + << ADDR_CYCLES_SHIFT) | > > + (end_cmd_valid << END_CMD_VALID_SHIFT) | > > + (COMMAND_PHASE) | > > + (end_cmd << END_CMD_SHIFT) | > > + (start_cmd << START_CMD_SHIFT)); > > + > > + /* Get the data phase address */ > > + xnfc->dataphase_addrflags = ((0x0 << CLEAR_CS_SHIFT) | > > + (0 << END_CMD_VALID_SHIFT) | > > + (DATA_PHASE) | > > + (end_cmd << END_CMD_SHIFT) | > > + (0x0 << ECC_LAST_SHIFT)); > > + > > + if (chip->options & NAND_BUSWIDTH_16) > > + column /= 2; > > + > > + cmd_phase_data = column; > > + if (mtd->writesize > PL353_NAND_ECC_SIZE) { > > + cmd_phase_data |= page << 16; > > + > > + /* Another address cycle for devices > 128MiB */ > > + if (chip->options & NAND_ROW_ADDR_3) { > > + writel_relaxed(cmd_phase_data, > > + xnfc->regs + cmdphase_addrflags); > > + cmd_phase_data = (page >> 16); > > + } > > + } else { > > + cmd_phase_data |= page << 8; > > + } > > + > > + writel_relaxed(cmd_phase_data, xnfc->regs + cmdphase_addrflags); } > > + > > +/** > > + * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read function > > + * @chip: Pointer to the nand_chip structure > > + * @chip: Pointer to the nand_chip structure > > + * @page: Page number to read > > + * > > + * Return: Always return zero > > + */ > > +static int pl353_nand_read_oob(struct nand_chip *chip, > > + int page) > > +{ > > + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); > > + struct mtd_info *mtd = nand_to_mtd(chip); > > + u8 *p; > > + > > + if (mtd->writesize < PL353_NAND_ECC_SIZE) > > + return 0; > > + > > + pl353_prepare_cmd(chip, page, mtd->writesize, NAND_CMD_READ0, > > + NAND_CMD_READSTART, 1); > > + if (pl353_wait_for_dev_ready(chip)) > > + return -ETIMEDOUT; > > + > > + p = chip->oob_poi; > > + pl353_nand_read_data_op(chip, p, > > + (mtd->oobsize - > > + PL353_NAND_LAST_TRANSFER_LENGTH), false); > > + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > > + > > + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS; > > + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH, > > + false); > > + > > + return 0; > > +} > > + > > +/** > > + * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write > function > > + * @chip: Pointer to the nand_chip structure > > + * @chip: Pointer to the NAND chip info structure > > + * @page: Page number to write > > + * > > + * Return: Zero on success and EIO on failure > > + */ > > +static int pl353_nand_write_oob(struct nand_chip *chip, > > + int page) > > +{ > > + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); > > + struct mtd_info *mtd = nand_to_mtd(chip); > > + const u8 *buf = chip->oob_poi; > > + > > + pl353_prepare_cmd(chip, page, mtd->writesize, NAND_CMD_SEQIN, > > + NAND_CMD_PAGEPROG, 0); > > + > > + pl353_nand_write_data_op(chip, buf, > > + (mtd->oobsize - > > + PL353_NAND_LAST_TRANSFER_LENGTH), false); > > + buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > > + > > + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS; > > + xnfc->dataphase_addrflags |= (1 << END_CMD_VALID_SHIFT); > > + pl353_nand_write_data_op(chip, buf, PL353_NAND_LAST_TRANSFER_LENGTH, > > + false); > > + if (pl353_wait_for_dev_ready(chip)) > > + return -ETIMEDOUT; > > + > > + return 0; > > +} > > + > > +/** > > + * pl353_nand_read_page_raw - [Intern] read raw page data without ecc > > + * @chip: Pointer to the nand_chip structure > > + * @buf: Pointer to the data buffer > > + * @oob_required: Caller requires OOB data read to chip->oob_poi > > + * @page: Page number to read > > + * > > + * Return: Always return zero > > + */ > > +static int pl353_nand_read_page_raw(struct nand_chip *chip, > > + u8 *buf, int oob_required, int page) { > > + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); > > + struct mtd_info *mtd = nand_to_mtd(chip); > > + u8 *p; > > + > > + pl353_prepare_cmd(chip, page, 0, NAND_CMD_READ0, > > + NAND_CMD_READSTART, 1); > > + if (pl353_wait_for_dev_ready(chip)) > > + return -ETIMEDOUT; > > + > > + pl353_nand_read_data_op(chip, buf, mtd->writesize, false); > > + p = chip->oob_poi; > > + pl353_nand_read_data_op(chip, p, > > + (mtd->oobsize - > > + PL353_NAND_LAST_TRANSFER_LENGTH), false); > > + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > > + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS; > > + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH, > > + false); > > + > > + return 0; > > +} > > + > > +/** > > + * pl353_nand_write_page_raw - [Intern] raw page write function > > + * @chip: Pointer to the nand_chip structure > > + * @buf: Pointer to the data buffer > > + * @oob_required: Caller requires OOB data read to chip->oob_poi > > + * @page: Page number to write > > + * > > + * Return: Always return zero > > + */ > > +static int pl353_nand_write_page_raw(struct nand_chip *chip, > > + const u8 *buf, int oob_required, > > + int page) > > +{ > > + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); > > + struct mtd_info *mtd = nand_to_mtd(chip); > > + u8 *p; > > + > > + pl353_prepare_cmd(chip, page, 0, NAND_CMD_SEQIN, > > + NAND_CMD_PAGEPROG, 0); > > + pl353_nand_write_data_op(chip, buf, mtd->writesize, false); > > + p = chip->oob_poi; > > + pl353_nand_write_data_op(chip, p, > > + (mtd->oobsize - > > + PL353_NAND_LAST_TRANSFER_LENGTH), false); > > + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > > + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS; > > + xnfc->dataphase_addrflags |= (1 << END_CMD_VALID_SHIFT); > > + pl353_nand_write_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH, > > + false); > > + > > + return 0; > > +} > > + > > +/** > > + * nand_write_page_hwecc - Hardware ECC based page write function > > + * @chip: Pointer to the nand_chip structure > > + * @buf: Pointer to the data buffer > > + * @oob_required: Caller requires OOB data read to chip->oob_poi > > + * @page: Page number to write > > + * > > + * This functions writes data and hardware generated ECC values in to the page. > > + * > > + * Return: Always return zero > > + */ > > +static int pl353_nand_write_page_hwecc(struct nand_chip *chip, > > + const u8 *buf, int oob_required, > > + int page) > > +{ > > + int eccsize = chip->ecc.size; > > + int eccsteps = chip->ecc.steps; > > + u8 *ecc_calc = chip->ecc.calc_buf; > > + u8 *oob_ptr; > > + const u8 *p = buf; > > + u32 ret; > > + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); > > + struct mtd_info *mtd = nand_to_mtd(chip); > > + > > + pl353_prepare_cmd(chip, page, 0, NAND_CMD_SEQIN, > > + NAND_CMD_PAGEPROG, 0); > > + > > + for ( ; (eccsteps - 1); eccsteps--) { > > + pl353_nand_write_data_op(chip, p, eccsize, false); > > + p += eccsize; > > + } > > + > > + pl353_nand_write_data_op(chip, p, > > + (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH), > > + false); > > + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH); > > + > > + /* Set ECC Last bit to 1 */ > > + xnfc->dataphase_addrflags |= PL353_NAND_ECC_LAST; > > + pl353_nand_write_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH, > > + false); > > + > > + /* Wait till the ECC operation is complete or timeout */ > > + ret = pl353_wait_for_ecc_done(); > > + if (ret) > > + dev_err(xnfc->dev, "ECC Timeout\n"); > > + > > + p = buf; > > + ret = chip->ecc.calculate(chip, p, &ecc_calc[0]); > > + if (ret) > > + return ret; > > + > > + /* Wait for ECC to be calculated and read the error values */ > > + ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, > > + 0, chip->ecc.total); > > + if (ret) > > + return ret; > > + > > + /* Clear ECC last bit */ > > + xnfc->dataphase_addrflags &= ~PL353_NAND_ECC_LAST; > > + > > + /* Write the spare area with ECC bytes */ > > + oob_ptr = chip->oob_poi; > > + pl353_nand_write_data_op(chip, oob_ptr, > > + (mtd->oobsize - > > + PL353_NAND_LAST_TRANSFER_LENGTH), false); > > + > > + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS; > > + xnfc->dataphase_addrflags |= (1 << END_CMD_VALID_SHIFT); > > + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > > + pl353_nand_write_data_op(chip, oob_ptr, > PL353_NAND_LAST_TRANSFER_LENGTH, > > + false); > > + if (pl353_wait_for_dev_ready(chip)) > > + return -ETIMEDOUT; > > + > > + return 0; > > +} > > + > > +/** > > + * pl353_nand_read_page_hwecc - Hardware ECC based page read function > > + * @chip: Pointer to the nand_chip structure > > + * @buf: Pointer to the buffer to store read data > > + * @oob_required: Caller requires OOB data read to chip->oob_poi > > + * @page: Page number to read > > + * > > + * This functions reads data and checks the data integrity by > > +comparing > > + * hardware generated ECC values and read ECC values from spare area. > > + * There is a limitation in SMC controller, that we must set ECC LAST > > +on > > + * last data phase access, to tell ECC block not to expect any data further. > > + * Ex: When number of ECC STEPS are 4, then till 3 we will write to > > +flash > > + * using SMC with HW ECC enabled. And for the last ECC STEP, we will > > +subtract > > + * 4bytes from page size, and will initiate a transfer. And the > > +remaining 4 as > > + * one more transfer with ECC_LAST bit set in NAND data phase > > +register to > > + * notify ECC block not to expect any more data. The last block > > +should be align > > + * with end of 512 byte block. Because of this limitation, we are not > > +using > > + * core routines. > > + * > > + * Return: 0 always and updates ECC operation status in to MTD structure > > + */ > > +static int pl353_nand_read_page_hwecc(struct nand_chip *chip, > > + u8 *buf, int oob_required, int page) { > > + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); > > + struct mtd_info *mtd = nand_to_mtd(chip); > > + int i, stat, eccsize = chip->ecc.size; > > + int eccbytes = chip->ecc.bytes; > > + int eccsteps = chip->ecc.steps; > > + unsigned int max_bitflips = 0; > > + u8 *p = buf; > > + u8 *ecc_calc = chip->ecc.calc_buf; > > + u8 *ecc = chip->ecc.code_buf; > > + u8 *oob_ptr; > > + u32 ret; > > + > > + pl353_prepare_cmd(chip, page, 0, NAND_CMD_READ0, > > + NAND_CMD_READSTART, 1); > > + if (pl353_wait_for_dev_ready(chip)) > > + return -ETIMEDOUT; > > + > > + for ( ; (eccsteps - 1); eccsteps--) { > > + pl353_nand_read_data_op(chip, p, eccsize, false); > > + p += eccsize; > > + } > > + > > + pl353_nand_read_data_op(chip, p, > > + (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH), > > + false); > > + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH); > > + > > + /* Set ECC Last bit to 1 */ > > + xnfc->dataphase_addrflags |= PL353_NAND_ECC_LAST; > > + pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH, > > + false); > > + > > + /* Wait till the ECC operation is complete or timeout */ > > + ret = pl353_wait_for_ecc_done(); > > + if (ret) > > + dev_err(xnfc->dev, "ECC Timeout\n"); > > + > > + /* Read the calculated ECC value */ > > + p = buf; > > + ret = chip->ecc.calculate(chip, p, &ecc_calc[0]); > > + if (ret) > > + return ret; > > + > > + /* Clear ECC last bit */ > > + xnfc->dataphase_addrflags &= ~PL353_NAND_ECC_LAST; > > + > > + /* Read the stored ECC value */ > > + oob_ptr = chip->oob_poi; > > + pl353_nand_read_data_op(chip, oob_ptr, > > + (mtd->oobsize - > > + PL353_NAND_LAST_TRANSFER_LENGTH), false); > > + > > + /* de-assert chip select */ > > + xnfc->dataphase_addrflags |= PL353_NAND_CLEAR_CS; > > + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > > + pl353_nand_read_data_op(chip, oob_ptr, > PL353_NAND_LAST_TRANSFER_LENGTH, > > + false); > > + > > + ret = mtd_ooblayout_get_eccbytes(mtd, ecc, chip->oob_poi, 0, > > + chip->ecc.total); > > + if (ret) > > + return ret; > > + > > + eccsteps = chip->ecc.steps; > > + p = buf; > > + > > + /* Check ECC error for all blocks and correct if it is correctable */ > > + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { > > + stat = chip->ecc.correct(chip, p, &ecc[i], &ecc_calc[i]); > > + if (stat < 0) { > > + mtd->ecc_stats.failed++; > > + } else { > > + mtd->ecc_stats.corrected += stat; > > + max_bitflips = max_t(unsigned int, max_bitflips, stat); > > + } > > + } > > + > > + return max_bitflips; > > +} > > + > > +/* NAND framework ->exec_op() hooks and related helpers */ static > > +void pl353_nfc_parse_instructions(struct nand_chip *chip, > > + const struct nand_subop *subop, > > + struct pl353_nfc_op *nfc_op) > > +{ > > + const struct nand_op_instr *instr = NULL; > > + unsigned int op_id, offset; > > + int i; > > + const u8 *addrs; > > + > > + memset(nfc_op, 0, sizeof(struct pl353_nfc_op)); > > + for (op_id = 0; op_id < subop->ninstrs; op_id++) { > > + instr = &subop->instrs[op_id]; > > + > > + switch (instr->type) { > > + case NAND_OP_CMD_INSTR: > > + if (op_id) > > + nfc_op->cmnds[1] = instr->ctx.cmd.opcode; > > + else > > + nfc_op->cmnds[0] = instr->ctx.cmd.opcode; > > + break; > > + > > + case NAND_OP_ADDR_INSTR: > > + offset = nand_subop_get_addr_start_off(subop, op_id); > > + nfc_op->naddrs = nand_subop_get_num_addr_cyc(subop, > > + op_id); > > + addrs = &instr->ctx.addr.addrs[offset]; > > + for (i = 0; i < min_t(unsigned int, 4, nfc_op->naddrs); > > + i++) > > + nfc_op->addrs |= instr->ctx.addr.addrs[i] << > > + (8 * i); > > This code is unchanged compared to v14. That may or may not be correct. > I've encountered further details regarding this matter: > > 1. The documentation of nand_subop_get_addr_start_off says: > * During driver development, one could be tempted to directly use the > * ->addr.addrs field of address instructions. This is wrong as address > * instructions might be split. > * > * Given an address instruction, returns the offset of the first cycle to issue. > > Now the previous line of code does use addr.addrs without considering the relevant offset. I > argue that either the documentation or the code is wrong. > > 2. During my testing, I added a WARN_ON(offset) to the driver. Whenever offset is exactly 0, > this potential bug cannot have any practical effects. In my tests, this warning never triggered. > So even if this is buggy, it does not have any practical effects for me. > > 3. I also looked into how other drivers use nand_subop_get_addr_start_off. Most drivers use it > in a way that matches my reading of the documentation and consider indices from > addr_start_off to addr_start_off + num_addr_cyc exclusively. vf610_nfc.c is an exception to > this rule and considers indices from addr_start_off to num_addr_cyc. If this is a bug in > pl353_nand.c, it likely also is a bug in vf610_nfc.c. Again, it can only have practical effects when > the offset is > 0, which I never encountered. I don't see any issues with this address cycles update. May be because of above jfss2 issue, you are suspecting this calculation. Hope the above update addresses this one. > > > + if (nfc_op->naddrs >= 5) > > + nfc_op->addrs_56 = addrs[4]; > > + > > + if (nfc_op->naddrs >= 6) > > + nfc_op->addrs_56 |= (addrs[5] << 8); > > + > > + break; > > + > > + case NAND_OP_DATA_IN_INSTR: > > + nfc_op->data_instr = instr; > > + nfc_op->data_instr_idx = op_id; > > + break; > > + > > + case NAND_OP_DATA_OUT_INSTR: > > + nfc_op->data_instr = instr; > > + nfc_op->data_instr_idx = op_id; > > + break; > > Would it make sense to merge the NAND_OP_DATA_IN_INSTR and > NAND_OP_DATA_OUT_INSTR cases? Yes, we can I will update this > > > + case NAND_OP_WAITRDY_INSTR: > > + nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; > > + nfc_op->rdy_delay_ns = instr->delay_ns; > > + break; > > + } > > + } > > +} > > + > > +/** > > + * pl353_nand_exec_op_cmd - Send command to NAND device > > + * @chip: Pointer to the NAND chip info structure > > + * @subop: Pointer to array of instructions > > + * Return: Always return zero > > + */ > > +static int pl353_nand_exec_op_cmd(struct nand_chip *chip, > > + const struct nand_subop *subop) { > > + struct mtd_info *mtd = nand_to_mtd(chip); > > + const struct nand_op_instr *instr; > > + struct pl353_nfc_op nfc_op = {}; > > + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); > > + unsigned long cmd_phase_data = 0, end_cmd_valid = 0; > > + unsigned long end_cmd; > > + unsigned int op_id, len; > > + bool reading; > > + u32 cmdphase_addrflags; > > + > > + pl353_nfc_parse_instructions(chip, subop, &nfc_op); > > + instr = nfc_op.data_instr; > > + op_id = nfc_op.data_instr_idx; > > + pl353_smc_clr_nand_int(); > > + > > + /* Get the command phase address */ > > + if (nfc_op.cmnds[1] != 0) { > > + if (nfc_op.cmnds[0] == NAND_CMD_SEQIN) > > + end_cmd_valid = 0; > > + else > > + end_cmd_valid = 1; > > + } > > + > > + end_cmd = nfc_op.cmnds[1]; > > + > > + /* > > + * The SMC defines two phases of commands when transferring data to or > > + * from NAND flash. > > + * Command phase: Commands and optional address information are written > > + * to the NAND flash.The command and address can be associated with > > + * either a data phase operation to write to or read from the array, > > + * or a status/ID register transfer. > > + * Data phase: Data is either written to or read from the NAND flash. > > + * This data can be either data transferred to or from the array, > > + * or status/ID register information. > > + */ > > + cmdphase_addrflags = ((nfc_op.naddrs << ADDR_CYCLES_SHIFT) | > > + (end_cmd_valid << END_CMD_VALID_SHIFT) | > > + (COMMAND_PHASE) | > > + (end_cmd << END_CMD_SHIFT) | > > + (nfc_op.cmnds[0] << START_CMD_SHIFT)); > > + > > + /* Get the data phase address */ > > + end_cmd_valid = 0; > > + > > + xnfc->dataphase_addrflags = ((0x0 << CLEAR_CS_SHIFT) | > > + (end_cmd_valid << END_CMD_VALID_SHIFT) | > > + (DATA_PHASE) | > > + (end_cmd << END_CMD_SHIFT) | > > + (0x0 << ECC_LAST_SHIFT)); > > + > > + /* Command phase AXI Read & Write */ > > + if (nfc_op.naddrs >= 5) { > > + if (mtd->writesize > PL353_NAND_ECC_SIZE) { > > + cmd_phase_data = nfc_op.addrs; > > + > > + /* Another address cycle for devices > 128MiB */ > > + if (chip->options & NAND_ROW_ADDR_3) { > > + writel_relaxed(cmd_phase_data, > > + xnfc->regs + cmdphase_addrflags); > > + cmd_phase_data = nfc_op.addrs_56; > > + } > > + } > > + } else { > > + if (nfc_op.addrs != -1) { > > + int column = nfc_op.addrs; > > + > > + /* > > + * Change read/write column, read id etc > > + * Adjust columns for 16 bit bus width > > + */ > > + if ((chip->options & NAND_BUSWIDTH_16) && > > + (nfc_op.cmnds[0] == NAND_CMD_READ0 || > > + nfc_op.cmnds[0] == NAND_CMD_SEQIN || > > + nfc_op.cmnds[0] == NAND_CMD_RNDOUT || > > + nfc_op.cmnds[0] == NAND_CMD_RNDIN)) { > > + column >>= 1; > > + } > > + cmd_phase_data = column; > > + } > > + } > > + > > + writel_relaxed(cmd_phase_data, xnfc->regs + cmdphase_addrflags); > > + if (!nfc_op.data_instr) { > > + if (nfc_op.rdy_timeout_ms) { > > + if (pl353_wait_for_dev_ready(chip)) > > + return -ETIMEDOUT; > > + } > > + > > + return 0; > > + } > > + > > + reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); > > + if (!reading) { > > + len = nand_subop_get_data_len(subop, op_id); > > + pl353_nand_write_data_op(chip, instr->ctx.data.buf.out, > > + len, instr->ctx.data.force_8bit); > > + if (nfc_op.rdy_timeout_ms) { > > + if (pl353_wait_for_dev_ready(chip)) > > + return -ETIMEDOUT; > > + } > > + > > + ndelay(nfc_op.rdy_delay_ns); > > + } else { > > + len = nand_subop_get_data_len(subop, op_id); > > + ndelay(nfc_op.rdy_delay_ns); > > + if (nfc_op.rdy_timeout_ms) { > > + if (pl353_wait_for_dev_ready(chip)) > > + return -ETIMEDOUT; > > + } > > + > > + pl353_nand_read_data_op(chip, instr->ctx.data.buf.in, len, > > + instr->ctx.data.force_8bit); > > + } > > + > > + return 0; > > +} > > + > > +static const struct nand_op_parser pl353_nfc_op_parser = NAND_OP_PARSER > > + (NAND_OP_PARSER_PATTERN > > + (pl353_nand_exec_op_cmd, > > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > > + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7), > > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), > > + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)), > > + NAND_OP_PARSER_PATTERN > > + (pl353_nand_exec_op_cmd, > > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > > + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7), > > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false), > > + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)), > > + NAND_OP_PARSER_PATTERN > > + (pl353_nand_exec_op_cmd, > > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > > + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7), > > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), > > + NAND_OP_PARSER_PATTERN > > + (pl353_nand_exec_op_cmd, > > + NAND_OP_PARSER_PAT_CMD_ELEM(false), > > + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8), > > + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2048), > > + NAND_OP_PARSER_PAT_CMD_ELEM(true), > > + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), > > + NAND_OP_PARSER_PATTERN > > + (pl353_nand_exec_op_cmd, > > + NAND_OP_PARSER_PAT_CMD_ELEM(false)), > > + ); > > + > > +static int pl353_nfc_exec_op(struct nand_chip *chip, > > + const struct nand_operation *op, > > + bool check_only) > > +{ > > + return nand_op_parser_exec_op(chip, &pl353_nfc_op_parser, > > + op, check_only); > > +} > > + > > +/** > > + * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode > > + * @mtd: Pointer to the mtd_info structure > > + * @ecc: Pointer to ECC control structure > > + * @ecc_mode: ondie ecc status > > + * > > + * This function initializes the ecc block and functional pointers as > > +per the > > + * ecc mode > > + * > > + * Return: 0 on success or negative errno. > > + */ > > +static int pl353_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc, > > + int ecc_mode) > > +{ > > + struct nand_chip *chip = mtd_to_nand(mtd); > > + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); > > + int ret = 0; > > + > > + ecc->read_oob = pl353_nand_read_oob; > > + ecc->write_oob = pl353_nand_write_oob; > > + if (ecc_mode == NAND_ECC_ON_DIE) { > > + ecc->write_page_raw = pl353_nand_write_page_raw; > > + ecc->read_page_raw = pl353_nand_read_page_raw; > > + > > + /* > > + * On-Die ECC spare bytes offset 8 is used for ECC codes > > + * Use the BBT pattern descriptors > > + */ > > + chip->bbt_td = &bbt_main_descr; > > + chip->bbt_md = &bbt_mirror_descr; > > + ret = pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_BYPASS); > > + if (ret) > > + return ret; > > + > > + } else { > > + ecc->mode = NAND_ECC_HW; > > + > > + /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */ > > + ecc->bytes = 3; > > + ecc->strength = 1; > > + ecc->calculate = pl353_nand_calculate_hwecc; > > + ecc->correct = pl353_nand_correct_data; > > + ecc->read_page = pl353_nand_read_page_hwecc; > > + ecc->size = PL353_NAND_ECC_SIZE; > > + ecc->read_page = pl353_nand_read_page_hwecc; > > + ecc->write_page = pl353_nand_write_page_hwecc; > > + pl353_smc_set_ecc_pg_size(mtd->writesize); > > + switch (mtd->writesize) { > > + case SZ_512: > > + case SZ_1K: > > + case SZ_2K: > > + pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_APB); > > + break; > > + default: > > + ecc->calculate = nand_calculate_ecc; > > + ecc->correct = nand_correct_data; > > + ecc->size = 256; > > + break; > > + } > > + > > + if (mtd->oobsize == 16) { > > + mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout16_ops); > > + } else if (mtd->oobsize == 64) { > > + mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout64_ops); > > + } else { > > + ret = -ENXIO; > > + dev_err(xnfc->dev, "Unsupported oob Layout\n"); > > + } > > + } > > + > > + return ret; > > +} > > + > > +static int pl353_nfc_setup_data_interface(struct nand_chip *chip, int csline, > > + const struct nand_data_interface > > + *conf) > > +{ > > + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); > > + const struct nand_sdr_timings *sdr; > > + u32 timings[7], mckperiodps; > > + > > + if (csline == NAND_DATA_IFACE_CHECK_ONLY) > > + return 0; > > + > > + sdr = nand_get_sdr_timings(conf); > > + if (IS_ERR(sdr)) > > + return PTR_ERR(sdr); > > + > > + /* > > + * SDR timings are given in pico-seconds while NFC timings must be > > + * expressed in NAND controller clock cycles. > > + */ > > + mckperiodps = NSEC_PER_SEC / xnfc->mclk_rate; > > + mckperiodps *= 1000; > > + if (sdr->tRC_min <= 20000) > > + /* > > + * PL353 SMC needs one extra read cycle in SDR Mode 5 > > + * This is not written anywhere in the datasheet but > > + * the results observed during testing. > > + */ > > + timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps) + 1; > > + else > > + timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps); > > + > > + timings[1] = DIV_ROUND_UP(sdr->tWC_min, mckperiodps); > > + > > + /* > > + * For all SDR modes, PL353 SMC needs tREA max value as 1, > > + * Results observed during testing. > > + */ > > + timings[2] = PL353_TREA_MAX_VALUE; > > + timings[3] = DIV_ROUND_UP(sdr->tWP_min, mckperiodps); > > + timings[4] = DIV_ROUND_UP(sdr->tCLR_min, mckperiodps); > > + timings[5] = DIV_ROUND_UP(sdr->tAR_min, mckperiodps); > > + timings[6] = DIV_ROUND_UP(sdr->tRR_min, mckperiodps); > > + pl353_smc_set_cycles(timings); > > + > > + return 0; > > +} > > + > > +static int pl353_nand_attach_chip(struct nand_chip *chip) { > > + struct mtd_info *mtd = nand_to_mtd(chip); > > + struct pl353_nand_controller *xnfc = to_pl353_nand(chip); > > + int ret; > > + > > + if (chip->options & NAND_BUSWIDTH_16) { > > + ret = pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16); > > + if (ret) { > > + dev_err(xnfc->dev, "Set BusWidth failed\n"); > > + return ret; > > + } > > + } > > + > > + if (mtd->writesize <= SZ_512) > > + xnfc->addr_cycles = 1; > > + else > > + xnfc->addr_cycles = 2; > > + > > + if (chip->options & NAND_ROW_ADDR_3) > > + xnfc->addr_cycles += 3; > > + else > > + xnfc->addr_cycles += 2; > > + > > + ret = pl353_nand_ecc_init(mtd, &chip->ecc, chip->ecc.mode); > > + if (ret) { > > + dev_err(xnfc->dev, "ECC init failed\n"); > > + return ret; > > + } > > + > > + if (!mtd->name) { > > + /* > > + * If the new bindings are used and the bootloader has not been > > + * updated to pass a new mtdparts parameter on the cmdline, you > > + * should define the following property in your NAND node, ie: > > + * > > + * label = "pl353-nand"; > > + * > > + * This way, mtd->name will be set by the core when > > + * nand_set_flash_node() is called. > > + */ > > + mtd->name = devm_kasprintf(xnfc->dev, GFP_KERNEL, > > + "%s", PL353_NAND_DRIVER_NAME); > > + if (!mtd->name) { > > + dev_err(xnfc->dev, "Failed to allocate mtd->name\n"); > > + return -ENOMEM; > > + } > > + } > > + > > + return 0; > > +} > > + > > +static const struct nand_controller_ops pl353_nand_controller_ops = { > > + .attach_chip = pl353_nand_attach_chip, > > + .exec_op = pl353_nfc_exec_op, > > + .setup_data_interface = pl353_nfc_setup_data_interface, }; > > + > > +/** > > + * pl353_nand_probe - Probe method for the NAND driver > > + * @pdev: Pointer to the platform_device structure > > + * > > + * This function initializes the driver data structures and the hardware. > > + * The NAND driver has dependency with the pl353_smc memory > > +controller > > + * driver for initializing the NAND timing parameters, bus width, ECC > > +modes, > > + * control and status information. > > + * > > + * Return: 0 on success or error value on failure > > + */ > > +static int pl353_nand_probe(struct platform_device *pdev) { > > + struct pl353_nand_controller *xnfc; > > + struct mtd_info *mtd; > > + struct nand_chip *chip; > > + struct resource *res; > > + struct device_node *np, *dn; > > + u32 ret, val; > > + > > + xnfc = devm_kzalloc(&pdev->dev, sizeof(*xnfc), GFP_KERNEL); > > + if (!xnfc) > > + return -ENOMEM; > > + > > + xnfc->dev = &pdev->dev; > > + nand_controller_init(&xnfc->controller); > > + xnfc->controller.ops = &pl353_nand_controller_ops; > > + > > + /* Map physical address of NAND flash */ > > + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); > > + xnfc->regs = devm_ioremap_resource(xnfc->dev, res); > > + if (IS_ERR(xnfc->regs)) > > + return PTR_ERR(xnfc->regs); > > + > > + chip = &xnfc->chip; > > + chip->controller = &xnfc->controller; > > + mtd = nand_to_mtd(chip); > > + nand_set_controller_data(chip, xnfc); > > + mtd->priv = chip; > > + mtd->owner = THIS_MODULE; > > + nand_set_flash_node(chip, xnfc->dev->of_node); > > + > > + np = of_get_next_parent(xnfc->dev->of_node); > > + xnfc->mclk = of_clk_get_by_name(np, "memclk"); > > + if (IS_ERR(xnfc->mclk)) { > > + dev_err(xnfc->dev, "Failed to retrieve MCK clk\n"); > > + return PTR_ERR(xnfc->mclk); > > + } > > + > > + xnfc->mclk_rate = clk_get_rate(xnfc->mclk); > > + dn = nand_get_flash_node(chip); > > + ret = of_property_read_u32(dn, "nand-bus-width", &val); > > + if (ret) > > + val = 8; > > + > > + xnfc->buswidth = val; > > + > > + /* Set the device option and flash width */ > > + chip->options = NAND_BUSWIDTH_AUTO; > > + chip->bbt_options = NAND_BBT_USE_FLASH; > > + platform_set_drvdata(pdev, xnfc); > > + ret = nand_scan(chip, 1); > > + if (ret) { > > + dev_err(xnfc->dev, "could not scan the nand chip\n"); > > + return ret; > > + } > > + > > + ret = mtd_device_register(mtd, NULL, 0); > > + if (ret) { > > + dev_err(xnfc->dev, "Failed to register mtd device: %d\n", ret); > > + nand_cleanup(chip); > > + return ret; > > + } > > + > > + return 0; > > +} > > + > > +/** > > + * pl353_nand_remove - Remove method for the NAND driver > > + * @pdev: Pointer to the platform_device structure > > + * > > + * This function is called if the driver module is being unloaded. It > > +frees all > > + * resources allocated to the device. > > + * > > + * Return: 0 on success or error value on failure > > + */ > > +static int pl353_nand_remove(struct platform_device *pdev) { > > + struct pl353_nand_controller *xnfc = platform_get_drvdata(pdev); > > + struct mtd_info *mtd = nand_to_mtd(&xnfc->chip); > > + struct nand_chip *chip = mtd_to_nand(mtd); > > + > > + /* Release resources, unregister device */ > > + nand_release(chip); > > + > > + return 0; > > +} > > + > > +/* Match table for device tree binding */ static const struct > > +of_device_id pl353_nand_of_match[] = { > > + { .compatible = "arm,pl353-nand-r2p1" }, > > + {}, > > +}; > > +MODULE_DEVICE_TABLE(of, pl353_nand_of_match); > > + > > +/* > > + * pl353_nand_driver - This structure defines the NAND subsystem > > +platform driver */ static struct platform_driver pl353_nand_driver = > > +{ > > + .probe = pl353_nand_probe, > > + .remove = pl353_nand_remove, > > + .driver = { > > + .name = PL353_NAND_DRIVER_NAME, > > + .of_match_table = pl353_nand_of_match, > > + }, > > +}; > > + > > +module_platform_driver(pl353_nand_driver); > > + > > +MODULE_AUTHOR("Xilinx, Inc."); > > +MODULE_ALIAS("platform:" PL353_NAND_DRIVER_NAME); > > +MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver"); > > +MODULE_LICENSE("GPL"); > > -- > > 2.17.1 > > You've addressed a significant number of review comments. Most of the remaining ones seem > minor to me. If you add back the Kconfig and Makefile parts from v14, you may add: > > Reviewed-by: Helmut Grohne <helmut.grohne@xxxxxxxxxx> > > Despite the review I cannot confirm that it actually works. Hope, the above update fixes your issue and thanks for the review. Regards, Naga Sureshkumar Relli > > Helmut ______________________________________________________ Linux MTD discussion mailing list http://lists.infradead.org/mailman/listinfo/linux-mtd/