Add the basic driver for Arasan NAND Flash Controller used in Zynq UltraScale+ MPSoC. It supports HW ECC and upto 24bit correction. Signed-off-by: Naga Sureshkumar Relli <naga.sureshkumar.relli@xxxxxxxxxx> --- Changes in v10: - Implemented ->exec_op() interface. - Converted the driver to nand_scan(). Changes in v9: - Added the SPDX tags Changes in v8: - Implemented setup_data_interface hook - fixed checkpatch --strict warnings - Added anfc_config_ecc in read_page_hwecc - Fixed returning status value by reading flash status in read_byte() instead of reading previous value. Changes in v7: - Implemented Marek suggestions and comments - Corrected the acronyms those should be in caps - Modified kconfig/Make file to keep arasan entry in sorted order - Added is_vmlloc_addr check - Used ioread/write32_rep variants to avoid compilation error for intel platforms - separated PIO and DMA mode read/write functions - Minor cleanup Chnages in v6: - Addressed most of the Brian and Boris comments - Separated the nandchip from the nand controller - Removed the ecc lookup table from driver - Now use framework nand waitfunction and readoob - Fixed the compiler warning - Adapted the new frameowrk changes related to ecc and ooblayout - Disabled the clocks after the nand_reelase - Now using only one completion object - Boris suggessions like adapting cmd_ctrl and rework on read/write byte are not implemented and i will patch them later - Also check_erased_ecc_chunk for erase and check for is_vmalloc_addr will implement later once the basic driver is mainlined. Changes in v5: - Renamed the driver filei as arasan_nand.c - Fixed all comments relaqted coding style - Fixed comments related to propagating the errors - Modified the anfc_write_page_hwecc as per the write_page prototype Changes in v4: - Added support for onfi timing mode configuration - Added clock supppport - Added support for multiple chipselects Changes in v3: - Removed unused variables - Avoided busy loop and used jifies based implementation - Fixed compiler warnings "right shift count >= width of type" - Removed unneeded codei and improved error reporting - Added onfi version check to ensure reading the valid address cycles Changes in v2: - Added missing of.h to avoid kbuild system report erro --- drivers/mtd/nand/raw/Kconfig | 8 + drivers/mtd/nand/raw/Makefile | 1 + drivers/mtd/nand/raw/arasan_nand.c | 1350 ++++++++++++++++++++++++++++++++++++ 3 files changed, 1359 insertions(+) create mode 100644 drivers/mtd/nand/raw/arasan_nand.c diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index b6738ec..1e66f51 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -560,4 +560,12 @@ config MTD_NAND_TEGRA is supported. Extra OOB bytes when using HW ECC are currently not supported. +config MTD_NAND_ARASAN + tristate "Support for Arasan Nand Flash controller" + depends on HAS_IOMEM + depends on HAS_DMA + help + Enables the driver for the Arasan Nand Flash controller on + Zynq Ultrascale+ MPSoC. + endif # MTD_NAND diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index d5a5f98..ccb8d56 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -57,6 +57,7 @@ obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o +obj-$(CONFIG_MTD_NAND_ARASAN) += arasan_nand.o nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o nand-objs += nand_amd.o diff --git a/drivers/mtd/nand/raw/arasan_nand.c b/drivers/mtd/nand/raw/arasan_nand.c new file mode 100644 index 0000000..e4f1f80 --- /dev/null +++ b/drivers/mtd/nand/raw/arasan_nand.c @@ -0,0 +1,1350 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Arasan NAND Flash Controller Driver + * + * Copyright (C) 2014 - 2017 Xilinx, Inc. + * Author: Punnaiah Choudary Kalluri <punnaia@xxxxxxxxxx> + * Author: Naga Sureshkumar Relli <nagasure@xxxxxxxxxx> + * + */ +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/dma-mapping.h> +#include <linux/interrupt.h> +#include <linux/io-64-nonatomic-lo-hi.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/rawnand.h> +#include <linux/mtd/partitions.h> +#include <linux/of.h> +#include <linux/platform_device.h> +#include <linux/slab.h> +#define DRIVER_NAME "arasan_nand" +#define EVNT_TIMEOUT_MSEC 1000 +#define STATUS_TIMEOUT 2000 + +#define PKT_OFST 0x00 +#define MEM_ADDR1_OFST 0x04 +#define MEM_ADDR2_OFST 0x08 +#define CMD_OFST 0x0C +#define PROG_OFST 0x10 +#define INTR_STS_EN_OFST 0x14 +#define INTR_SIG_EN_OFST 0x18 +#define INTR_STS_OFST 0x1C +#define READY_STS_OFST 0x20 +#define DMA_ADDR1_OFST 0x24 +#define FLASH_STS_OFST 0x28 +#define DATA_PORT_OFST 0x30 +#define ECC_OFST 0x34 +#define ECC_ERR_CNT_OFST 0x38 +#define ECC_SPR_CMD_OFST 0x3C +#define ECC_ERR_CNT_1BIT_OFST 0x40 +#define ECC_ERR_CNT_2BIT_OFST 0x44 +#define DMA_ADDR0_OFST 0x50 +#define DATA_INTERFACE_OFST 0x6C + +#define PKT_CNT_SHIFT 12 + +#define ECC_ENABLE BIT(31) +#define DMA_EN_MASK GENMASK(27, 26) +#define DMA_ENABLE 0x2 +#define DMA_EN_SHIFT 26 +#define REG_PAGE_SIZE_SHIFT 23 +#define REG_PAGE_SIZE_512 0 +#define REG_PAGE_SIZE_1K 5 +#define REG_PAGE_SIZE_2K 1 +#define REG_PAGE_SIZE_4K 2 +#define REG_PAGE_SIZE_8K 3 +#define REG_PAGE_SIZE_16K 4 +#define CMD2_SHIFT 8 +#define ADDR_CYCLES_SHIFT 28 + +#define XFER_COMPLETE BIT(2) +#define READ_READY BIT(1) +#define WRITE_READY BIT(0) +#define MBIT_ERROR BIT(3) + +#define PROG_PGRD BIT(0) +#define PROG_ERASE BIT(2) +#define PROG_STATUS BIT(3) +#define PROG_PGPROG BIT(4) +#define PROG_RDID BIT(6) +#define PROG_RDPARAM BIT(7) +#define PROG_RST BIT(8) +#define PROG_GET_FEATURE BIT(9) +#define PROG_SET_FEATURE BIT(10) + +#define PG_ADDR_SHIFT 16 +#define BCH_MODE_SHIFT 25 +#define BCH_EN_SHIFT 27 +#define ECC_SIZE_SHIFT 16 + +#define MEM_ADDR_MASK GENMASK(7, 0) +#define BCH_MODE_MASK GENMASK(27, 25) + +#define CS_MASK GENMASK(31, 30) +#define CS_SHIFT 30 + +#define PAGE_ERR_CNT_MASK GENMASK(16, 8) +#define PKT_ERR_CNT_MASK GENMASK(7, 0) + +#define NVDDR_MODE BIT(9) +#define NVDDR_TIMING_MODE_SHIFT 3 + +#define ONFI_ID_LEN 8 +#define TEMP_BUF_SIZE 1024 +#define NVDDR_MODE_PACKET_SIZE 8 +#define SDR_MODE_PACKET_SIZE 4 + +#define ONFI_DATA_INTERFACE_NVDDR BIT(4) +#define EVENT_MASK (XFER_COMPLETE | READ_READY | WRITE_READY | MBIT_ERROR) + +#define SDR_MODE_DEFLT_FREQ 80000000 +#define COL_ROW_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos))) + +struct anfc_op { + s32 cmnds[4]; + u32 type; + u32 len; + u32 naddrs; + u32 col; + u32 row; + unsigned int data_instr_idx; + unsigned int rdy_timeout_ms; + unsigned int rdy_delay_ns; + const struct nand_op_instr *data_instr; +}; + +/** + * struct anfc_nand_chip - Defines the nand chip related information + * @node: used to store NAND chips into a list. + * @chip: NAND chip information structure. + * @bch: Bch / Hamming mode enable/disable. + * @bchmode: Bch mode. + * @eccval: Ecc config value. + * @raddr_cycles: Row address cycle information. + * @caddr_cycles: Column address cycle information. + * @pktsize: Packet size for read / write operation. + * @csnum: chipselect number to be used. + * @spktsize: Packet size in ddr mode for status operation. + * @inftimeval: Data interface and timing mode information + */ +struct anfc_nand_chip { + struct list_head node; + struct nand_chip chip; + bool bch; + u32 bchmode; + u32 eccval; + u16 raddr_cycles; + u16 caddr_cycles; + u32 pktsize; + int csnum; + u32 spktsize; + u32 inftimeval; +}; + +/** + * struct anfc_nand_controller - Defines the Arasan NAND flash controller + * driver instance + * @controller: base controller structure. + * @chips: list of all nand chips attached to the ctrler. + * @dev: Pointer to the device structure. + * @base: Virtual address of the NAND flash device. + * @curr_cmd: Current command issued. + * @clk_sys: Pointer to the system clock. + * @clk_flash: Pointer to the flash clock. + * @dma: Dma enable/disable. + * @iswriteoob: Identifies if oob write operation is required. + * @buf: Buffer used for read/write byte operations. + * @irq: irq number + * @bufshift: Variable used for indexing buffer operation + * @csnum: Chip select number currently inuse. + * @event: Completion event for nand status events. + * @status: Status of the flash device. + * @prog: Used to initiate controller operations. + */ +struct anfc_nand_controller { + struct nand_controller controller; + struct list_head chips; + struct device *dev; + void __iomem *base; + int curr_cmd; + struct clk *clk_sys; + struct clk *clk_flash; + bool dma; + bool iswriteoob; + int irq; + int csnum; + struct completion event; + int status; + u32 prog; +}; + +static int anfc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + + if (section >= nand->ecc.steps) + return -ERANGE; + + if (section) + return -ERANGE; + + oobregion->length = nand->ecc.total; + oobregion->offset = mtd->oobsize - oobregion->length; + + return 0; +} + +static int anfc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + + if (section >= nand->ecc.steps) + return -ERANGE; + + if (section) + return -ERANGE; + + oobregion->offset = 2; + oobregion->length = mtd->oobsize - nand->ecc.total - 2; + + return 0; +} + +static const struct mtd_ooblayout_ops anfc_ooblayout_ops = { + .ecc = anfc_ooblayout_ecc, + .free = anfc_ooblayout_free, +}; + +static inline struct anfc_nand_chip *to_anfc_nand(struct nand_chip *nand) +{ + return container_of(nand, struct anfc_nand_chip, chip); +} + +static inline struct anfc_nand_controller *to_anfc(struct nand_controller *ctrl) +{ + return container_of(ctrl, struct anfc_nand_controller, controller); +} + +static u8 anfc_page(u32 pagesize) +{ + switch (pagesize) { + case 512: + return REG_PAGE_SIZE_512; + case 1024: + return REG_PAGE_SIZE_1K; + case 2048: + return REG_PAGE_SIZE_2K; + case 4096: + return REG_PAGE_SIZE_4K; + case 8192: + return REG_PAGE_SIZE_8K; + case 16384: + return REG_PAGE_SIZE_16K; + default: + break; + } + + return 0; +} + +static inline void anfc_enable_intrs(struct anfc_nand_controller *nfc, u32 val) +{ + writel(val, nfc->base + INTR_STS_EN_OFST); + writel(val, nfc->base + INTR_SIG_EN_OFST); +} + +static inline void anfc_config_ecc(struct anfc_nand_controller *nfc, bool on) +{ + u32 val; + + val = readl(nfc->base + CMD_OFST); + if (on) + val |= ECC_ENABLE; + else + val &= ~ECC_ENABLE; + writel(val, nfc->base + CMD_OFST); +} + +static inline void anfc_config_dma(struct anfc_nand_controller *nfc, int on) +{ + u32 val; + + val = readl(nfc->base + CMD_OFST); + val &= ~DMA_EN_MASK; + if (on) + val |= DMA_ENABLE << DMA_EN_SHIFT; + writel(val, nfc->base + CMD_OFST); +} + +static inline int anfc_wait_for_event(struct anfc_nand_controller *nfc) +{ + return wait_for_completion_timeout(&nfc->event, + msecs_to_jiffies(EVNT_TIMEOUT_MSEC)); +} + +static inline void anfc_setpktszcnt(struct anfc_nand_controller *nfc, + u32 pktsize, u32 pktcount) +{ + writel(pktsize | (pktcount << PKT_CNT_SHIFT), nfc->base + PKT_OFST); +} + +static inline void anfc_set_eccsparecmd(struct anfc_nand_controller *nfc, + struct anfc_nand_chip *achip, u8 cmd1, + u8 cmd2) +{ + writel(cmd1 | (cmd2 << CMD2_SHIFT) | + (achip->caddr_cycles << ADDR_CYCLES_SHIFT), + nfc->base + ECC_SPR_CMD_OFST); +} + +static void anfc_setpagecoladdr(struct anfc_nand_controller *nfc, u32 page, + u16 col) +{ + u32 val; + + writel(col | (page << PG_ADDR_SHIFT), nfc->base + MEM_ADDR1_OFST); + + val = readl(nfc->base + MEM_ADDR2_OFST); + val = (val & ~MEM_ADDR_MASK) | + ((page >> PG_ADDR_SHIFT) & MEM_ADDR_MASK); + writel(val, nfc->base + MEM_ADDR2_OFST); +} + +static void anfc_prepare_cmd(struct anfc_nand_controller *nfc, u8 cmd1, + u8 cmd2, u8 dmamode, + u32 pagesize, u8 addrcycles) +{ + u32 regval; + + regval = cmd1 | (cmd2 << CMD2_SHIFT); + if (dmamode && nfc->dma) + regval |= DMA_ENABLE << DMA_EN_SHIFT; + regval |= addrcycles << ADDR_CYCLES_SHIFT; + regval |= anfc_page(pagesize) << REG_PAGE_SIZE_SHIFT; + writel(regval, nfc->base + CMD_OFST); +} + +static void anfc_rw_dma_op(struct mtd_info *mtd, uint8_t *buf, int len, + bool do_read, u32 prog) +{ + dma_addr_t paddr; + struct nand_chip *chip = mtd_to_nand(mtd); + struct anfc_nand_controller *nfc = to_anfc(chip->controller); + struct anfc_nand_chip *achip = to_anfc_nand(chip); + u32 eccintr = 0, dir; + u32 pktsize = len, pktcount = 1; + + if (((nfc->curr_cmd == NAND_CMD_READ0)) || + (nfc->curr_cmd == NAND_CMD_SEQIN && !nfc->iswriteoob)) { + pktsize = achip->pktsize; + pktcount = DIV_ROUND_UP(mtd->writesize, pktsize); + } + anfc_setpktszcnt(nfc, pktsize, pktcount); + + if (!achip->bch && nfc->curr_cmd == NAND_CMD_READ0) + eccintr = MBIT_ERROR; + + if (do_read) + dir = DMA_FROM_DEVICE; + else + dir = DMA_TO_DEVICE; + + paddr = dma_map_single(nfc->dev, buf, len, dir); + if (dma_mapping_error(nfc->dev, paddr)) { + dev_err(nfc->dev, "Read buffer mapping error"); + return; + } + writel(paddr, nfc->base + DMA_ADDR0_OFST); + writel((paddr >> 32), nfc->base + DMA_ADDR1_OFST); + anfc_enable_intrs(nfc, (XFER_COMPLETE | eccintr)); + writel(prog, nfc->base + PROG_OFST); + anfc_wait_for_event(nfc); + dma_unmap_single(nfc->dev, paddr, len, dir); +} + +static void anfc_rw_pio_op(struct mtd_info *mtd, uint8_t *buf, int len, + bool do_read, int prog) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct anfc_nand_controller *nfc = to_anfc(chip->controller); + struct anfc_nand_chip *achip = to_anfc_nand(chip); + u32 *bufptr = (u32 *)buf; + u32 cnt = 0, intr = 0; + u32 pktsize = len, pktcount = 1; + + anfc_config_dma(nfc, 0); + + if (((nfc->curr_cmd == NAND_CMD_READ0)) || + (nfc->curr_cmd == NAND_CMD_SEQIN && !nfc->iswriteoob)) { + pktsize = achip->pktsize; + pktcount = DIV_ROUND_UP(mtd->writesize, pktsize); + } + anfc_setpktszcnt(nfc, pktsize, pktcount); + + if (!achip->bch && nfc->curr_cmd == NAND_CMD_READ0) + intr = MBIT_ERROR; + + if (do_read) + intr |= READ_READY; + else + intr |= WRITE_READY; + + anfc_enable_intrs(nfc, intr); + writel(prog, nfc->base + PROG_OFST); + while (cnt < pktcount) { + + anfc_wait_for_event(nfc); + cnt++; + if (cnt == pktcount) + anfc_enable_intrs(nfc, XFER_COMPLETE); + if (do_read) + ioread32_rep(nfc->base + DATA_PORT_OFST, bufptr, + pktsize / 4); + else + iowrite32_rep(nfc->base + DATA_PORT_OFST, bufptr, + pktsize / 4); + bufptr += (pktsize / 4); + if (cnt < pktcount) + anfc_enable_intrs(nfc, intr); + } + anfc_wait_for_event(nfc); +} + +static void anfc_read_data_op(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct anfc_nand_controller *nfc = to_anfc(chip->controller); + + if (nfc->dma && !is_vmalloc_addr(buf)) + anfc_rw_dma_op(mtd, buf, len, 1, PROG_PGRD); + else + anfc_rw_pio_op(mtd, buf, len, 1, PROG_PGRD); +} + +static void anfc_write_data_op(struct mtd_info *mtd, const uint8_t *buf, + int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct anfc_nand_controller *nfc = to_anfc(chip->controller); + + if (nfc->dma && !is_vmalloc_addr(buf)) + anfc_rw_dma_op(mtd, (char *)buf, len, 0, PROG_PGPROG); + else + anfc_rw_pio_op(mtd, (char *)buf, len, 0, PROG_PGPROG); +} + +static int anfc_prep_nand_instr(struct mtd_info *mtd, int cmd, + struct nand_chip *chip, int col, int page) +{ + u8 addrs[5]; + + struct nand_op_instr instrs[] = { + NAND_OP_CMD(cmd, PSEC_TO_NSEC(1)), + NAND_OP_ADDR(3, addrs, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + if (mtd->writesize <= 512) { + addrs[0] = col; + if (page != -1) { + addrs[1] = page; + addrs[2] = page >> 8; + instrs[1].ctx.addr.naddrs = 3; + if (chip->options & NAND_ROW_ADDR_3) { + addrs[3] = page >> 16; + instrs[1].ctx.addr.naddrs += 1; + } + } else { + instrs[1].ctx.addr.naddrs = 1; + } + } else { + addrs[0] = col; + addrs[1] = col >> 8; + if (page != -1) { + addrs[2] = page; + addrs[3] = page >> 8; + instrs[1].ctx.addr.naddrs = 4; + if (chip->options & NAND_ROW_ADDR_3) { + addrs[4] = page >> 16; + instrs[1].ctx.addr.naddrs += 1; + } + } else { + instrs[1].ctx.addr.naddrs = 2; + } + } + + return nand_exec_op(chip, &op); +} + +static int anfc_nand_wait(struct mtd_info *mtd, struct nand_chip *chip) +{ + u8 status; + int ret; + unsigned long timeo; + + /* + * Apply this short delay always to ensure that we do wait tWB in any + * case on any machine. + */ + ndelay(100); + timeo = jiffies + msecs_to_jiffies(STATUS_TIMEOUT); + do { + ret = nand_status_op(chip, &status); + if (ret) + return ret; + + if (status & NAND_STATUS_READY) + break; + cond_resched(); + } while (time_before(jiffies, timeo)); + + + return status; +} + +static int anfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct anfc_nand_controller *nfc = to_anfc(chip->controller); + + nfc->iswriteoob = true; + anfc_prep_nand_instr(mtd, NAND_CMD_SEQIN, chip, mtd->writesize, page); + anfc_write_data_op(mtd, chip->oob_poi, mtd->oobsize); + nfc->iswriteoob = false; + + return 0; +} + +static int anfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + anfc_prep_nand_instr(mtd, NAND_CMD_READOOB, chip, 0, page); + anfc_read_data_op(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + + +static int anfc_read_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + u32 val; + struct anfc_nand_controller *nfc = to_anfc(chip->controller); + struct anfc_nand_chip *achip = to_anfc_nand(chip); + u8 *ecc_code = chip->ecc.code_buf; + u8 *p = buf; + int eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int stat = 0, i; + u32 ret; + unsigned int max_bitflips = 0; + + ret = nand_read_page_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + anfc_set_eccsparecmd(nfc, achip, NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART); + anfc_config_ecc(nfc, true); + anfc_read_data_op(mtd, buf, mtd->writesize); + + if (achip->bch) { + /* + * Arasan NAND controller can correct ECC upto 24-bit + * Beyond that, it can't detect errors, so no fail count + * updated here. + */ + val = readl(nfc->base + ECC_ERR_CNT_OFST); + val = ((val & PAGE_ERR_CNT_MASK) >> 8); + mtd->ecc_stats.corrected += val; + } else { + val = readl(nfc->base + ECC_ERR_CNT_1BIT_OFST); + mtd->ecc_stats.corrected += val; + val = readl(nfc->base + ECC_ERR_CNT_2BIT_OFST); + mtd->ecc_stats.failed += val; + /* Clear ecc error count register 1Bit, 2Bit */ + writel(0x0, nfc->base + ECC_ERR_CNT_1BIT_OFST); + writel(0x0, nfc->base + ECC_ERR_CNT_2BIT_OFST); + } + + if (oob_required) + chip->ecc.read_oob(mtd, chip, page); + + anfc_config_ecc(nfc, false); + + if (val) { + if (!oob_required) + chip->ecc.read_oob(mtd, chip, page); + + mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, + chip->ecc.total); + for (i = 0; i < chip->ecc.steps; ++i) { + stat = nand_check_erased_ecc_chunk(p, + chip->ecc.size, + &ecc_code[i], + eccbytes, + NULL, 0, + chip->ecc.strength); + if (stat < 0) { + /* + * No fail count updated here, because the data + * is already corrected and ecc_stats.corrected + * is updated and in case of haming, + * ecc_stats.failed is updated. + */ + stat = 0; + } else { + mtd->ecc_stats.corrected += stat; + } + max_bitflips = max_t(unsigned int, max_bitflips, stat); + p += eccsize; + } + } + + return max_bitflips; +} + + +static int anfc_write_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + int ret; + struct anfc_nand_controller *nfc = to_anfc(chip->controller); + struct anfc_nand_chip *achip = to_anfc_nand(chip); + u8 status; + u8 *ecc_calc = chip->ecc.calc_buf; + + ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + anfc_set_eccsparecmd(nfc, achip, NAND_CMD_RNDIN, 0); + anfc_config_ecc(nfc, true); + anfc_write_data_op(mtd, buf, mtd->writesize); + + if (oob_required) { + status = anfc_nand_wait(mtd, chip); + if (status & NAND_STATUS_FAIL) + return -EIO; + + anfc_prep_nand_instr(mtd, NAND_CMD_READOOB, chip, 0, page); + anfc_read_data_op(mtd, ecc_calc, mtd->oobsize); + ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, + 0, chip->ecc.total); + if (ret) + return ret; + + chip->ecc.write_oob(mtd, chip, page); + } + status = anfc_nand_wait(mtd, chip); + if (status & NAND_STATUS_FAIL) + return -EIO; + + anfc_config_ecc(nfc, false); + + return 0; +} + +/** + * anfc_get_mode_frm_timings - Converts sdr timing values to respective modes + * @sdr: SDR NAND chip timings structure + * Arasan NAND controller has Data Interface Register (0x6C) + * which has timing mode configurations and need to program only the modes but + * not timings. So this function returns SDR timing mode from SDR timing values + * + * Return: SDR timing mode on success, a negative error code otherwise. + */ +static int anfc_get_mode_frm_timings(const struct nand_sdr_timings *sdr) +{ + if (sdr->tRC_min <= 20000) + return 5; + else if (sdr->tRC_min <= 25000) + return 4; + else if (sdr->tRC_min <= 30000) + return 3; + else if (sdr->tRC_min <= 35000) + return 2; + else if (sdr->tRC_min <= 50000) + return 1; + else if (sdr->tRC_min <= 100000) + return 0; + else + return -1; +} + +static int anfc_ecc_init(struct mtd_info *mtd, + struct nand_ecc_ctrl *ecc, int ecc_mode) +{ + u32 ecc_addr; + unsigned int bchmode, steps; + struct nand_chip *chip = mtd_to_nand(mtd); + struct anfc_nand_chip *achip = to_anfc_nand(chip); + + ecc->write_oob = anfc_write_oob; + ecc->read_oob = anfc_read_oob; + ecc->mode = NAND_ECC_HW; + ecc->read_page = anfc_read_page_hwecc; + ecc->write_page = anfc_write_page_hwecc; + + mtd_set_ooblayout(mtd, &anfc_ooblayout_ops); + + steps = mtd->writesize / chip->ecc_step_ds; + + switch (chip->ecc_strength_ds) { + case 12: + bchmode = 0x1; + break; + case 8: + bchmode = 0x2; + break; + case 4: + bchmode = 0x3; + break; + case 24: + bchmode = 0x4; + break; + default: + bchmode = 0x0; + } + if (!bchmode) + ecc->total = 3 * steps; + else + ecc->total = + DIV_ROUND_UP(fls(8 * chip->ecc_step_ds) * + chip->ecc_strength_ds * steps, 8); + + ecc->strength = chip->ecc_strength_ds; + ecc->size = chip->ecc_step_ds; + ecc->bytes = ecc->total / steps; + ecc->steps = steps; + achip->bchmode = bchmode; + achip->bch = achip->bchmode; + ecc_addr = mtd->writesize + (mtd->oobsize - ecc->total); + + achip->eccval = ecc_addr | (ecc->total << ECC_SIZE_SHIFT) | + (achip->bch << BCH_EN_SHIFT); + + if (chip->ecc_step_ds >= 1024) + achip->pktsize = 1024; + else + achip->pktsize = 512; + + return 0; +} + +/* NAND framework ->exec_op() hooks and related helpers */ +static void anfc_parse_instructions(struct nand_chip *chip, + const struct nand_subop *subop, + struct anfc_op *nfc_op) +{ + const struct nand_op_instr *instr = NULL; + struct anfc_nand_controller *nfc = to_anfc(chip->controller); + unsigned int op_id; + int i = 0; + const u8 *addrs; + + memset(nfc_op, 0, sizeof(struct anfc_op)); + + /* + * This is to keep track of status command. some times + * core will just request status byte to read. so to make + * sure that no command is issued, cmnds[0] is assigned to + * NAND_CMD_NONE. + */ + nfc_op->cmnds[0] = NAND_CMD_NONE; + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + instr = &subop->instrs[op_id]; + switch (instr->type) { + case NAND_OP_CMD_INSTR: + nfc_op->type = NAND_OP_CMD_INSTR; + if (op_id) + nfc_op->cmnds[1] = instr->ctx.cmd.opcode; + else + nfc_op->cmnds[0] = instr->ctx.cmd.opcode; + nfc->curr_cmd = nfc_op->cmnds[0]; + break; + + case NAND_OP_ADDR_INSTR: + i = nand_subop_get_addr_start_off(subop, op_id); + nfc_op->naddrs = nand_subop_get_num_addr_cyc(subop, + op_id); + addrs = &instr->ctx.addr.addrs[i]; + + for (; i < nfc_op->naddrs; i++) { + u8 val = instr->ctx.addr.addrs[i]; + + if (nfc_op->cmnds[0] == NAND_CMD_ERASE1) + nfc_op->row |= COL_ROW_ADDR(i, val); + else { + if (i < 2) + nfc_op->col |= COL_ROW_ADDR( + i, val); + else + nfc_op->row |= COL_ROW_ADDR( + i - 2, val); + } + } + break; + case NAND_OP_DATA_IN_INSTR: + nfc_op->data_instr = instr; + nfc_op->type = NAND_OP_DATA_IN_INSTR; + nfc_op->data_instr_idx = op_id; + break; + case NAND_OP_DATA_OUT_INSTR: + nfc_op->data_instr = instr; + nfc_op->type = NAND_OP_DATA_IN_INSTR; + nfc_op->data_instr_idx = op_id; + break; + case NAND_OP_WAITRDY_INSTR: + nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; + nfc_op->rdy_delay_ns = instr->delay_ns; + break; + } + } +} + +/** + * anfc_data_cpy - Read data from the NAND + * @nfc: The Controller instance + * @mtd: mtd info structure + * @buf: buffer used to store the data + * @len: length of the buffer + * @operation: current command transfer, + * that needs to be set in program_register + * @direction: Read/write transfer + * The Arasan NAND controller always read/write 4byte alinged + * lengths.If the length of the data is not 4byte aligned, then + * we need to make it as alinged. + * + * Returns 0 on success, a negative error code otherwise. + */ +static void anfc_data_cpy(struct anfc_nand_controller *nfc, + struct mtd_info *mtd, u8 *buf, + int len, int operation, bool direction) +{ + u32 Rem = 0, Div; + + if (!buf) + return; + + Rem = len % 4; + Div = len / 4; + if (len < 4) { + anfc_rw_pio_op(mtd, buf, 4, direction, operation); + } else { + anfc_rw_pio_op(mtd, buf, 4*Div, direction, operation); + + if (Rem) { + buf += (4*Div); + anfc_rw_pio_op(mtd, buf, 4, direction, operation); + } + } +} + +static int anfc_status_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + const struct nand_op_instr *instr; + struct anfc_op nfc_op = {}; + unsigned int op_id, len; + struct anfc_nand_chip *achip = to_anfc_nand(chip); + struct anfc_nand_controller *nfc = to_anfc(chip->controller); + + anfc_parse_instructions(chip, subop, &nfc_op); + instr = nfc_op.data_instr; + op_id = nfc_op.data_instr_idx; + + anfc_prepare_cmd(nfc, nfc_op.cmnds[0], 0, 0, 0, 0); + anfc_setpktszcnt(nfc, achip->spktsize / 4, 1); + anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col); + nfc->prog = PROG_STATUS; + + anfc_enable_intrs(nfc, XFER_COMPLETE); + writel(nfc->prog, nfc->base + PROG_OFST); + anfc_wait_for_event(nfc); + + if (!nfc_op.data_instr) + return 0; + + len = nand_subop_get_data_len(subop, op_id); + + /* + * The Arasan NAND controller will update the status value + * returned by the flash device in FLASH_STS register. + */ + nfc->status = readl(nfc->base + FLASH_STS_OFST); + memcpy(instr->ctx.data.buf.in, &nfc->status, len); + return 0; +} + +static int anfc_erase_function(struct nand_chip *chip, + struct anfc_op nfc_op) +{ + + struct anfc_nand_chip *achip = to_anfc_nand(chip); + struct anfc_nand_controller *nfc = to_anfc(chip->controller); + + nfc->prog = PROG_ERASE; + anfc_prepare_cmd(nfc, nfc_op.cmnds[0], NAND_CMD_ERASE2, 0, 0, + achip->raddr_cycles); + nfc_op.col = nfc_op.row & 0xffff; + nfc_op.row = (nfc_op.row >> PG_ADDR_SHIFT) & 0xffff; + anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col); + + anfc_enable_intrs(nfc, XFER_COMPLETE); + writel(nfc->prog, nfc->base + PROG_OFST); + anfc_wait_for_event(nfc); + + return 0; +} + + +static int anfc_exec_op_cmd(struct nand_chip *chip, + const struct nand_subop *subop) +{ + const struct nand_op_instr *instr; + struct anfc_op nfc_op = {}; + struct anfc_nand_chip *achip = to_anfc_nand(chip); + struct anfc_nand_controller *nfc = to_anfc(chip->controller); + struct mtd_info *mtd = nand_to_mtd(chip); + u32 addrcycles; + unsigned int op_id, len = 0; + bool reading; + + anfc_parse_instructions(chip, subop, &nfc_op); + instr = nfc_op.data_instr; + op_id = nfc_op.data_instr_idx; + if (nfc_op.data_instr) + len = nand_subop_get_data_len(subop, op_id); + + /* + * The switch case is to prepare a command and to set page/column + * address. Arasan NAND controller has program register(Off: 0x10)), + * which needs to be set for every command. + * Ex: When NAND_CMD_RESET is issued, then we need to set reset bit + * in program_register. etc.. + */ + switch (nfc_op.cmnds[0]) { + case NAND_CMD_SEQIN: + addrcycles = achip->raddr_cycles + achip->caddr_cycles; + + anfc_prepare_cmd(nfc, nfc_op.cmnds[0], NAND_CMD_PAGEPROG, 1, + mtd->writesize, addrcycles); + anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col); + break; + case NAND_CMD_READOOB: + nfc_op.col += mtd->writesize; + case NAND_CMD_READ0: + case NAND_CMD_READ1: + addrcycles = achip->raddr_cycles + achip->caddr_cycles; + anfc_prepare_cmd(nfc, NAND_CMD_READ0, NAND_CMD_READSTART, 1, + mtd->writesize, addrcycles); + anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col); + if (!nfc_op.data_instr) + return 0; + + anfc_read_data_op(mtd, instr->ctx.data.buf.in, len); + break; + case NAND_CMD_RNDOUT: + anfc_prepare_cmd(nfc, nfc_op.cmnds[0], NAND_CMD_RNDOUTSTART, 1, + mtd->writesize, 2); + anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col); + nfc->prog = PROG_PGRD; + break; + case NAND_CMD_PARAM: + anfc_prepare_cmd(nfc, nfc_op.cmnds[0], 0, 0, 0, 1); + anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col); + nfc->prog = PROG_RDPARAM; + break; + case NAND_CMD_READID: + anfc_prepare_cmd(nfc, nfc_op.cmnds[0], 0, 0, 0, 1); + anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col); + nfc->prog = PROG_RDID; + break; + case NAND_CMD_GET_FEATURES: + anfc_prepare_cmd(nfc, nfc_op.cmnds[0], 0, 0, 0, 1); + anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col); + nfc->prog = PROG_GET_FEATURE; + break; + case NAND_CMD_SET_FEATURES: + anfc_prepare_cmd(nfc, nfc_op.cmnds[0], 0, 0, 0, 1); + anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col); + nfc->prog = PROG_SET_FEATURE; + break; + case NAND_CMD_ERASE1: + anfc_erase_function(chip, nfc_op); + break; + default: + break; + } + + if (!nfc_op.data_instr) + return 0; + + reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); + if (reading) { + if (nfc->curr_cmd == NAND_CMD_STATUS) { + nfc->status = readl(nfc->base + FLASH_STS_OFST); + memcpy(instr->ctx.data.buf.in, &nfc->status, len); + } else { + anfc_data_cpy(nfc, mtd, instr->ctx.data.buf.in, len, + nfc->prog, 1); + } + } else { + anfc_data_cpy(nfc, mtd, (char *)instr->ctx.data.buf.out, len, + nfc->prog, 0); + } + + return 0; +} + +static int anfc_reset_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct anfc_op nfc_op = {}; + struct anfc_nand_controller *nfc = to_anfc(chip->controller); + + anfc_parse_instructions(chip, subop, &nfc_op); + anfc_prepare_cmd(nfc, nfc_op.cmnds[0], 0, 0, 0, 0); + nfc->prog = PROG_RST; + anfc_enable_intrs(nfc, XFER_COMPLETE); + writel(nfc->prog, nfc->base + PROG_OFST); + anfc_wait_for_event(nfc); + + return 0; +} + +static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER + (NAND_OP_PARSER_PATTERN + (anfc_exec_op_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2048)), + NAND_OP_PARSER_PATTERN + (anfc_exec_op_cmd, + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2048)), + NAND_OP_PARSER_PATTERN + (anfc_exec_op_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2048)), + NAND_OP_PARSER_PATTERN + (anfc_exec_op_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2048), + //NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), + NAND_OP_PARSER_PATTERN + (anfc_exec_op_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2048)), + NAND_OP_PARSER_PATTERN + (anfc_reset_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN + (anfc_status_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 1)), + ); + +static int anfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + return nand_op_parser_exec_op(chip, &anfc_op_parser, + op, check_only); +} + +static void anfc_select_chip(struct mtd_info *mtd, int num) +{ + + u32 val; + struct nand_chip *chip = mtd_to_nand(mtd); + struct anfc_nand_chip *achip = to_anfc_nand(chip); + struct anfc_nand_controller *nfc = to_anfc(chip->controller); + + if (num == -1) + return; + + val = readl(nfc->base + MEM_ADDR2_OFST); + val &= (val & ~(CS_MASK | BCH_MODE_MASK)); + val |= (achip->csnum << CS_SHIFT) | (achip->bchmode << BCH_MODE_SHIFT); + writel(val, nfc->base + MEM_ADDR2_OFST); + nfc->csnum = achip->csnum; + writel(achip->eccval, nfc->base + ECC_OFST); + writel(achip->inftimeval, nfc->base + DATA_INTERFACE_OFST); +} + +static irqreturn_t anfc_irq_handler(int irq, void *ptr) +{ + struct anfc_nand_controller *nfc = ptr; + u32 status; + + status = readl(nfc->base + INTR_STS_OFST); + if (status & EVENT_MASK) { + complete(&nfc->event); + writel((status & EVENT_MASK), nfc->base + INTR_STS_OFST); + writel(0, nfc->base + INTR_STS_EN_OFST); + writel(0, nfc->base + INTR_SIG_EN_OFST); + return IRQ_HANDLED; + } + + return IRQ_NONE; +} + +static int anfc_setup_data_interface(struct mtd_info *mtd, int csline, + const struct nand_data_interface *conf) +{ + + struct nand_chip *chip = mtd_to_nand(mtd); + struct anfc_nand_controller *nfc = to_anfc(chip->controller); + struct anfc_nand_chip *achip = to_anfc_nand(chip); + + int mode, err; + void __iomem *nand_clk; + const struct nand_sdr_timings *sdr; + u32 inftimeval; + bool change_sdr_clk = false; + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + /* + * If the controller is already in the same mode as flash device + * then no need to change the timing mode again. + */ + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + mode = anfc_get_mode_frm_timings(sdr); + + if (mode < 0) + return -ENOTSUPP; + + inftimeval = mode & 7; + if (mode >= 2 && mode <= 5) + change_sdr_clk = true; + /* + * SDR timing modes 2-5 will not work for the arasan nand when + * freq > 90 MHz, so reduce the freq in SDR modes 2-5 to < 90Mhz + */ + if (change_sdr_clk) { + clk_disable_unprepare(nfc->clk_sys); + //err = clk_set_rate(nfc->clk_sys, SDR_MODE_DEFLT_FREQ); + nand_clk = ioremap(0xFF5E00B4, 50); + writel(0x01011200, nand_clk); + err = clk_prepare_enable(nfc->clk_sys); + if (err) { + dev_err(nfc->dev, "Unable to enable sys clock.\n"); + clk_disable_unprepare(nfc->clk_sys); + return err; + } + } + achip->inftimeval = inftimeval; + if (mode & ONFI_DATA_INTERFACE_NVDDR) + achip->spktsize = NVDDR_MODE_PACKET_SIZE; + + return 0; +} + +static int anfc_nand_attach_chip(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct anfc_nand_chip *achip = to_anfc_nand(chip); + u32 ret; + + if (mtd->writesize <= SZ_512) + achip->caddr_cycles = 1; + else + achip->caddr_cycles = 2; + + if (chip->options & NAND_ROW_ADDR_3) + achip->raddr_cycles = 3; + else + achip->raddr_cycles = 2; + + chip->ecc.calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); + chip->ecc.code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); + ret = anfc_ecc_init(mtd, &chip->ecc, chip->ecc.mode); + if (ret) + return ret; + + return 0; +} + +static const struct nand_controller_ops anfc_nand_controller_ops = { + .attach_chip = anfc_nand_attach_chip, +}; + +static int anfc_nand_chip_init(struct anfc_nand_controller *nfc, + struct anfc_nand_chip *anand_chip, + struct device_node *np) +{ + struct nand_chip *chip = &anand_chip->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + ret = of_property_read_u32(np, "reg", &anand_chip->csnum); + if (ret) { + dev_err(nfc->dev, "can't get chip-select\n"); + return -ENXIO; + } + mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, "arasan_nand.%d", + anand_chip->csnum); + mtd->dev.parent = nfc->dev; + + chip->chip_delay = 30; + chip->controller = &nfc->controller; + chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE; + chip->bbt_options = NAND_BBT_USE_FLASH; + chip->select_chip = anfc_select_chip; + chip->setup_data_interface = anfc_setup_data_interface; + chip->exec_op = anfc_exec_op; + nand_set_flash_node(chip, np); + + anand_chip->spktsize = SDR_MODE_PACKET_SIZE; + + ret = nand_scan(mtd, 1); + if (ret) { + dev_err(nfc->dev, "nand_scan_tail for NAND failed\n"); + return ret; + } + + return mtd_device_register(mtd, NULL, 0); +} + +static int anfc_probe(struct platform_device *pdev) +{ + struct anfc_nand_controller *nfc; + struct anfc_nand_chip *anand_chip; + struct device_node *np = pdev->dev.of_node, *child; + struct resource *res; + int err; + + nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + init_waitqueue_head(&nfc->controller.wq); + INIT_LIST_HEAD(&nfc->chips); + init_completion(&nfc->event); + nfc->dev = &pdev->dev; + platform_set_drvdata(pdev, nfc); + nfc->csnum = -1; + nfc->controller.ops = &anfc_nand_controller_ops; + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nfc->base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(nfc->base)) + return PTR_ERR(nfc->base); + nfc->dma = of_property_read_bool(pdev->dev.of_node, + "arasan,has-mdma"); + nfc->irq = platform_get_irq(pdev, 0); + if (nfc->irq < 0) { + dev_err(&pdev->dev, "platform_get_irq failed\n"); + return -ENXIO; + } + dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); + err = devm_request_irq(&pdev->dev, nfc->irq, anfc_irq_handler, + 0, "arasannfc", nfc); + if (err) + return err; + nfc->clk_sys = devm_clk_get(&pdev->dev, "sys"); + if (IS_ERR(nfc->clk_sys)) { + dev_err(&pdev->dev, "sys clock not found.\n"); + return PTR_ERR(nfc->clk_sys); + } + + nfc->clk_flash = devm_clk_get(&pdev->dev, "flash"); + if (IS_ERR(nfc->clk_flash)) { + dev_err(&pdev->dev, "flash clock not found.\n"); + return PTR_ERR(nfc->clk_flash); + } + + err = clk_prepare_enable(nfc->clk_sys); + if (err) { + dev_err(&pdev->dev, "Unable to enable sys clock.\n"); + return err; + } + + err = clk_prepare_enable(nfc->clk_flash); + if (err) { + dev_err(&pdev->dev, "Unable to enable flash clock.\n"); + goto clk_dis_sys; + } + + for_each_available_child_of_node(np, child) { + anand_chip = devm_kzalloc(&pdev->dev, sizeof(*anand_chip), + GFP_KERNEL); + if (!anand_chip) { + of_node_put(child); + err = -ENOMEM; + goto nandchip_clean_up; + } + err = anfc_nand_chip_init(nfc, anand_chip, child); + if (err) { + devm_kfree(&pdev->dev, anand_chip); + continue; + } + + list_add_tail(&anand_chip->node, &nfc->chips); + } + return 0; + +nandchip_clean_up: + list_for_each_entry(anand_chip, &nfc->chips, node) + nand_release(nand_to_mtd(&anand_chip->chip)); + clk_disable_unprepare(nfc->clk_flash); +clk_dis_sys: + clk_disable_unprepare(nfc->clk_sys); + + return err; +} + +static int anfc_remove(struct platform_device *pdev) +{ + struct anfc_nand_controller *nfc = platform_get_drvdata(pdev); + struct anfc_nand_chip *anand_chip; + + list_for_each_entry(anand_chip, &nfc->chips, node) + nand_release(nand_to_mtd(&anand_chip->chip)); + + clk_disable_unprepare(nfc->clk_sys); + clk_disable_unprepare(nfc->clk_flash); + + return 0; +} + +static const struct of_device_id anfc_ids[] = { + { .compatible = "arasan,nfc-v3p10" }, + { .compatible = "xlnx,zynqmp-nand" }, + { } +}; +MODULE_DEVICE_TABLE(of, anfc_ids); + +static struct platform_driver anfc_driver = { + .driver = { + .name = DRIVER_NAME, + .of_match_table = anfc_ids, + }, + .probe = anfc_probe, + .remove = anfc_remove, +}; +module_platform_driver(anfc_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Xilinx, Inc"); +MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver"); + -- 2.7.4 ______________________________________________________ Linux MTD discussion mailing list http://lists.infradead.org/mailman/listinfo/linux-mtd/