On Wed, Oct 17, 2012 at 10:32:13AM +0800, Ni zhan Chen wrote: > On 10/03/2012 08:04 AM, Kirill A. Shutemov wrote: > >On Tue, Oct 02, 2012 at 03:31:48PM -0700, Andrew Morton wrote: > >>On Tue, 2 Oct 2012 18:19:22 +0300 > >>"Kirill A. Shutemov" <kirill.shutemov@xxxxxxxxxxxxxxx> wrote: > >> > >>>During testing I noticed big (up to 2.5 times) memory consumption overhead > >>>on some workloads (e.g. ft.A from NPB) if THP is enabled. > >>> > >>>The main reason for that big difference is lacking zero page in THP case. > >>>We have to allocate a real page on read page fault. > >>> > >>>A program to demonstrate the issue: > >>>#include <assert.h> > >>>#include <stdlib.h> > >>>#include <unistd.h> > >>> > >>>#define MB 1024*1024 > >>> > >>>int main(int argc, char **argv) > >>>{ > >>> char *p; > >>> int i; > >>> > >>> posix_memalign((void **)&p, 2 * MB, 200 * MB); > >>> for (i = 0; i < 200 * MB; i+= 4096) > >>> assert(p[i] == 0); > >>> pause(); > >>> return 0; > >>>} > >>> > >>>With thp-never RSS is about 400k, but with thp-always it's 200M. > >>>After the patcheset thp-always RSS is 400k too. > >>I'd like to see a full description of the design, please. > >Okay. Design overview. > > > >Huge zero page (hzp) is a non-movable huge page (2M on x86-64) filled with > >zeros. The way how we allocate it changes in the patchset: > > > >- [01/10] simplest way: hzp allocated on boot time in hugepage_init(); > >- [09/10] lazy allocation on first use; > >- [10/10] lockless refcounting + shrinker-reclaimable hzp; > > > >We setup it in do_huge_pmd_anonymous_page() if area around fault address > >is suitable for THP and we've got read page fault. > >If we fail to setup hzp (ENOMEM) we fallback to handle_pte_fault() as we > >normally do in THP. > > > >On wp fault to hzp we allocate real memory for the huge page and clear it. > >If ENOMEM, graceful fallback: we create a new pmd table and set pte around > >fault address to newly allocated normal (4k) page. All other ptes in the > >pmd set to normal zero page. > > > >We cannot split hzp (and it's bug if we try), but we can split the pmd > >which points to it. On splitting the pmd we create a table with all ptes > >set to normal zero page. > > > >Patchset organized in bisect-friendly way: > > Patches 01-07: prepare all code paths for hzp > > Patch 08: all code paths are covered: safe to setup hzp > > Patch 09: lazy allocation > > Patch 10: lockless refcounting for hzp > > > >-------------------------------------------------------------------------- > > > >By hpa request I've tried alternative approach for hzp implementation (see > >Virtual huge zero page patchset): pmd table with all entries set to zero > >page. This way should be more cache friendly, but it increases TLB > >pressure. > > > >The problem with virtual huge zero page: it requires per-arch enabling. > >We need a way to mark that pmd table has all ptes set to zero page. > > > >Some numbers to compare two implementations (on 4s Westmere-EX): > > > >Mirobenchmark1 > >============== > > > >test: > > posix_memalign((void **)&p, 2 * MB, 8 * GB); > > for (i = 0; i < 100; i++) { > > assert(memcmp(p, p + 4*GB, 4*GB) == 0); > > asm volatile ("": : :"memory"); > > } > > > >hzp: > > Performance counter stats for './test_memcmp' (5 runs): > > > > 32356.272845 task-clock # 0.998 CPUs utilized ( +- 0.13% ) > > 40 context-switches # 0.001 K/sec ( +- 0.94% ) > > 0 CPU-migrations # 0.000 K/sec > > 4,218 page-faults # 0.130 K/sec ( +- 0.00% ) > > 76,712,481,765 cycles # 2.371 GHz ( +- 0.13% ) [83.31%] > > 36,279,577,636 stalled-cycles-frontend # 47.29% frontend cycles idle ( +- 0.28% ) [83.35%] > > 1,684,049,110 stalled-cycles-backend # 2.20% backend cycles idle ( +- 2.96% ) [66.67%] > > 134,355,715,816 instructions # 1.75 insns per cycle > > # 0.27 stalled cycles per insn ( +- 0.10% ) [83.35%] > > 13,526,169,702 branches # 418.039 M/sec ( +- 0.10% ) [83.31%] > > 1,058,230 branch-misses # 0.01% of all branches ( +- 0.91% ) [83.36%] > > > > 32.413866442 seconds time elapsed ( +- 0.13% ) > > > >vhzp: > > Performance counter stats for './test_memcmp' (5 runs): > > > > 30327.183829 task-clock # 0.998 CPUs utilized ( +- 0.13% ) > > 38 context-switches # 0.001 K/sec ( +- 1.53% ) > > 0 CPU-migrations # 0.000 K/sec > > 4,218 page-faults # 0.139 K/sec ( +- 0.01% ) > > 71,964,773,660 cycles # 2.373 GHz ( +- 0.13% ) [83.35%] > > 31,191,284,231 stalled-cycles-frontend # 43.34% frontend cycles idle ( +- 0.40% ) [83.32%] > > 773,484,474 stalled-cycles-backend # 1.07% backend cycles idle ( +- 6.61% ) [66.67%] > > 134,982,215,437 instructions # 1.88 insns per cycle > > # 0.23 stalled cycles per insn ( +- 0.11% ) [83.32%] > > 13,509,150,683 branches # 445.447 M/sec ( +- 0.11% ) [83.34%] > > 1,017,667 branch-misses # 0.01% of all branches ( +- 1.07% ) [83.32%] > > > > 30.381324695 seconds time elapsed ( +- 0.13% ) > > > >Mirobenchmark2 > >============== > > > >test: > > posix_memalign((void **)&p, 2 * MB, 8 * GB); > > for (i = 0; i < 1000; i++) { > > char *_p = p; > > while (_p < p+4*GB) { > > assert(*_p == *(_p+4*GB)); > > _p += 4096; > > asm volatile ("": : :"memory"); > > } > > } > > > >hzp: > > Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): > > > > 3505.727639 task-clock # 0.998 CPUs utilized ( +- 0.26% ) > > 9 context-switches # 0.003 K/sec ( +- 4.97% ) > > 4,384 page-faults # 0.001 M/sec ( +- 0.00% ) > > 8,318,482,466 cycles # 2.373 GHz ( +- 0.26% ) [33.31%] > > 5,134,318,786 stalled-cycles-frontend # 61.72% frontend cycles idle ( +- 0.42% ) [33.32%] > > 2,193,266,208 stalled-cycles-backend # 26.37% backend cycles idle ( +- 5.51% ) [33.33%] > > 9,494,670,537 instructions # 1.14 insns per cycle > > # 0.54 stalled cycles per insn ( +- 0.13% ) [41.68%] > > 2,108,522,738 branches # 601.451 M/sec ( +- 0.09% ) [41.68%] > > 158,746 branch-misses # 0.01% of all branches ( +- 1.60% ) [41.71%] > > 3,168,102,115 L1-dcache-loads > > # 903.693 M/sec ( +- 0.11% ) [41.70%] > > 1,048,710,998 L1-dcache-misses > > # 33.10% of all L1-dcache hits ( +- 0.11% ) [41.72%] > > 1,047,699,685 LLC-load > > # 298.854 M/sec ( +- 0.03% ) [33.38%] > > 2,287 LLC-misses > > # 0.00% of all LL-cache hits ( +- 8.27% ) [33.37%] > > 3,166,187,367 dTLB-loads > > # 903.147 M/sec ( +- 0.02% ) [33.35%] > > 4,266,538 dTLB-misses > > # 0.13% of all dTLB cache hits ( +- 0.03% ) [33.33%] > > > > 3.513339813 seconds time elapsed ( +- 0.26% ) > > > >vhzp: > > Performance counter stats for 'taskset -c 0 ./test_memcmp2' (5 runs): > > > > 27313.891128 task-clock # 0.998 CPUs utilized ( +- 0.24% ) > > 62 context-switches # 0.002 K/sec ( +- 0.61% ) > > 4,384 page-faults # 0.160 K/sec ( +- 0.01% ) > > 64,747,374,606 cycles # 2.370 GHz ( +- 0.24% ) [33.33%] > > 61,341,580,278 stalled-cycles-frontend # 94.74% frontend cycles idle ( +- 0.26% ) [33.33%] > > 56,702,237,511 stalled-cycles-backend # 87.57% backend cycles idle ( +- 0.07% ) [33.33%] > > 10,033,724,846 instructions # 0.15 insns per cycle > > # 6.11 stalled cycles per insn ( +- 0.09% ) [41.65%] > > 2,190,424,932 branches # 80.195 M/sec ( +- 0.12% ) [41.66%] > > 1,028,630 branch-misses # 0.05% of all branches ( +- 1.50% ) [41.66%] > > 3,302,006,540 L1-dcache-loads > > # 120.891 M/sec ( +- 0.11% ) [41.68%] > > 271,374,358 L1-dcache-misses > > # 8.22% of all L1-dcache hits ( +- 0.04% ) [41.66%] > > 20,385,476 LLC-load > > # 0.746 M/sec ( +- 1.64% ) [33.34%] > > 76,754 LLC-misses > > # 0.38% of all LL-cache hits ( +- 2.35% ) [33.34%] > > 3,309,927,290 dTLB-loads > > # 121.181 M/sec ( +- 0.03% ) [33.34%] > > 2,098,967,427 dTLB-misses > > # 63.41% of all dTLB cache hits ( +- 0.03% ) [33.34%] > > > > 27.364448741 seconds time elapsed ( +- 0.24% ) > > > >-------------------------------------------------------------------------- > > Hi Kirill A. Shutemov, > > I see in the kernel doc which describes the benefit of thp, "the TLB > miss will run faster" (especially with virtualization using nested > pagetables but almost always also on bare metal without > virtualization). > > Could you explain me why TLB miss run faster? I think it only reduce > TLB miss ratio. TLB miss for huge page resolved on PMD, not on PTE level, so it's -1 table lookup. -- Kirill A. Shutemov -- To unsubscribe, send a message with 'unsubscribe linux-mm' in the body to majordomo@xxxxxxxxx. For more info on Linux MM, see: http://www.linux-mm.org/ . Don't email: <a href=mailto:"dont@xxxxxxxxx"> email@xxxxxxxxx </a>