(2014/04/11 2:58), Luiz Capitulino wrote: > HugeTLB is limited to allocating hugepages whose size are less than > MAX_ORDER order. This is so because HugeTLB allocates hugepages via > the buddy allocator. Gigantic pages (that is, pages whose size is > greater than MAX_ORDER order) have to be allocated at boottime. > > However, boottime allocation has at least two serious problems. First, > it doesn't support NUMA and second, gigantic pages allocated at > boottime can't be freed. > > This commit solves both issues by adding support for allocating gigantic > pages during runtime. It works just like regular sized hugepages, > meaning that the interface in sysfs is the same, it supports NUMA, > and gigantic pages can be freed. > > For example, on x86_64 gigantic pages are 1GB big. To allocate two 1G > gigantic pages on node 1, one can do: > > # echo 2 > \ > /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages > > And to free them all: > > # echo 0 > \ > /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages > > The one problem with gigantic page allocation at runtime is that it > can't be serviced by the buddy allocator. To overcome that problem, this > commit scans all zones from a node looking for a large enough contiguous > region. When one is found, it's allocated by using CMA, that is, we call > alloc_contig_range() to do the actual allocation. For example, on x86_64 > we scan all zones looking for a 1GB contiguous region. When one is found, > it's allocated by alloc_contig_range(). > > One expected issue with that approach is that such gigantic contiguous > regions tend to vanish as runtime goes by. The best way to avoid this for > now is to make gigantic page allocations very early during system boot, say > from a init script. Other possible optimization include using compaction, > which is supported by CMA but is not explicitly used by this commit. > > It's also important to note the following: > > 1. Gigantic pages allocated at boottime by the hugepages= command-line > option can be freed at runtime just fine > > 2. This commit adds support for gigantic pages only to x86_64. The > reason is that I don't have access to nor experience with other archs. > The code is arch indepedent though, so it should be simple to add > support to different archs > > 3. I didn't add support for hugepage overcommit, that is allocating > a gigantic page on demand when > /proc/sys/vm/nr_overcommit_hugepages > 0. The reason is that I don't > think it's reasonable to do the hard and long work required for > allocating a gigantic page at fault time. But it should be simple > to add this if wanted > > Signed-off-by: Luiz Capitulino <lcapitulino@xxxxxxxxxx> > --- Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@xxxxxxxxxxxxxx> Thanks, Yasuaki Ishimatsu > mm/hugetlb.c | 167 +++++++++++++++++++++++++++++++++++++++++++++++++++++++---- > 1 file changed, 156 insertions(+), 11 deletions(-) > > diff --git a/mm/hugetlb.c b/mm/hugetlb.c > index 6f1ca74..161dc39 100644 > --- a/mm/hugetlb.c > +++ b/mm/hugetlb.c > @@ -680,11 +680,150 @@ static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) > ((node = hstate_next_node_to_free(hs, mask)) || 1); \ > nr_nodes--) > > +#if defined(CONFIG_CMA) && defined(CONFIG_X86_64) > +static void destroy_compound_gigantic_page(struct page *page, > + unsigned long order) > +{ > + int i; > + int nr_pages = 1 << order; > + struct page *p = page + 1; > + > + for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { > + __ClearPageTail(p); > + set_page_refcounted(p); > + p->first_page = NULL; > + } > + > + set_compound_order(page, 0); > + __ClearPageHead(page); > +} > + > +static void free_gigantic_page(struct page *page, unsigned order) > +{ > + free_contig_range(page_to_pfn(page), 1 << order); > +} > + > +static int __alloc_gigantic_page(unsigned long start_pfn, > + unsigned long nr_pages) > +{ > + unsigned long end_pfn = start_pfn + nr_pages; > + return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE); > +} > + > +static bool pfn_range_valid_gigantic(unsigned long start_pfn, > + unsigned long nr_pages) > +{ > + unsigned long i, end_pfn = start_pfn + nr_pages; > + struct page *page; > + > + for (i = start_pfn; i < end_pfn; i++) { > + if (!pfn_valid(i)) > + return false; > + > + page = pfn_to_page(i); > + > + if (PageReserved(page)) > + return false; > + > + if (page_count(page) > 0) > + return false; > + > + if (PageHuge(page)) > + return false; > + } > + > + return true; > +} > + > +static bool zone_spans_last_pfn(const struct zone *zone, > + unsigned long start_pfn, unsigned long nr_pages) > +{ > + unsigned long last_pfn = start_pfn + nr_pages - 1; > + return zone_spans_pfn(zone, last_pfn); > +} > + > +static struct page *alloc_gigantic_page(int nid, unsigned order) > +{ > + unsigned long nr_pages = 1 << order; > + unsigned long ret, pfn, flags; > + struct zone *z; > + > + z = NODE_DATA(nid)->node_zones; > + for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) { > + spin_lock_irqsave(&z->lock, flags); > + > + pfn = ALIGN(z->zone_start_pfn, nr_pages); > + while (zone_spans_last_pfn(z, pfn, nr_pages)) { > + if (pfn_range_valid_gigantic(pfn, nr_pages)) { > + /* > + * We release the zone lock here because > + * alloc_contig_range() will also lock the zone > + * at some point. If there's an allocation > + * spinning on this lock, it may win the race > + * and cause alloc_contig_range() to fail... > + */ > + spin_unlock_irqrestore(&z->lock, flags); > + ret = __alloc_gigantic_page(pfn, nr_pages); > + if (!ret) > + return pfn_to_page(pfn); > + spin_lock_irqsave(&z->lock, flags); > + } > + pfn += nr_pages; > + } > + > + spin_unlock_irqrestore(&z->lock, flags); > + } > + > + return NULL; > +} > + > +static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); > +static void prep_compound_gigantic_page(struct page *page, unsigned long order); > + > +static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid) > +{ > + struct page *page; > + > + page = alloc_gigantic_page(nid, huge_page_order(h)); > + if (page) { > + prep_compound_gigantic_page(page, huge_page_order(h)); > + prep_new_huge_page(h, page, nid); > + } > + > + return page; > +} > + > +static int alloc_fresh_gigantic_page(struct hstate *h, > + nodemask_t *nodes_allowed) > +{ > + struct page *page = NULL; > + int nr_nodes, node; > + > + for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { > + page = alloc_fresh_gigantic_page_node(h, node); > + if (page) > + return 1; > + } > + > + return 0; > +} > + > +static inline bool gigantic_page_supported(void) { return true; } > +#else > +static inline bool gigantic_page_supported(void) { return false; } > +static inline void free_gigantic_page(struct page *page, unsigned order) { } > +static inline void destroy_compound_gigantic_page(struct page *page, > + unsigned long order) { } > +static inline int alloc_fresh_gigantic_page(struct hstate *h, > + nodemask_t *nodes_allowed) { return 0; } > +#endif > + > static void update_and_free_page(struct hstate *h, struct page *page) > { > int i; > > - VM_BUG_ON(hstate_is_gigantic(h)); > + if (hstate_is_gigantic(h) && !gigantic_page_supported()) > + return; > > h->nr_huge_pages--; > h->nr_huge_pages_node[page_to_nid(page)]--; > @@ -697,8 +836,13 @@ static void update_and_free_page(struct hstate *h, struct page *page) > VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); > set_compound_page_dtor(page, NULL); > set_page_refcounted(page); > - arch_release_hugepage(page); > - __free_pages(page, huge_page_order(h)); > + if (hstate_is_gigantic(h)) { > + destroy_compound_gigantic_page(page, huge_page_order(h)); > + free_gigantic_page(page, huge_page_order(h)); > + } else { > + arch_release_hugepage(page); > + __free_pages(page, huge_page_order(h)); > + } > } > > struct hstate *size_to_hstate(unsigned long size) > @@ -737,7 +881,7 @@ static void free_huge_page(struct page *page) > if (restore_reserve) > h->resv_huge_pages++; > > - if (h->surplus_huge_pages_node[nid] && !hstate_is_gigantic(h)) { > + if (h->surplus_huge_pages_node[nid]) { > /* remove the page from active list */ > list_del(&page->lru); > update_and_free_page(h, page); > @@ -841,9 +985,6 @@ static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) > { > struct page *page; > > - if (hstate_is_gigantic(h)) > - return NULL; > - > page = alloc_pages_exact_node(nid, > htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| > __GFP_REPEAT|__GFP_NOWARN, > @@ -1477,7 +1618,7 @@ static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, > { > unsigned long min_count, ret; > > - if (hstate_is_gigantic(h)) > + if (hstate_is_gigantic(h) && !gigantic_page_supported()) > return h->max_huge_pages; > > /* > @@ -1504,7 +1645,11 @@ static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, > * and reducing the surplus. > */ > spin_unlock(&hugetlb_lock); > - ret = alloc_fresh_huge_page(h, nodes_allowed); > + if (hstate_is_gigantic(h)) { > + ret = alloc_fresh_gigantic_page(h, nodes_allowed); > + } else { > + ret = alloc_fresh_huge_page(h, nodes_allowed); > + } > spin_lock(&hugetlb_lock); > if (!ret) > goto out; > @@ -1604,7 +1749,7 @@ static ssize_t nr_hugepages_store_common(bool obey_mempolicy, > goto out; > > h = kobj_to_hstate(kobj, &nid); > - if (hstate_is_gigantic(h)) { > + if (hstate_is_gigantic(h) && !gigantic_page_supported()) { > err = -EINVAL; > goto out; > } > @@ -2112,7 +2257,7 @@ static int hugetlb_sysctl_handler_common(bool obey_mempolicy, > > tmp = h->max_huge_pages; > > - if (write && hstate_is_gigantic(h)) > + if (write && hstate_is_gigantic(h) && !gigantic_page_supported()) > return -EINVAL; > > table->data = &tmp; > -- To unsubscribe, send a message with 'unsubscribe linux-mm' in the body to majordomo@xxxxxxxxx. For more info on Linux MM, see: http://www.linux-mm.org/ . Don't email: <a href=mailto:"dont@xxxxxxxxx"> email@xxxxxxxxx </a>