On Fri, Oct 21, 2022 at 02:22:49PM +0300, Matti Vaittinen wrote: > KX022A is a 3-axis accelerometer from ROHM/Kionix. The sensor features > include variable ODRs, I2C and SPI control, FIFO/LIFO with watermark IRQ, > tap/motion detection, wake-up & back-to-sleep events, four acceleration > ranges (2, 4, 8 and 16g), and probably some other cool features. > > Add support for the basic accelerometer features such as getting the > acceleration data via IIO. (raw reads, triggered buffer [data-ready] or > using the WMI IRQ). > > Important things to be added include the double-tap, motion > detection and wake-up as well as the runtime power management. While I have some disagreements on some code pieces, this version is okay to go I think. Reviewed-by: Andy Shevchenko <andriy.shevchenko@xxxxxxxxxxxxxxx> Below a few nit-picks in case it needs to be a v5. > Signed-off-by: Matti Vaittinen <mazziesaccount@xxxxxxxxx> > > --- > v3 => v4 fixes suggested by Andy: > - styling changes > - use str_on_off() > - drop check for !dev > - drop adding return value to print printed using dev_err_probe() > - use dev_err_probe() in SPI/I2C drivers too > - fix IRQ thread return value > > v2 => v3 Mostly fixes suggested by Andy > - styling issues > - spell-checks > - use namespaces for exported symbols > - drop module param > - document the lock > - change value written when clearing fifo > - drop WARN_ON() > - correctly check the return value from fwnode_irq_get_byname() > - do not emphasize config Y over M > - reorder struct kx022a_data from potential optimization > - IIO_DEVICE_ATTR_RO instead of IIO_DEVICE_ATTR where applicable > - directly include bits.h for BIT() > - use sysfs_emit() for sysfs > - use unique name for IRQ > - convert read_raw() values to CPU endianess > - fix HW-fifo size to 258 bytes > - kx022a-spi, Fix kconfig dependency > - disable irq (to protect timestamp / sample amount calculation) when the > fifo flush is iniriated by user-space > > RFCv1 => v2 (mostly based on feedback from Jonathan): > - Fix bunch of typos from the commit message. > - Add missing break; to the kx022a_write_raw() > - Fix SPI driver to use of_match_table > - Fix indentiation in I2C driver > - Drop struct kx022a_trigger > - Drop cross references from Kconfig > - Use /* */ also in file header comments > - Misc minor styling > - Do sensor-reset at probe > - Support both IRQ pins > - Implement read_avail callback > - Use dma aligned buffers for bulk-reads > - Use iio_trigger_poll_chained() > - Use devm consistently > - Drop inclusion of device.h > - Add SPI device ID for module loading > - Add module param for hw fifo / watermark IRQ usage > - Fix io-vdd-supply name to match one in the bindings > --- > drivers/iio/accel/Kconfig | 21 + > drivers/iio/accel/Makefile | 3 + > drivers/iio/accel/kionix-kx022a-i2c.c | 51 ++ > drivers/iio/accel/kionix-kx022a-spi.c | 58 ++ > drivers/iio/accel/kionix-kx022a.c | 1145 +++++++++++++++++++++++++ > drivers/iio/accel/kionix-kx022a.h | 82 ++ > 6 files changed, 1360 insertions(+) > create mode 100644 drivers/iio/accel/kionix-kx022a-i2c.c > create mode 100644 drivers/iio/accel/kionix-kx022a-spi.c > create mode 100644 drivers/iio/accel/kionix-kx022a.c > create mode 100644 drivers/iio/accel/kionix-kx022a.h > > diff --git a/drivers/iio/accel/Kconfig b/drivers/iio/accel/Kconfig > index ffac66db7ac9..b7fd054819d2 100644 > --- a/drivers/iio/accel/Kconfig > +++ b/drivers/iio/accel/Kconfig > @@ -409,6 +409,27 @@ config IIO_ST_ACCEL_SPI_3AXIS > To compile this driver as a module, choose M here. The module > will be called st_accel_spi. > > +config IIO_KX022A > + tristate > + > +config IIO_KX022A_SPI > + tristate "Kionix KX022A tri-axis digital accelerometer" > + depends on SPI > + select IIO_KX022A > + select REGMAP_SPI > + help > + Enable support for the Kionix KX022A digital tri-axis > + accelerometer connected to I2C interface. > + > +config IIO_KX022A_I2C > + tristate "Kionix KX022A tri-axis digital accelerometer" > + depends on I2C > + select IIO_KX022A > + select REGMAP_I2C > + help > + Enable support for the Kionix KX022A digital tri-axis > + accelerometer connected to I2C interface. > + > config KXSD9 > tristate "Kionix KXSD9 Accelerometer Driver" > select IIO_BUFFER > diff --git a/drivers/iio/accel/Makefile b/drivers/iio/accel/Makefile > index 5e45b5fa5ab5..311ead9c3ef1 100644 > --- a/drivers/iio/accel/Makefile > +++ b/drivers/iio/accel/Makefile > @@ -40,6 +40,9 @@ obj-$(CONFIG_FXLS8962AF) += fxls8962af-core.o > obj-$(CONFIG_FXLS8962AF_I2C) += fxls8962af-i2c.o > obj-$(CONFIG_FXLS8962AF_SPI) += fxls8962af-spi.o > obj-$(CONFIG_HID_SENSOR_ACCEL_3D) += hid-sensor-accel-3d.o > +obj-$(CONFIG_IIO_KX022A) += kionix-kx022a.o > +obj-$(CONFIG_IIO_KX022A_I2C) += kionix-kx022a-i2c.o > +obj-$(CONFIG_IIO_KX022A_SPI) += kionix-kx022a-spi.o > obj-$(CONFIG_KXCJK1013) += kxcjk-1013.o > obj-$(CONFIG_KXSD9) += kxsd9.o > obj-$(CONFIG_KXSD9_SPI) += kxsd9-spi.o > diff --git a/drivers/iio/accel/kionix-kx022a-i2c.c b/drivers/iio/accel/kionix-kx022a-i2c.c > new file mode 100644 > index 000000000000..6510f8d62b85 > --- /dev/null > +++ b/drivers/iio/accel/kionix-kx022a-i2c.c > @@ -0,0 +1,51 @@ > +// SPDX-License-Identifier: GPL-2.0-only > +/* > + * Copyright (C) 2022 ROHM Semiconductors > + * > + * ROHM/KIONIX KX022A accelerometer driver > + */ > + > +#include <linux/i2c.h> > +#include <linux/interrupt.h> > +#include <linux/module.h> > +#include <linux/regmap.h> > + > +#include "kionix-kx022a.h" > + > +static int kx022a_i2c_probe(struct i2c_client *i2c) > +{ > + struct device *dev = &i2c->dev; > + struct regmap *regmap; > + > + if (!i2c->irq) { > + dev_err(dev, "No IRQ configured\n"); > + return -EINVAL; > + } > + > + regmap = devm_regmap_init_i2c(i2c, &kx022a_regmap); > + if (IS_ERR(regmap)) > + return dev_err_probe(dev, PTR_ERR(regmap), > + "Failed to initialize Regmap\n"); > + > + return kx022a_probe_internal(dev); > +} > + > +static const struct of_device_id kx022a_of_match[] = { > + { .compatible = "kionix,kx022a", }, > + { } > +}; > +MODULE_DEVICE_TABLE(of, kx022a_of_match); > + > +static struct i2c_driver kx022a_i2c_driver = { > + .driver = { > + .name = "kx022a-i2c", > + .of_match_table = kx022a_of_match, > + }, > + .probe_new = kx022a_i2c_probe, > +}; > +module_i2c_driver(kx022a_i2c_driver); > + > +MODULE_DESCRIPTION("ROHM/Kionix KX022A accelerometer driver"); > +MODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@xxxxxxxxxxxxxxxxx>"); > +MODULE_LICENSE("GPL"); > +MODULE_IMPORT_NS(KIONIX_ACCEL); > diff --git a/drivers/iio/accel/kionix-kx022a-spi.c b/drivers/iio/accel/kionix-kx022a-spi.c > new file mode 100644 > index 000000000000..7fe3b0aba1fe > --- /dev/null > +++ b/drivers/iio/accel/kionix-kx022a-spi.c > @@ -0,0 +1,58 @@ > +// SPDX-License-Identifier: GPL-2.0-only > +/* > + * Copyright (C) 2022 ROHM Semiconductors > + * > + * ROHM/KIONIX KX022A accelerometer driver > + */ > + > +#include <linux/interrupt.h> > +#include <linux/module.h> > +#include <linux/regmap.h> > +#include <linux/spi/spi.h> > + > +#include "kionix-kx022a.h" > + > +static int kx022a_spi_probe(struct spi_device *spi) > +{ > + struct device *dev = &spi->dev; > + struct regmap *regmap; > + > + if (!spi->irq) { > + dev_err(dev, "No IRQ configured\n"); > + return -EINVAL; > + } > + > + regmap = devm_regmap_init_spi(spi, &kx022a_regmap); > + if (IS_ERR(regmap)) > + return dev_err_probe(dev, PTR_ERR(regmap), > + "Failed to initialize Regmap\n"); > + > + return kx022a_probe_internal(dev); > +} > + > +static const struct spi_device_id kx022a_id[] = { > + { "kx022a" }, > + { } > +}; > +MODULE_DEVICE_TABLE(spi, kx022a_id); > + > +static const struct of_device_id kx022a_of_match[] = { > + { .compatible = "kionix,kx022a", }, > + { } > +}; > +MODULE_DEVICE_TABLE(of, kx022a_of_match); > + > +static struct spi_driver kx022a_spi_driver = { > + .driver = { > + .name = "kx022a-spi", > + .of_match_table = kx022a_of_match, > + }, > + .probe = kx022a_spi_probe, > + .id_table = kx022a_id, > +}; > +module_spi_driver(kx022a_spi_driver); > + > +MODULE_DESCRIPTION("ROHM/Kionix kx022A accelerometer driver"); > +MODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@xxxxxxxxxxxxxxxxx>"); > +MODULE_LICENSE("GPL"); > +MODULE_IMPORT_NS(KIONIX_ACCEL); > diff --git a/drivers/iio/accel/kionix-kx022a.c b/drivers/iio/accel/kionix-kx022a.c > new file mode 100644 > index 000000000000..5a8622c8127b > --- /dev/null > +++ b/drivers/iio/accel/kionix-kx022a.c > @@ -0,0 +1,1145 @@ > +// SPDX-License-Identifier: GPL-2.0-only > +/* > + * Copyright (C) 2022 ROHM Semiconductors > + * > + * ROHM/KIONIX KX022A accelerometer driver > + */ > + > +#include <linux/delay.h> > +#include <linux/device.h> > +#include <linux/interrupt.h> > +#include <linux/module.h> > +#include <linux/moduleparam.h> > +#include <linux/mutex.h> > +#include <linux/property.h> > +#include <linux/regmap.h> > +#include <linux/regulator/consumer.h> > +#include <linux/slab.h> > +#include <linux/string_helpers.h> > +#include <linux/units.h> > + > +#include <linux/iio/iio.h> > +#include <linux/iio/sysfs.h> > +#include <linux/iio/trigger.h> > +#include <linux/iio/trigger_consumer.h> > +#include <linux/iio/triggered_buffer.h> > + > +#include "kionix-kx022a.h" > + > +/* > + * The KX022A has FIFO which can store 43 samples of HiRes data from 2 > + * channels. This equals to 43 (samples) * 3 (channels) * 2 (bytes/sample) to > + * 258 bytes of sample data. The quirk to know is that the amount of bytes in > + * the FIFO is advertised via 8 bit register (max value 255). The thing to note > + * is that full 258 bytes of data is indicated using the max value 255. > + */ > +#define KX022A_FIFO_LENGTH 43 > +#define KX022A_FIFO_FULL_VALUE 255 > +#define KX022A_SOFT_RESET_WAIT_TIME_US (5 * USEC_PER_MSEC) > +#define KX022A_SOFT_RESET_TOTAL_WAIT_TIME_US (500 * USEC_PER_MSEC) > + > +/* 3 axis, 2 bytes of data for each of the axis */ > +#define KX022A_FIFO_SAMPLES_SIZE_BYTES 6 > +#define KX022A_FIFO_MAX_BYTES \ > + (KX022A_FIFO_LENGTH * KX022A_FIFO_SAMPLES_SIZE_BYTES) > + > +enum { > + KX022A_STATE_SAMPLE, > + KX022A_STATE_FIFO, > +}; > + > +/* Regmap configs */ > +static const struct regmap_range kx022a_volatile_ranges[] = { > + { > + .range_min = KX022A_REG_XHP_L, > + .range_max = KX022A_REG_COTR, > + }, { > + .range_min = KX022A_REG_TSCP, > + .range_max = KX022A_REG_INT_REL, > + }, { > + /* The reset bit will be cleared by sensor */ > + .range_min = KX022A_REG_CNTL2, > + .range_max = KX022A_REG_CNTL2, > + }, { > + .range_min = KX022A_REG_BUF_STATUS_1, > + .range_max = KX022A_REG_BUF_READ, > + }, > +}; > + > +static const struct regmap_access_table kx022a_volatile_regs = { > + .yes_ranges = &kx022a_volatile_ranges[0], > + .n_yes_ranges = ARRAY_SIZE(kx022a_volatile_ranges), > +}; > + > +static const struct regmap_range kx022a_precious_ranges[] = { > + { > + .range_min = KX022A_REG_INT_REL, > + .range_max = KX022A_REG_INT_REL, > + }, > +}; > + > +static const struct regmap_access_table kx022a_precious_regs = { > + .yes_ranges = &kx022a_precious_ranges[0], > + .n_yes_ranges = ARRAY_SIZE(kx022a_precious_ranges), > +}; > + > +/* > + * The HW does not set WHO_AM_I reg as read-only but we don't want to write it > + * so we still include it in the read-only ranges. > + */ > +static const struct regmap_range kx022a_read_only_ranges[] = { > + { > + .range_min = KX022A_REG_XHP_L, > + .range_max = KX022A_REG_INT_REL, > + }, { > + .range_min = KX022A_REG_BUF_STATUS_1, > + .range_max = KX022A_REG_BUF_STATUS_2, > + }, { > + .range_min = KX022A_REG_BUF_READ, > + .range_max = KX022A_REG_BUF_READ, > + }, > +}; > + > +static const struct regmap_access_table kx022a_ro_regs = { > + .no_ranges = &kx022a_read_only_ranges[0], > + .n_no_ranges = ARRAY_SIZE(kx022a_read_only_ranges), > +}; > + > +static const struct regmap_range kx022a_write_only_ranges[] = { > + { > + .range_min = KX022A_REG_BTS_WUF_TH, > + .range_max = KX022A_REG_BTS_WUF_TH, > + }, { > + .range_min = KX022A_REG_MAN_WAKE, > + .range_max = KX022A_REG_MAN_WAKE, > + }, { > + .range_min = KX022A_REG_SELF_TEST, > + .range_max = KX022A_REG_SELF_TEST, > + }, { > + .range_min = KX022A_REG_BUF_CLEAR, > + .range_max = KX022A_REG_BUF_CLEAR, > + }, > +}; > + > +static const struct regmap_access_table kx022a_wo_regs = { > + .no_ranges = &kx022a_write_only_ranges[0], > + .n_no_ranges = ARRAY_SIZE(kx022a_write_only_ranges), > +}; > + > +static const struct regmap_range kx022a_noinc_read_ranges[] = { > + { > + .range_min = KX022A_REG_BUF_READ, > + .range_max = KX022A_REG_BUF_READ, > + }, > +}; > + > +static const struct regmap_access_table kx022a_nir_regs = { > + .yes_ranges = &kx022a_noinc_read_ranges[0], > + .n_yes_ranges = ARRAY_SIZE(kx022a_noinc_read_ranges), > +}; > + > +const struct regmap_config kx022a_regmap = { > + .reg_bits = 8, > + .val_bits = 8, > + .volatile_table = &kx022a_volatile_regs, > + .rd_table = &kx022a_wo_regs, > + .wr_table = &kx022a_ro_regs, > + .rd_noinc_table = &kx022a_nir_regs, > + .precious_table = &kx022a_precious_regs, > + .max_register = KX022A_MAX_REGISTER, > + .cache_type = REGCACHE_RBTREE, > +}; > +EXPORT_SYMBOL_NS_GPL(kx022a_regmap, KIONIX_ACCEL); > + > +struct kx022a_data { > + struct regmap *regmap; > + struct iio_trigger *trig; > + struct device *dev; > + struct iio_mount_matrix orientation; > + int64_t timestamp, old_timestamp; > + > + int irq; > + int inc_reg; > + int ien_reg; > + > + unsigned int g_range; > + unsigned int state; > + unsigned int odr_ns; > + > + bool trigger_enabled; > + /* > + * Prevent toggling the sensor stby/active state (PC1 bit) in the > + * middle of a configuration, or when the fifo is enabled. Also, > + * protect the data stored/retrieved from this structure from > + * concurrent accesses. > + */ > + struct mutex mutex; > + u8 watermark; > + > + /* 3 x 16bit accel data + timestamp */ > + __le16 buffer[8] __aligned(IIO_DMA_MINALIGN); > + struct { > + __le16 channels[3]; > + s64 ts __aligned(8); > + } scan; > +}; > + > +static const struct iio_mount_matrix * > +kx022a_get_mount_matrix(const struct iio_dev *idev, > + const struct iio_chan_spec *chan) > +{ > + struct kx022a_data *data = iio_priv(idev); > + > + return &data->orientation; > +} > + > +enum { > + AXIS_X, > + AXIS_Y, > + AXIS_Z, > + AXIS_MAX > +}; > + > +static const unsigned long kx022a_scan_masks[] = { > + BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 0 > +}; > + > +static const struct iio_chan_spec_ext_info kx022a_ext_info[] = { > + IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, kx022a_get_mount_matrix), > + { } > +}; > + > +#define KX022A_ACCEL_CHAN(axis, index) \ > +{ \ > + .type = IIO_ACCEL, \ > + .modified = 1, \ > + .channel2 = IIO_MOD_##axis, \ > + .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ > + .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ > + BIT(IIO_CHAN_INFO_SAMP_FREQ), \ > + .info_mask_shared_by_type_available = \ > + BIT(IIO_CHAN_INFO_SCALE) | \ > + BIT(IIO_CHAN_INFO_SAMP_FREQ), \ > + .ext_info = kx022a_ext_info, \ > + .address = KX022A_REG_##axis##OUT_L, \ > + .scan_index = index, \ > + .scan_type = { \ > + .sign = 's', \ > + .realbits = 16, \ > + .storagebits = 16, \ > + .endianness = IIO_LE, \ > + }, \ > +} > + > +static const struct iio_chan_spec kx022a_channels[] = { > + KX022A_ACCEL_CHAN(X, 0), > + KX022A_ACCEL_CHAN(Y, 1), > + KX022A_ACCEL_CHAN(Z, 2), > + IIO_CHAN_SOFT_TIMESTAMP(3), > +}; > + > +/* > + * The sensor HW can support ODR up to 1600 Hz, which is beyond what most of the > + * Linux CPUs can handle without dropping samples. Also, the low power mode is > + * not available for higher sample rates. Thus, the driver only supports 200 Hz > + * and slower ODRs. The slowest is 0.78 Hz. > + */ > +static const int kx022a_accel_samp_freq_table[][2] = { > + { 0, 780000 }, > + { 1, 563000 }, > + { 3, 125000 }, > + { 6, 250000 }, > + { 12, 500000 }, > + { 25, 0 }, > + { 50, 0 }, > + { 100, 0 }, > + { 200, 0 }, > +}; > + > +static const unsigned int kx022a_odrs[] = { > + 1282051282, > + 639795266, > + 320 * MEGA, > + 160 * MEGA, > + 80 * MEGA, > + 40 * MEGA, > + 20 * MEGA, > + 10 * MEGA, > + 5 * MEGA, > +}; > + > +/* > + * range is typically +-2G/4G/8G/16G, distributed over the amount of bits. > + * The scale table can be calculated using > + * (range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2 > + * => KX022A uses 16 bit (HiRes mode - assume the low 8 bits are zeroed > + * in low-power mode(?) ) > + * => +/-2G => 4 / 2^16 * 9,80665 * 10^6 (to scale to micro) > + * => +/-2G - 598.550415 > + * +/-4G - 1197.10083 > + * +/-8G - 2394.20166 > + * +/-16G - 4788.40332 > + */ > +static const int kx022a_scale_table[][2] = { > + { 598, 550415 }, > + { 1197, 100830 }, > + { 2394, 201660 }, > + { 4788, 403320 }, > +}; > + > +static int kx022a_read_avail(struct iio_dev *indio_dev, > + struct iio_chan_spec const *chan, > + const int **vals, int *type, int *length, > + long mask) > +{ > + switch (mask) { > + case IIO_CHAN_INFO_SAMP_FREQ: > + *vals = (const int *)kx022a_accel_samp_freq_table; > + *length = ARRAY_SIZE(kx022a_accel_samp_freq_table) * > + ARRAY_SIZE(kx022a_accel_samp_freq_table[0]); > + *type = IIO_VAL_INT_PLUS_MICRO; > + return IIO_AVAIL_LIST; > + case IIO_CHAN_INFO_SCALE: > + *vals = (const int *)kx022a_scale_table; > + *length = ARRAY_SIZE(kx022a_scale_table) * > + ARRAY_SIZE(kx022a_scale_table[0]); > + *type = IIO_VAL_INT_PLUS_MICRO; > + return IIO_AVAIL_LIST; > + default: > + return -EINVAL; > + } > +} > + > +#define KX022A_DEFAULT_PERIOD_NS (20 * NSEC_PER_MSEC) > + > +static void kx022a_reg2freq(unsigned int val, int *val1, int *val2) > +{ > + *val1 = kx022a_accel_samp_freq_table[val & KX022A_MASK_ODR][0]; > + *val2 = kx022a_accel_samp_freq_table[val & KX022A_MASK_ODR][1]; > +} > + > +static void kx022a_reg2scale(unsigned int val, unsigned int *val1, > + unsigned int *val2) > +{ > + val &= KX022A_MASK_GSEL; > + val >>= KX022A_GSEL_SHIFT; > + > + *val1 = kx022a_scale_table[val][0]; > + *val2 = kx022a_scale_table[val][1]; > +} > + > +static int kx022a_turn_on_off_unlocked(struct kx022a_data *data, bool on) > +{ > + int ret; > + > + if (on) > + ret = regmap_set_bits(data->regmap, KX022A_REG_CNTL, > + KX022A_MASK_PC1); > + else > + ret = regmap_clear_bits(data->regmap, KX022A_REG_CNTL, > + KX022A_MASK_PC1); > + if (ret) > + dev_err(data->dev, "Turn %s fail %d\n", str_on_off(on), ret); > + > + return ret; > + > +} > + > +static int kx022a_turn_off_lock(struct kx022a_data *data) > +{ > + int ret; > + > + mutex_lock(&data->mutex); > + ret = kx022a_turn_on_off_unlocked(data, false); > + if (ret) > + mutex_unlock(&data->mutex); > + > + return ret; > +} > + > +static int kx022a_turn_on_unlock(struct kx022a_data *data) > +{ > + int ret; > + > + ret = kx022a_turn_on_off_unlocked(data, true); > + mutex_unlock(&data->mutex); > + > + return ret; > +} > + > +static int kx022a_write_raw(struct iio_dev *idev, > + struct iio_chan_spec const *chan, > + int val, int val2, long mask) > +{ > + struct kx022a_data *data = iio_priv(idev); > + int ret, n; > + > + /* > + * We should not allow changing scale or frequency when FIFO is running > + * as it will mess the timestamp/scale for samples existing in the > + * buffer. If this turns out to be an issue we can later change logic > + * to internally flush the fifo before reconfiguring so the samples in > + * fifo keep matching the freq/scale settings. (Such setup could cause > + * issues if users trust the watermark to be reached within known > + * time-limit). > + */ > + ret = iio_device_claim_direct_mode(idev); > + if (ret) > + return ret; > + > + switch (mask) { > + case IIO_CHAN_INFO_SAMP_FREQ: > + n = ARRAY_SIZE(kx022a_accel_samp_freq_table); > + > + while (n--) > + if (val == kx022a_accel_samp_freq_table[n][0] && > + val2 == kx022a_accel_samp_freq_table[n][1]) > + break; > + if (n < 0) { > + ret = -EINVAL; > + goto unlock_out; > + } > + ret = kx022a_turn_off_lock(data); > + if (ret) > + break; > + > + ret = regmap_update_bits(data->regmap, > + KX022A_REG_ODCNTL, > + KX022A_MASK_ODR, n); > + data->odr_ns = kx022a_odrs[n]; > + kx022a_turn_on_unlock(data); > + break; > + case IIO_CHAN_INFO_SCALE: > + n = ARRAY_SIZE(kx022a_scale_table); > + > + while (n-- > 0) > + if (val == kx022a_scale_table[n][0] && > + val2 == kx022a_scale_table[n][1]) > + break; > + if (n < 0) { > + ret = -EINVAL; > + goto unlock_out; > + } > + > + ret = kx022a_turn_off_lock(data); > + if (ret) > + break; > + > + ret = regmap_update_bits(data->regmap, KX022A_REG_CNTL, > + KX022A_MASK_GSEL, > + n << KX022A_GSEL_SHIFT); > + kx022a_turn_on_unlock(data); > + break; > + default: > + ret = -EINVAL; > + break; > + } > + > +unlock_out: > + iio_device_release_direct_mode(idev); > + > + return ret; > +} > + > +static int kx022a_fifo_set_wmi(struct kx022a_data *data) > +{ > + u8 threshold; > + > + threshold = data->watermark; > + > + return regmap_update_bits(data->regmap, KX022A_REG_BUF_CNTL1, > + KX022A_MASK_WM_TH, threshold); > +} > + > +static int kx022a_get_axis(struct kx022a_data *data, > + struct iio_chan_spec const *chan, > + int *val) > +{ > + int ret; > + > + ret = regmap_bulk_read(data->regmap, chan->address, &data->buffer[0], > + sizeof(__le16)); > + if (ret) > + return ret; > + > + *val = le16_to_cpu(data->buffer[0]); > + > + return IIO_VAL_INT; > +} > + > +static int kx022a_read_raw(struct iio_dev *idev, > + struct iio_chan_spec const *chan, > + int *val, int *val2, long mask) > +{ > + struct kx022a_data *data = iio_priv(idev); > + unsigned int regval; > + int ret; > + > + switch (mask) { > + case IIO_CHAN_INFO_RAW: > + ret = iio_device_claim_direct_mode(idev); > + if (ret) > + return ret; > + > + mutex_lock(&data->mutex); > + ret = kx022a_get_axis(data, chan, val); > + mutex_unlock(&data->mutex); > + > + iio_device_release_direct_mode(idev); > + > + return ret; > + > + case IIO_CHAN_INFO_SAMP_FREQ: > + ret = regmap_read(data->regmap, KX022A_REG_ODCNTL, ®val); > + if (ret) > + return ret; > + > + if ((regval & KX022A_MASK_ODR) > > + ARRAY_SIZE(kx022a_accel_samp_freq_table)) { > + dev_err(data->dev, "Invalid ODR\n"); > + return -EINVAL; > + } > + > + kx022a_reg2freq(regval, val, val2); > + > + return IIO_VAL_INT_PLUS_MICRO; > + > + case IIO_CHAN_INFO_SCALE: > + ret = regmap_read(data->regmap, KX022A_REG_CNTL, ®val); > + if (ret < 0) > + return ret; > + > + kx022a_reg2scale(regval, val, val2); > + > + return IIO_VAL_INT_PLUS_MICRO; > + } > + > + return -EINVAL; > +}; > + > +static int kx022a_validate_trigger(struct iio_dev *idev, > + struct iio_trigger *trig) > +{ > + struct kx022a_data *data = iio_priv(idev); > + > + if (data->trig != trig) > + return -EINVAL; > + > + return 0; > +} > + > +static int kx022a_set_watermark(struct iio_dev *idev, unsigned int val) > +{ > + struct kx022a_data *data = iio_priv(idev); > + > + if (val > KX022A_FIFO_LENGTH) > + val = KX022A_FIFO_LENGTH; > + > + mutex_lock(&data->mutex); > + data->watermark = val; > + mutex_unlock(&data->mutex); > + > + return 0; > +} > + > +static ssize_t hwfifo_enabled_show(struct device *dev, > + struct device_attribute *attr, > + char *buf) > +{ > + struct iio_dev *idev = dev_to_iio_dev(dev); > + struct kx022a_data *data = iio_priv(idev); > + bool state; > + > + mutex_lock(&data->mutex); > + state = data->state; > + mutex_unlock(&data->mutex); > + > + return sysfs_emit(buf, "%d\n", state); > +} > + > +static ssize_t hwfifo_watermark_show(struct device *dev, > + struct device_attribute *attr, > + char *buf) > +{ > + struct iio_dev *idev = dev_to_iio_dev(dev); > + struct kx022a_data *data = iio_priv(idev); > + int wm; > + > + mutex_lock(&data->mutex); > + wm = data->watermark; > + mutex_unlock(&data->mutex); > + > + return sysfs_emit(buf, "%d\n", wm); > +} > + > +static IIO_DEVICE_ATTR_RO(hwfifo_enabled, 0); > +static IIO_DEVICE_ATTR_RO(hwfifo_watermark, 0); > + > +static const struct attribute *kx022a_fifo_attributes[] = { > + &iio_dev_attr_hwfifo_watermark.dev_attr.attr, > + &iio_dev_attr_hwfifo_enabled.dev_attr.attr, > + NULL > +}; > + > +static int kx022a_drop_fifo_contents(struct kx022a_data *data) > +{ > + /* > + * We must clear the old time-stamp to avoid computing the timestamps > + * based on samples acquired when buffer was last enabled. > + * > + * We don't need to protect the timestamp as long as we are only > + * called from fifo-disable where we can guarantee the sensor is not > + * triggering interrupts and where the mutex is locked to prevent the > + * user-space access. > + */ > + data->timestamp = 0; > + > + return regmap_write(data->regmap, KX022A_REG_BUF_CLEAR, 0x0); > +} > + > +static int __kx022a_fifo_flush(struct iio_dev *idev, unsigned int samples, > + bool irq) > +{ > + struct kx022a_data *data = iio_priv(idev); > + struct device *dev = regmap_get_device(data->regmap); > + u16 buffer[KX022A_FIFO_LENGTH * 3]; > + uint64_t sample_period; > + int count, fifo_bytes; > + bool renable = false; > + int64_t tstamp; > + int ret, i; > + > + ret = regmap_read(data->regmap, KX022A_REG_BUF_STATUS_1, &fifo_bytes); > + if (ret) { > + dev_err(dev, "Error reading buffer status\n"); > + return ret; > + } > + > + /* Let's not overflow if we for some reason get bogus value from i2c */ > + if (fifo_bytes == KX022A_FIFO_FULL_VALUE) > + fifo_bytes = KX022A_FIFO_MAX_BYTES; > + > + if (fifo_bytes % KX022A_FIFO_SAMPLES_SIZE_BYTES) > + dev_warn(data->dev, "Bad FIFO alignment. Data may be corrupt\n"); > + > + count = fifo_bytes / KX022A_FIFO_SAMPLES_SIZE_BYTES; > + if (!count) > + return 0; > + > + /* > + * If we are being called from IRQ handler we know the stored timestamp > + * is fairly accurate for the last stored sample. Otherwise, if we are > + * called as a result of a read operation from userspace and hence > + * before the watermark interrupt was triggered, take a timestamp > + * now. We can fall anywhere in between two samples so the error in this > + * case is at most one sample period. > + */ > + if (!irq) { > + /* > + * We need to have the IRQ disabled or we risk of messing-up > + * the timestamps. If we are ran from IRQ, then the > + * IRQF_ONESHOT has us covered - but if we are ran by the > + * user-space read we need to disable the IRQ to be on a safe > + * side. We do this usng synchronous disable so that if the > + * IRQ thread is being ran on other CPU we wait for it to be > + * finished. > + */ > + disable_irq(data->irq); > + renable = true; > + > + data->old_timestamp = data->timestamp; > + data->timestamp = iio_get_time_ns(idev); > + } > + > + /* > + * Approximate timestamps for each of the sample based on the sampling > + * frequency, timestamp for last sample and number of samples. > + * > + * We'd better not use the current bandwidth settings to compute the > + * sample period. The real sample rate varies with the device and > + * small variation adds when we store a large number of samples. > + * > + * To avoid this issue we compute the actual sample period ourselves > + * based on the timestamp delta between the last two flush operations. > + */ > + if (data->old_timestamp) { > + sample_period = data->timestamp - data->old_timestamp; > + do_div(sample_period, count); > + } else { > + sample_period = data->odr_ns; > + } > + tstamp = data->timestamp - (count - 1) * sample_period; > + > + if (samples && count > samples) { > + /* > + * Here we leave some old samples to the buffer. We need to > + * adjust the timestamp to match the first sample in the buffer > + * or we will miscalculate the sample_period at next round. > + */ > + data->timestamp -= (count - samples) * sample_period; > + count = samples; > + } > + > + fifo_bytes = count * KX022A_FIFO_SAMPLES_SIZE_BYTES; > + ret = regmap_noinc_read(data->regmap, KX022A_REG_BUF_READ, > + buffer, fifo_bytes); > + if (ret) > + goto renable_out; > + > + for (i = 0; i < count; i++) { > + u16 *sam = &buffer[i * 3]; > + __le16 *chs; > + int bit; > + > + chs = &data->scan.channels[0]; > + for_each_set_bit(bit, idev->active_scan_mask, AXIS_MAX) > + memcpy(&chs[bit], &sam[bit], sizeof(*chs)); > + > + iio_push_to_buffers_with_timestamp(idev, &data->scan, tstamp); > + > + tstamp += sample_period; > + } > + > + ret = count; > + > +renable_out: > + if (renable) > + enable_irq(data->irq); > + > + return ret; > +} > + > +static int kx022a_fifo_flush(struct iio_dev *idev, unsigned int samples) > +{ > + struct kx022a_data *data = iio_priv(idev); > + int ret; > + > + mutex_lock(&data->mutex); > + ret = __kx022a_fifo_flush(idev, samples, false); > + mutex_unlock(&data->mutex); > + > + return ret; > +} > + > +static const struct iio_info kx022a_info = { > + .read_raw = &kx022a_read_raw, > + .write_raw = &kx022a_write_raw, > + .read_avail = &kx022a_read_avail, > + > + .validate_trigger = kx022a_validate_trigger, > + .hwfifo_set_watermark = kx022a_set_watermark, > + .hwfifo_flush_to_buffer = kx022a_fifo_flush, > +}; > + > +static int kx022a_set_drdy_irq(struct kx022a_data *data, bool en) > +{ > + if (en) > + return regmap_set_bits(data->regmap, KX022A_REG_CNTL, > + KX022A_MASK_DRDY); > + > + return regmap_clear_bits(data->regmap, KX022A_REG_CNTL, > + KX022A_MASK_DRDY); > +} > + > +static int kx022a_prepare_irq_pin(struct kx022a_data *data) > +{ > + /* Enable IRQ1 pin. Set polarity to active low */ > + int mask = KX022A_MASK_IEN | KX022A_MASK_IPOL | > + KX022A_MASK_ITYP; > + int val = KX022A_MASK_IEN | KX022A_IPOL_LOW | > + KX022A_ITYP_LEVEL; > + int ret; > + > + ret = regmap_update_bits(data->regmap, data->inc_reg, mask, val); > + if (ret) > + return ret; > + > + /* We enable WMI to IRQ pin only at buffer_enable */ > + mask = KX022A_MASK_INS2_DRDY; > + > + return regmap_set_bits(data->regmap, data->ien_reg, mask); > +} > + > +static int kx022a_fifo_disable(struct kx022a_data *data) > +{ > + int ret = 0; > + > + ret = kx022a_turn_off_lock(data); > + if (ret) > + return ret; > + > + ret = regmap_clear_bits(data->regmap, data->ien_reg, KX022A_MASK_WMI); > + if (ret) > + goto unlock_out; > + > + ret = regmap_clear_bits(data->regmap, KX022A_REG_BUF_CNTL2, > + KX022A_MASK_BUF_EN); > + if (ret) > + goto unlock_out; > + data->state &= (~KX022A_STATE_FIFO); Too many parentheses. > + kx022a_drop_fifo_contents(data); > + > + return kx022a_turn_on_unlock(data); > + > +unlock_out: > + mutex_unlock(&data->mutex); > + > + return ret; > +} > + > +static int kx022a_buffer_predisable(struct iio_dev *idev) > +{ > + struct kx022a_data *data = iio_priv(idev); > + > + if (iio_device_get_current_mode(idev) == INDIO_BUFFER_TRIGGERED) > + return 0; > + > + return kx022a_fifo_disable(data); > +} > + > +static int kx022a_fifo_enable(struct kx022a_data *data) > +{ > + int ret; > + > + ret = kx022a_turn_off_lock(data); > + if (ret) > + return ret; > + > + /* Update watermark to HW */ > + ret = kx022a_fifo_set_wmi(data); > + if (ret) > + goto unlock_out; > + > + /* Enable buffer */ > + ret = regmap_set_bits(data->regmap, KX022A_REG_BUF_CNTL2, > + KX022A_MASK_BUF_EN); > + if (ret) > + goto unlock_out; > + > + data->state |= KX022A_STATE_FIFO; > + ret = regmap_set_bits(data->regmap, data->ien_reg, > + KX022A_MASK_WMI); > + if (ret) > + goto unlock_out; > + > + return kx022a_turn_on_unlock(data); > + > +unlock_out: > + mutex_unlock(&data->mutex); > + > + return ret; > +} > + > +static int kx022a_buffer_postenable(struct iio_dev *idev) > +{ > + struct kx022a_data *data = iio_priv(idev); > + > + /* > + * If we use data-ready trigger, then the IRQ masks should be handled by > + * trigger enable and the hardware buffer is not used but we just update > + * results to the IIO fifo when data-ready triggers. > + */ > + if (iio_device_get_current_mode(idev) == INDIO_BUFFER_TRIGGERED) > + return 0; > + > + return kx022a_fifo_enable(data); > +} > + > +static const struct iio_buffer_setup_ops kx022a_buffer_ops = { > + .postenable = kx022a_buffer_postenable, > + .predisable = kx022a_buffer_predisable, > +}; > + > +static irqreturn_t kx022a_trigger_handler(int irq, void *p) > +{ > + struct iio_poll_func *pf = p; > + struct iio_dev *idev = pf->indio_dev; > + struct kx022a_data *data = iio_priv(idev); > + int ret; > + > + ret = regmap_bulk_read(data->regmap, KX022A_REG_XOUT_L, data->buffer, > + KX022A_FIFO_SAMPLES_SIZE_BYTES); > + if (ret < 0) > + goto err_read; > + > + iio_push_to_buffers_with_timestamp(idev, data->buffer, pf->timestamp); > +err_read: > + iio_trigger_notify_done(idev->trig); > + > + return IRQ_HANDLED; > +} > + > +/* Get timestamps and wake the thread if we need to read data */ > +static irqreturn_t kx022a_irq_handler(int irq, void *private) > +{ > + struct iio_dev *idev = private; > + struct kx022a_data *data = iio_priv(idev); > + > + data->old_timestamp = data->timestamp; > + data->timestamp = iio_get_time_ns(idev); > + > + if (data->state & KX022A_STATE_FIFO || data->trigger_enabled) > + return IRQ_WAKE_THREAD; > + > + return IRQ_NONE; > +} > + > +/* > + * WMI and data-ready IRQs are acked when results are read. If we add > + * TILT/WAKE or other IRQs - then we may need to implement the acking > + * (which is racy). > + */ > +static irqreturn_t kx022a_irq_thread_handler(int irq, void *private) > +{ > + struct iio_dev *idev = private; > + struct kx022a_data *data = iio_priv(idev); > + int ret = IRQ_NONE; Strictly speaking this should be irqreturn_t ret = ... > + mutex_lock(&data->mutex); > + > + if (data->trigger_enabled) { > + iio_trigger_poll_chained(data->trig); > + ret = IRQ_HANDLED; > + } > + > + if (data->state & KX022A_STATE_FIFO) { > + int ok; > + > + ok = __kx022a_fifo_flush(idev, KX022A_FIFO_LENGTH, true); > + if (ok > 0) > + ret = IRQ_HANDLED; > + } > + > + mutex_unlock(&data->mutex); > + > + return ret; > +} > + > +static int kx022a_trigger_set_state(struct iio_trigger *trig, > + bool state) > +{ > + struct kx022a_data *data = iio_trigger_get_drvdata(trig); > + int ret = 0; > + > + mutex_lock(&data->mutex); > + > + if (data->trigger_enabled == state) > + goto unlock_out; > + > + if (data->state & KX022A_STATE_FIFO) { > + dev_warn(data->dev, "Can't set trigger when FIFO enabled\n"); > + ret = -EBUSY; > + goto unlock_out; > + } > + > + ret = kx022a_turn_on_off_unlocked(data, false); > + if (ret) > + goto unlock_out; > + > + data->trigger_enabled = state; > + ret = kx022a_set_drdy_irq(data, state); > + if (ret) > + goto unlock_out; > + > + ret = kx022a_turn_on_off_unlocked(data, true); > + > +unlock_out: > + mutex_unlock(&data->mutex); > + > + return ret; > +} > + > +static const struct iio_trigger_ops kx022a_trigger_ops = { > + .set_trigger_state = kx022a_trigger_set_state, > +}; > + > +static int kx022a_chip_init(struct kx022a_data *data) > +{ > + int ret, val; > + > + /* Reset the senor */ > + ret = regmap_write(data->regmap, KX022A_REG_CNTL2, KX022A_MASK_SRST); > + if (ret) > + return ret; > + > + /* > + * I've seen I2C read failures if we poll too fast after the sensor > + * reset. Slight delay gives I2C block the time to recover. > + */ > + msleep(1); > + > + ret = regmap_read_poll_timeout(data->regmap, KX022A_REG_CNTL2, val, > + !(val & KX022A_MASK_SRST), > + KX022A_SOFT_RESET_WAIT_TIME_US, > + KX022A_SOFT_RESET_TOTAL_WAIT_TIME_US); > + if (ret) { > + dev_err(data->dev, "Sensor reset %s\n", > + val & KX022A_MASK_SRST ? "timeout" : "fail#"); > + return ret; > + } > + > + ret = regmap_reinit_cache(data->regmap, &kx022a_regmap); > + if (ret) { > + dev_err(data->dev, "Failed to reinit reg cache\n"); > + return ret; > + } > + > + /* set data res 16bit */ > + ret = regmap_set_bits(data->regmap, KX022A_REG_BUF_CNTL2, > + KX022A_MASK_BRES16); > + if (ret) { > + dev_err(data->dev, "Failed to set data resolution\n"); > + return ret; > + } > + > + return kx022a_prepare_irq_pin(data); > +} > + > +int kx022a_probe_internal(struct device *dev) > +{ > + static const char * const regulator_names[] = {"io-vdd", "vdd"}; > + struct iio_trigger *indio_trig; > + struct fwnode_handle *fwnode; > + struct kx022a_data *data; > + struct regmap *regmap; > + unsigned int chip_id; > + struct iio_dev *idev; > + int ret, irq; > + char *name; > + > + regmap = dev_get_regmap(dev, NULL); > + if (!regmap) { > + dev_err(dev, "no regmap\n"); > + return -EINVAL; > + } > + > + idev = devm_iio_device_alloc(dev, sizeof(*data)); > + if (!idev) > + return -ENOMEM; > + > + data = iio_priv(idev); > + > + /* > + * VDD is the analog and digital domain voltage supply and > + * IO_VDD is the digital I/O voltage supply. > + */ > + ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(regulator_names), > + regulator_names); > + if (ret && ret != -ENODEV) > + return dev_err_probe(dev, ret, "failed to enable regulator\n"); > + > + ret = regmap_read(regmap, KX022A_REG_WHO, &chip_id); > + if (ret) > + return dev_err_probe(dev, ret, "Failed to access sensor\n"); > + > + if (chip_id != KX022A_ID) { > + dev_err(dev, "unsupported device 0x%x\n", chip_id); > + return -EINVAL; > + } > + fwnode = dev_fwnode(dev); > + if (!fwnode) > + return -ENODEV; You can do it before allocating any of the resources, so it will bail out earlier with less potential issues. > + irq = fwnode_irq_get_byname(fwnode, "INT1"); > + if (irq > 0) { > + data->inc_reg = KX022A_REG_INC1; > + data->ien_reg = KX022A_REG_INC4; > + > + if (fwnode_irq_get_byname(fwnode, "INT2") > 0) > + dev_warn(dev, "Only one IRQ supported\n"); > + } else { > + irq = fwnode_irq_get_byname(fwnode, "INT2"); > + if (irq <= 0) > + return dev_err_probe(dev, irq, "No suitable IRQ\n"); > + > + data->inc_reg = KX022A_REG_INC5; > + data->ien_reg = KX022A_REG_INC6; > + } > + > + data->regmap = regmap; > + data->dev = dev; > + data->irq = irq; > + data->odr_ns = KX022A_DEFAULT_PERIOD_NS; > + mutex_init(&data->mutex); > + > + idev->channels = kx022a_channels; > + idev->num_channels = ARRAY_SIZE(kx022a_channels); > + idev->name = "kx022-accel"; > + idev->info = &kx022a_info; > + idev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE; > + idev->available_scan_masks = kx022a_scan_masks; > + > + /* Read the mounting matrix, if present */ > + ret = iio_read_mount_matrix(dev, &data->orientation); > + if (ret) > + return ret; > + > + /* The sensor must be turned off for configuration */ > + ret = kx022a_turn_off_lock(data); > + if (ret) > + return ret; > + > + ret = kx022a_chip_init(data); > + if (ret) { > + mutex_unlock(&data->mutex); > + return ret; > + } > + > + ret = kx022a_turn_on_unlock(data); > + if (ret) > + return ret; Probably a comment that tells why you need an atomic delay. > + udelay(100); > + ret = devm_iio_triggered_buffer_setup_ext(dev, idev, > + &iio_pollfunc_store_time, > + kx022a_trigger_handler, > + IIO_BUFFER_DIRECTION_IN, > + &kx022a_buffer_ops, > + kx022a_fifo_attributes); > + > + if (ret) > + return dev_err_probe(data->dev, ret, > + "iio_triggered_buffer_setup_ext FAIL\n"); > + indio_trig = devm_iio_trigger_alloc(dev, "%sdata-rdy-dev%d", idev->name, > + iio_device_id(idev)); > + if (!indio_trig) > + return -ENOMEM; > + > + data->trig = indio_trig; > + > + indio_trig->ops = &kx022a_trigger_ops; > + iio_trigger_set_drvdata(indio_trig, data); > + > + ret = devm_iio_trigger_register(dev, indio_trig); > + if (ret) > + return dev_err_probe(data->dev, ret, > + "Trigger registration failed\n"); > + > + ret = devm_iio_device_register(data->dev, idev); > + if (ret < 0) > + return dev_err_probe(dev, ret, > + "Unable to register iio device\n"); > + > + /* > + * No need to check for NULL. request_threadedI_irq() defaults to > + * dev_name() should the alloc fail. > + */ > + name = devm_kasprintf(data->dev, GFP_KERNEL, "%s-kx022a", > + dev_name(data->dev)); > + > + ret = devm_request_threaded_irq(data->dev, irq, kx022a_irq_handler, > + &kx022a_irq_thread_handler, > + IRQF_ONESHOT, name, idev); > + if (ret) > + return dev_err_probe(data->dev, ret, "Could not request IRQ\n"); > + > + return ret; > +} > +EXPORT_SYMBOL_NS_GPL(kx022a_probe_internal, KIONIX_ACCEL); > + > +MODULE_DESCRIPTION("ROHM/Kionix KX022A accelerometer driver"); > +MODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@xxxxxxxxxxxxxxxxx>"); > +MODULE_LICENSE("GPL"); > diff --git a/drivers/iio/accel/kionix-kx022a.h b/drivers/iio/accel/kionix-kx022a.h > new file mode 100644 > index 000000000000..12424649d438 > --- /dev/null > +++ b/drivers/iio/accel/kionix-kx022a.h > @@ -0,0 +1,82 @@ > +/* SPDX-License-Identifier: GPL-2.0-or-later */ > +/* > + * Copyright (C) 2022 ROHM Semiconductors > + * > + * ROHM/KIONIX KX022A accelerometer driver > + */ > + > +#ifndef _KX022A_H_ > +#define _KX022A_H_ > + > +#include <linux/bits.h> > +#include <linux/regmap.h> > + > +#define KX022A_REG_WHO 0x0f > +#define KX022A_ID 0xc8 > + > +#define KX022A_REG_CNTL2 0x19 > +#define KX022A_MASK_SRST BIT(7) > +#define KX022A_REG_CNTL 0x18 > +#define KX022A_MASK_PC1 BIT(7) > +#define KX022A_MASK_RES BIT(6) > +#define KX022A_MASK_DRDY BIT(5) > +#define KX022A_MASK_GSEL GENMASK(4, 3) > +#define KX022A_GSEL_SHIFT 3 > +#define KX022A_GSEL_2 0x0 > +#define KX022A_GSEL_4 BIT(3) > +#define KX022A_GSEL_8 BIT(4) > +#define KX022A_GSEL_16 GENMASK(4, 3) > + > +#define KX022A_REG_INS2 0x13 > +#define KX022A_MASK_INS2_DRDY BIT(4) > +#define KX122_MASK_INS2_WMI BIT(5) > + > +#define KX022A_REG_XHP_L 0x0 > +#define KX022A_REG_XOUT_L 0x06 > +#define KX022A_REG_YOUT_L 0x08 > +#define KX022A_REG_ZOUT_L 0x0a > +#define KX022A_REG_COTR 0x0c > +#define KX022A_REG_TSCP 0x10 > +#define KX022A_REG_INT_REL 0x17 > + > +#define KX022A_REG_ODCNTL 0x1b > + > +#define KX022A_REG_BTS_WUF_TH 0x31 > +#define KX022A_REG_MAN_WAKE 0x2c > + > +#define KX022A_REG_BUF_CNTL1 0x3a > +#define KX022A_MASK_WM_TH GENMASK(6, 0) > +#define KX022A_REG_BUF_CNTL2 0x3b > +#define KX022A_MASK_BUF_EN BIT(7) > +#define KX022A_MASK_BRES16 BIT(6) > +#define KX022A_REG_BUF_STATUS_1 0x3c > +#define KX022A_REG_BUF_STATUS_2 0x3d > +#define KX022A_REG_BUF_CLEAR 0x3e > +#define KX022A_REG_BUF_READ 0x3f > +#define KX022A_MASK_ODR GENMASK(3, 0) > +#define KX022A_ODR_SHIFT 3 > +#define KX022A_FIFO_MAX_WMI_TH 41 > + > +#define KX022A_REG_INC1 0x1c > +#define KX022A_REG_INC5 0x20 > +#define KX022A_REG_INC6 0x21 > +#define KX022A_MASK_IEN BIT(5) > +#define KX022A_MASK_IPOL BIT(4) > +#define KX022A_IPOL_LOW 0 > +#define KX022A_IPOL_HIGH KX022A_MASK_IPOL1 > +#define KX022A_MASK_ITYP BIT(3) > +#define KX022A_ITYP_PULSE KX022A_MASK_ITYP > +#define KX022A_ITYP_LEVEL 0 > + > +#define KX022A_REG_INC4 0x1f > +#define KX022A_MASK_WMI BIT(5) > + > +#define KX022A_REG_SELF_TEST 0x60 > +#define KX022A_MAX_REGISTER 0x60 > + > +struct device; > + > +int kx022a_probe_internal(struct device *dev); > +extern const struct regmap_config kx022a_regmap; > + > +#endif > -- > 2.37.3 -- With Best Regards, Andy Shevchenko