Re: RFC: Memory Tiering Kernel Interfaces

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Wed, May 11, 2022 at 9:40 PM Aneesh Kumar K V
<aneesh.kumar@xxxxxxxxxxxxx> wrote:
>
> On 5/11/22 12:42 PM, Alistair Popple wrote:
> >
> > Wei Xu <weixugc@xxxxxxxxxx> writes:
> >
> >> On Tue, May 10, 2022 at 5:10 AM Aneesh Kumar K V
> >> <aneesh.kumar@xxxxxxxxxxxxx> wrote:
> >>>
> >>> On 5/10/22 3:29 PM, Hesham Almatary wrote:
> >>>> Hello Yang,
> >>>>
> >>>> On 5/10/2022 4:24 AM, Yang Shi wrote:
> >>>>> On Mon, May 9, 2022 at 7:32 AM Hesham Almatary
> >>>>> <hesham.almatary@xxxxxxxxxx> wrote:
> >>>
> >>>
> >>> ...
> >>>
> >>>>>>
> >>>>>> node 0 has a CPU and DDR memory in tier 0, node 1 has GPU and DDR memory
> >>>>>> in tier 0,
> >>>>>> node 2 has NVMM memory in tier 1, node 3 has some sort of bigger memory
> >>>>>> (could be a bigger DDR or something) in tier 2. The distances are as
> >>>>>> follows:
> >>>>>>
> >>>>>> --------------          --------------
> >>>>>> |   Node 0   |          |   Node 1   |
> >>>>>> |  -------   |          |  -------   |
> >>>>>> | |  DDR  |  |          | |  DDR  |  |
> >>>>>> |  -------   |          |  -------   |
> >>>>>> |            |          |            |
> >>>>>> --------------          --------------
> >>>>>>           | 20               | 120    |
> >>>>>>           v                  v        |
> >>>>>> ----------------------------       |
> >>>>>> | Node 2     PMEM          |       | 100
> >>>>>> ----------------------------       |
> >>>>>>           | 100                       |
> >>>>>>           v                           v
> >>>>>> --------------------------------------
> >>>>>> | Node 3    Large mem                |
> >>>>>> --------------------------------------
> >>>>>>
> >>>>>> node distances:
> >>>>>> node   0    1    2    3
> >>>>>>       0  10   20   20  120
> >>>>>>       1  20   10  120  100
> >>>>>>       2  20  120   10  100
> >>>>>>       3  120 100  100   10
> >>>>>>
> >>>>>> /sys/devices/system/node/memory_tiers
> >>>>>> 0-1
> >>>>>> 2
> >>>>>> 3
> >>>>>>
> >>>>>> N_TOPTIER_MEMORY: 0-1
> >>>>>>
> >>>>>>
> >>>>>> In this case, we want to be able to "skip" the demotion path from Node 1
> >>>>>> to Node 2,
> >>>>>>
> >>>>>> and make demotion go directely to Node 3 as it is closer, distance wise.
> >>>>>> How can
> >>>>>>
> >>>>>> we accommodate this scenario (or at least not rule it out as future
> >>>>>> work) with the
> >>>>>>
> >>>>>> current RFC?
> >>>>> If I remember correctly NUMA distance is hardcoded in SLIT by the
> >>>>> firmware, it is supposed to reflect the latency. So I suppose it is
> >>>>> the firmware's responsibility to have correct information. And the RFC
> >>>>> assumes higher tier memory has better performance than lower tier
> >>>>> memory (latency, bandwidth, throughput, etc), so it sounds like a
> >>>>> buggy firmware to have lower tier memory with shorter distance than
> >>>>> higher tier memory IMHO.
> >>>>
> >>>> You are correct if you're assuming the topology is all hierarchically
> >>>>
> >>>> symmetric, but unfortuantely, in real hardware (e.g., my example above)
> >>>>
> >>>> it is not. The distance/latency between two nodes in the same tier
> >>>>
> >>>> and a third node, is different. The firmware still provides the correct
> >>>>
> >>>> latency, but putting a node in a tier is up to the kernel/user, and
> >>>>
> >>>> is relative: e.g., Node 3 could belong to tier 1 from Node 1's
> >>>>
> >>>> perspective, but to tier 2 from Node 0's.
> >>>>
> >>>>
> >>>> A more detailed example (building on my previous one) is when having
> >>>>
> >>>> the GPU connected to a switch:
> >>>>
> >>>> ----------------------------
> >>>> | Node 2     PMEM          |
> >>>> ----------------------------
> >>>>         ^
> >>>>         |
> >>>> --------------          --------------
> >>>> |   Node 0   |          |   Node 1   |
> >>>> |  -------   |          |  -------   |
> >>>> | |  DDR  |  |          | |  DDR  |  |
> >>>> |  -------   |          |  -------   |
> >>>> |    CPU     |          |    GPU     |
> >>>> --------------          --------------
> >>>>          |                  |
> >>>>          v                  v
> >>>> ----------------------------
> >>>> |         Switch           |
> >>>> ----------------------------
> >>>>          |
> >>>>          v
> >>>> --------------------------------------
> >>>> | Node 3    Large mem                |
> >>>> --------------------------------------
> >>>>
> >>>> Here, demoting from Node 1 to Node 3 directly would be faster as
> >>>>
> >>>> it only has to go through one hub, compared to demoting from Node 1
> >>>>
> >>>> to Node 2, where it goes through two hubs. I hope that example
> >>>>
> >>>> clarifies things a little bit.
> >>>>
> >>>
> >>> Alistair mentioned that we want to consider GPU memory to be expensive
> >>> and want to demote from GPU to regular DRAM. In that case for the above
> >>> case we should end up with
> >>>
> >>>
> >>> tier 0 - > Node3
> >>> tier 1 ->  Node0, Node1
> >>> tier 2 ->  Node2
> >
> > I'm a little bit confused by the tiering here as I don't think it's
> > quite what we want. As pointed out GPU memory is expensive and therefore
> > we don't want anything demoting to it. That implies it should be in the
> > top tier:
> >
>
>
> I didn't look closely at the topology and assumed that Node3 is the GPU
> connected to the switch. Hence all the confusion.
>
>
> > tier 0 -> Node1
> > tier 1 -> Node0, Node3
> > tier 2 -> Node2
> >
> > Hence:
> >
> > node 0: allowed=2
> > node 1: allowed=0,3,2
> > node 2: allowed=empty
> > node 3: allowed=2
>
> looks good to be default and simple.
>
> >
> > Alternatively Node3 could be put in tier 2 which would prevent demotion
> > to PMEM via the switch/CPU:
> >
> > tier 0 -> Node1
> > tier 1 -> Node0
> > tier 2 -> Node2, Node3
> >
> > node 0: allowed=2,3
> > node 1: allowed=0,3,2
> > node 2: allowed=empty
> > node 3: allowed=empty
> >
>
> and this can be configured via userspace?

The per-node tier customization interface that I just mentioned should
support such reconfigurations.

> > Both of these would be an improvement over the current situation
> > upstream, which demotes everything to GPU memory and doesn't support
> > demoting from the GPU (meaning reclaim on GPU memory pages everything to
> > disk).
> >
> >>>
> >>> Hence
> >>>
> >>>    node 0: allowed=2
> >>>    node 1: allowed=2
> >>>    node 2: allowed = empty
> >>>    node 3: allowed = 0-1 , based on fallback order 1, 0
> >>
> >> If we have 3 tiers as defined above, then we'd better to have:
> >>
> >> node 0: allowed = 2
> >> node 1: allowed = 2
> >> node 2: allowed = empty
> >> node 3: allowed = 0-2, based on fallback order: 1,0,2
> >>
> >> The firmware should provide the node distance values to reflect that
> >> PMEM is slowest and should have the largest distance away from node 3.
> >
> > Right. In my above example firmware would have to provide reasonable
> > distance values to ensure optimal fallback order.
> >
> >>> -aneesh
> >>>
> >>>
>




[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [IETF Annouce]     [Bugtraq]     [Linux OMAP]     [Linux MIPS]     [eCos]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux