[PATCH v11 3/4] PHY: add APM X-Gene SoC 15Gbps Multi-purpose PHY driver

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



This patch adds support for APM X-Gene SoC 15Gbps Multi-purpose PHY.
This is the physical layer interface for the corresponding host
controller. Currently, only external clock and SATA mode
are supported.

Signed-off-by: Loc Ho <lho@xxxxxxx>
Signed-off-by: Tuan Phan <tphan@xxxxxxx>
Signed-off-by: Suman Tripathi <stripathi@xxxxxxx>
---
 drivers/phy/Kconfig     |    7 +
 drivers/phy/Makefile    |    2 +
 drivers/phy/phy-xgene.c | 1827 +++++++++++++++++++++++++++++++++++++++++++++++
 3 files changed, 1836 insertions(+), 0 deletions(-)
 create mode 100644 drivers/phy/phy-xgene.c

diff --git a/drivers/phy/Kconfig b/drivers/phy/Kconfig
index afa2354..229db49 100644
--- a/drivers/phy/Kconfig
+++ b/drivers/phy/Kconfig
@@ -64,4 +64,11 @@ config BCM_KONA_USB2_PHY
 	help
 	  Enable this to support the Broadcom Kona USB 2.0 PHY.
 
+config PHY_XGENE
+	tristate "APM X-Gene 15Gbps PHY support"
+	depends on ARM64 || COMPILE_TEST
+	select GENERIC_PHY
+	help
+	  This option enables support for APM X-Gene SoC multi-purpose PHY.
+
 endmenu
diff --git a/drivers/phy/Makefile b/drivers/phy/Makefile
index b57c253..dee70f4 100644
--- a/drivers/phy/Makefile
+++ b/drivers/phy/Makefile
@@ -9,3 +9,5 @@ obj-$(CONFIG_PHY_EXYNOS_MIPI_VIDEO)	+= phy-exynos-mipi-video.o
 obj-$(CONFIG_PHY_MVEBU_SATA)		+= phy-mvebu-sata.o
 obj-$(CONFIG_OMAP_USB2)			+= phy-omap-usb2.o
 obj-$(CONFIG_TWL4030_USB)		+= phy-twl4030-usb.o
+obj-$(CONFIG_PHY_XGENE)			+= phy-xgene.o
+
diff --git a/drivers/phy/phy-xgene.c b/drivers/phy/phy-xgene.c
new file mode 100644
index 0000000..bae4ad0
--- /dev/null
+++ b/drivers/phy/phy-xgene.c
@@ -0,0 +1,1827 @@
+/*
+ * AppliedMicro X-Gene Multi-purpose PHY driver
+ *
+ * Copyright (c) 2014, Applied Micro Circuits Corporation
+ * Author: Loc Ho <lho@xxxxxxx>
+ *         Tuan Phan <tphan@xxxxxxx>
+ *         Suman Tripathi <stripathi@xxxxxxx>
+ *
+ * This program is free software; you can redistribute  it and/or modify it
+ * under  the terms of  the GNU General  Public License as published by the
+ * Free Software Foundation;  either version 2 of the  License, or (at your
+ * option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
+ * The first PLL clock macro is used for internal reference clock. The second
+ * PLL clock macro is used to generate the clock for the PHY. This driver
+ * configures the first PLL CMU, the second PLL CMU, and programs the PHY to
+ * operate according to the mode of operation. The first PLL CMU is only
+ * required if internal clock is enabled.
+ *
+ * Logical Layer Out Of HW module units:
+ *
+ * -----------------
+ * | Internal      |    |------|
+ * | Ref PLL CMU   |----|      |     -------------    ---------
+ * ------------ ----    | MUX  |-----|PHY PLL CMU|----| Serdes|
+ *                      |      |     |           |    ---------
+ * External Clock ------|      |     -------------
+ *                      |------|
+ *
+ * The Ref PLL CMU CSR (Configureation System Registers) is accessed
+ * indirectly from the SDS offset at 0x2000. It is only required for
+ * internal reference clock.
+ * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
+ * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
+ *
+ * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
+ * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
+ * it is located outside the PHY IP. This is the case for the PHY located
+ * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
+ * to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
+ *
+ * Currently, this driver only supports SATA mode with external clock.
+ */
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/io.h>
+#include <linux/delay.h>
+#include <linux/phy/phy.h>
+#include <linux/clk.h>
+
+/* Max 2 lanes per a PHY unit */
+#define MAX_LANE			2
+
+/* Register offset inside the PHY */
+#define SERDES_PLL_INDIRECT_OFFSET	0x0000
+#define SERDES_PLL_REF_INDIRECT_OFFSET	0x2000
+#define SERDES_INDIRECT_OFFSET		0x0400
+#define SERDES_LANE_STRIDE		0x0200
+
+/* Some default Serdes parameters */
+#define DEFAULT_SATA_TXBOOST_GAIN	{ 0x1e, 0x1e, 0x1e }
+#define DEFAULT_SATA_TXEYEDIRECTION	{ 0x0, 0x0, 0x0 }
+#define DEFAULT_SATA_TXEYETUNING	{ 0xa, 0xa, 0xa }
+#define DEFAULT_SATA_SPD_SEL		{ 0x1, 0x3, 0x7 }
+#define DEFAULT_SATA_TXAMP		{ 0x8, 0x8, 0x8 }
+#define DEFAULT_SATA_TXCN1		{ 0x2, 0x2, 0x2 }
+#define DEFAULT_SATA_TXCN2		{ 0x0, 0x0, 0x0 }
+#define DEFAULT_SATA_TXCP1		{ 0xa, 0xa, 0xa }
+
+#define SATA_SPD_SEL_GEN3		0x7
+#define SATA_SPD_SEL_GEN2		0x3
+#define SATA_SPD_SEL_GEN1		0x1
+
+#define SSC_DISABLE			0
+#define SSC_ENABLE			1
+
+#define FBDIV_VAL_50M			0x77
+#define REFDIV_VAL_50M			0x1
+#define FBDIV_VAL_100M			0x3B
+#define REFDIV_VAL_100M			0x0
+
+/* SATA Clock/Reset CSR */
+#define SATACLKENREG			0x00000000
+#define  SATA0_CORE_CLKEN		0x00000002
+#define  SATA1_CORE_CLKEN		0x00000004
+#define SATASRESETREG			0x00000004
+#define  SATA_MEM_RESET_MASK		0x00000020
+#define  SATA_MEM_RESET_RD(src)		(((src) & 0x00000020) >> 5)
+#define  SATA_SDS_RESET_MASK		0x00000004
+#define  SATA_CSR_RESET_MASK		0x00000001
+#define  SATA_CORE_RESET_MASK		0x00000002
+#define  SATA_PMCLK_RESET_MASK		0x00000010
+#define  SATA_PCLK_RESET_MASK		0x00000008
+
+/* SDS CSR used for PHY Indirect access */
+#define SATA_ENET_SDS_PCS_CTL0		0x00000000
+#define  REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
+		(((dst) & ~0x00070000) | (((u32)(src)<<16) & 0x00070000))
+#define  REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
+		(((dst) & ~0x00e00000) | (((u32)(src)<<21) & 0x00e00000))
+#define SATA_ENET_SDS_CTL0		0x0000000c
+#define  REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
+		(((dst) & ~0x00007fff) | (((u32)(src)) & 0x00007fff))
+#define SATA_ENET_SDS_CTL1		0x00000010
+#define  CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
+		(((dst) & ~0x0000000f) | (((u32)(src)) & 0x0000000f))
+#define SATA_ENET_SDS_RST_CTL		0x00000024
+#define SATA_ENET_SDS_IND_CMD_REG	0x0000003c
+#define  CFG_IND_WR_CMD_MASK		0x00000001
+#define  CFG_IND_RD_CMD_MASK		0x00000002
+#define  CFG_IND_CMD_DONE_MASK		0x00000004
+#define  CFG_IND_ADDR_SET(dst, src) \
+		(((dst) & ~0x003ffff0) | (((u32)(src)<<4) & 0x003ffff0))
+#define SATA_ENET_SDS_IND_RDATA_REG	0x00000040
+#define SATA_ENET_SDS_IND_WDATA_REG	0x00000044
+#define SATA_ENET_CLK_MACRO_REG		0x0000004c
+#define  I_RESET_B_SET(dst, src) \
+		(((dst) & ~0x00000001) | (((u32)(src)) & 0x00000001))
+#define  I_PLL_FBDIV_SET(dst, src) \
+		(((dst) & ~0x001ff000) | (((u32)(src)<<12) & 0x001ff000))
+#define  I_CUSTOMEROV_SET(dst, src) \
+		(((dst) & ~0x00000f80) | (((u32)(src)<<7) & 0x00000f80))
+#define  O_PLL_LOCK_RD(src)		(((src) & 0x40000000)>>30)
+#define  O_PLL_READY_RD(src)		(((src) & 0x80000000)>>31)
+
+/* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
+#define CMU_REG0			0x00000
+#define  CMU_REG0_PLL_REF_SEL_MASK	0x00002000
+#define  CMU_REG0_PLL_REF_SEL_SET(dst, src)	\
+		(((dst) & ~0x00002000) | (((u32)(src) << 0xd) & 0x00002000))
+#define  CMU_REG0_PDOWN_MASK		0x00004000
+#define  CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
+		(((dst) & ~0x000000e0) | (((u32)(src) << 0x5) & 0x000000e0))
+#define CMU_REG1			0x00002
+#define  CMU_REG1_PLL_CP_SET(dst, src) \
+		(((dst) & ~0x00003c00) | (((u32)(src) << 0xa) & 0x00003c00))
+#define  CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
+		(((dst) & ~0x00000008) | (((u32)(src) << 0x3) & 0x00000008))
+#define  CMU_REG1_PLL_CP_SEL_SET(dst, src) \
+		(((dst) & ~0x000003e0) | (((u32)(src) << 0x5) & 0x000003e0))
+#define  CMU_REG1_REFCLK_CMOS_SEL_MASK	0x00000001
+#define  CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src)	\
+		(((dst) & ~0x00000001) | (((u32)(src) << 0x0) & 0x00000001))
+#define CMU_REG2			0x00004
+#define  CMU_REG2_PLL_REFDIV_SET(dst, src) \
+		(((dst) & ~0x0000c000) | (((u32)(src) << 0xe) & 0x0000c000))
+#define  CMU_REG2_PLL_LFRES_SET(dst, src) \
+		(((dst) & ~0x0000001e) | (((u32)(src) << 0x1) & 0x0000001e))
+#define  CMU_REG2_PLL_FBDIV_SET(dst, src) \
+		(((dst) & ~0x00003fe0) | (((u32)(src) << 0x5) & 0x00003fe0))
+#define CMU_REG3			0x00006
+#define  CMU_REG3_VCOVARSEL_SET(dst, src) \
+		(((dst) & ~0x0000000f) | (((u32)(src) << 0x0) & 0x0000000f))
+#define  CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
+		(((dst) & ~0x000003f0) | (((u32)(src) << 0x4) & 0x000003f0))
+#define  CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
+		(((dst) & ~0x0000fc00) | (((u32)(src) << 0xa) & 0x0000fc00))
+#define CMU_REG4			0x00008
+#define CMU_REG5			0x0000a
+#define  CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
+		(((dst) & ~0x0000c000) | (((u32)(src) << 0xe) & 0x0000c000))
+#define  CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
+		(((dst) & ~0x0000000e) | (((u32)(src) << 0x1) & 0x0000000e))
+#define  CMU_REG5_PLL_LFCAP_SET(dst, src) \
+		(((dst) & ~0x00003000) | (((u32)(src) << 0xc) & 0x00003000))
+#define  CMU_REG5_PLL_RESETB_MASK	0x00000001
+#define CMU_REG6			0x0000c
+#define  CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
+		(((dst) & ~0x00000600) | (((u32)(src) << 0x9) & 0x00000600))
+#define  CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
+		(((dst) & ~0x00000004) | (((u32)(src) << 0x2) & 0x00000004))
+#define CMU_REG7			0x0000e
+#define  CMU_REG7_PLL_CALIB_DONE_RD(src) \
+		((0x00004000 & (u32)(src)) >> 0xe)
+#define  CMU_REG7_VCO_CAL_FAIL_RD(src) \
+		((0x00000c00 & (u32)(src)) >> 0xa)
+#define CMU_REG8			0x00010
+#define CMU_REG9			0x00012
+#define  CMU_REG9_WORD_LEN_8BIT		0x000
+#define  CMU_REG9_WORD_LEN_10BIT	0x001
+#define  CMU_REG9_WORD_LEN_16BIT	0x002
+#define  CMU_REG9_WORD_LEN_20BIT	0x003
+#define  CMU_REG9_WORD_LEN_32BIT	0x004
+#define  CMU_REG9_WORD_LEN_40BIT	0x005
+#define  CMU_REG9_WORD_LEN_64BIT	0x006
+#define  CMU_REG9_WORD_LEN_66BIT	0x007
+#define  CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
+		(((dst) & ~0x00000380) | (((u32)(src) << 0x7) & 0x00000380))
+#define  CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
+		(((dst) & ~0x00000070) | (((u32)(src) << 0x4) & 0x00000070))
+#define  CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
+		(((dst) & ~0x00000008) | (((u32)(src) << 0x3) & 0x00000008))
+#define  CMU_REG9_VBG_BYPASSB_SET(dst, src) \
+		(((dst) & ~0x00000004) | (((u32)(src) << 0x2) & 0x00000004))
+#define  CMU_REG9_IGEN_BYPASS_SET(dst, src) \
+		(((dst) & ~0x00000002) | (((u32)(src) << 0x1) & 0x00000002))
+#define CMU_REG10			0x00014
+#define  CMU_REG10_VREG_REFSEL_SET(dst, src) \
+		(((dst) & ~0x00000001) | (((u32)(src) << 0x0) & 0x00000001))
+#define CMU_REG11			0x00016
+#define CMU_REG12			0x00018
+#define  CMU_REG12_STATE_DELAY9_SET(dst, src) \
+		(((dst) & ~0x000000f0) | (((u32)(src) << 0x4) & 0x000000f0))
+#define CMU_REG13			0x0001a
+#define CMU_REG14			0x0001c
+#define CMU_REG15			0x0001e
+#define CMU_REG16			0x00020
+#define  CMU_REG16_PVT_DN_MAN_ENA_MASK	0x00000001
+#define  CMU_REG16_PVT_UP_MAN_ENA_MASK	0x00000002
+#define  CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
+		(((dst) & ~0x0000001c) | (((u32)(src) << 0x2) & 0x0000001c))
+#define  CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
+		(((dst) & ~0x00000040) | (((u32)(src) << 0x6) & 0x00000040))
+#define  CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
+		(((dst) & ~0x00000020) | (((u32)(src) << 0x5) & 0x00000020))
+#define CMU_REG17			0x00022
+#define  CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
+		(((dst) & ~0x00007f00) | (((u32)(src) << 0x8) & 0x00007f00))
+#define  CMU_REG17_RESERVED_7_SET(dst, src) \
+		(((dst) & ~0x000000e0) | (((u32)(src) << 0x5) & 0x000000e0))
+#define  CMU_REG17_PVT_TERM_MAN_ENA_MASK	0x00008000
+#define CMU_REG18			0x00024
+#define CMU_REG19			0x00026
+#define CMU_REG20			0x00028
+#define CMU_REG21			0x0002a
+#define CMU_REG22			0x0002c
+#define CMU_REG23			0x0002e
+#define CMU_REG24			0x00030
+#define CMU_REG25			0x00032
+#define CMU_REG26			0x00034
+#define  CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
+		(((dst) & ~0x00000001) | (((u32)(src) << 0x0) & 0x00000001))
+#define CMU_REG27			0x00036
+#define CMU_REG28			0x00038
+#define CMU_REG29			0x0003a
+#define CMU_REG30			0x0003c
+#define  CMU_REG30_LOCK_COUNT_SET(dst, src) \
+		(((dst) & ~0x00000006) | (((u32)(src) << 0x1) & 0x00000006))
+#define  CMU_REG30_PCIE_MODE_SET(dst, src) \
+		(((dst) & ~0x00000008) | (((u32)(src) << 0x3) & 0x00000008))
+#define CMU_REG31			0x0003e
+#define CMU_REG32			0x00040
+#define  CMU_REG32_FORCE_VCOCAL_START_MASK	0x00004000
+#define  CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
+		(((dst) & ~0x00000006) | (((u32)(src) << 0x1) & 0x00000006))
+#define  CMU_REG32_IREF_ADJ_SET(dst, src) \
+		(((dst) & ~0x00000180) | (((u32)(src) << 0x7) & 0x00000180))
+#define CMU_REG33			0x00042
+#define CMU_REG34			0x00044
+#define  CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
+		(((dst) & ~0x0000000f) | (((u32)(src) << 0x0) & 0x0000000f))
+#define  CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
+		(((dst) & ~0x00000f00) | (((u32)(src) << 0x8) & 0x00000f00))
+#define  CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
+		(((dst) & ~0x000000f0) | (((u32)(src) << 0x4) & 0x000000f0))
+#define  CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
+		(((dst) & ~0x0000f000) | (((u32)(src) << 0xc) & 0x0000f000))
+#define CMU_REG35			0x00046
+#define  CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
+		(((dst) & ~0x0000fe00) | (((u32)(src) << 0x9) & 0x0000fe00))
+#define CMU_REG36				0x00048
+#define  CMU_REG36_PLL_SSC_EN_SET(dst, src) \
+		(((dst) & ~0x00000010) | (((u32)(src) << 0x4) & 0x00000010))
+#define  CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
+		(((dst) & ~0x0000ffc0) | (((u32)(src) << 0x6) & 0x0000ffc0))
+#define  CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
+		(((dst) & ~0x00000020) | (((u32)(src) << 0x5) & 0x00000020))
+#define CMU_REG37			0x0004a
+#define CMU_REG38			0x0004c
+#define CMU_REG39			0x0004e
+
+/* PHY lane CSR accessing from SDS indirectly */
+#define RXTX_REG0			0x000
+#define  RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
+		(((dst) & ~0x0000f800) | (((u32)(src) << 0xb) & 0x0000f800))
+#define  RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
+		(((dst) & ~0x000007c0) | (((u32)(src) << 0x6) & 0x000007c0))
+#define  RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
+		(((dst) & ~0x0000003e) | (((u32)(src) << 0x1) & 0x0000003e))
+#define RXTX_REG1			0x002
+#define  RXTX_REG1_RXACVCM_SET(dst, src) \
+		(((dst) & ~0x0000f000) | (((u32)(src) << 0xc) & 0x0000f000))
+#define  RXTX_REG1_CTLE_EQ_SET(dst, src) \
+		(((dst) & ~0x00000f80) | (((u32)(src) << 0x7) & 0x00000f80))
+#define  RXTX_REG1_RXVREG1_SET(dst, src) \
+                (((dst) & ~0x00000060) | (((u32)(src) << 0x5) & 0x00000060))
+#define  RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
+               (((dst) & ~0x00000006) | (((u32)(src) << 0x1) &  0x00000006))
+#define RXTX_REG2			0x004
+#define  RXTX_REG2_VTT_ENA_SET(dst, src) \
+		(((dst) & ~0x00000100) | (((u32)(src) << 0x8) & 0x00000100))
+#define  RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
+		(((dst) & ~0x00000020) | (((u32)(src) << 0x5) & 0x00000020))
+#define  RXTX_REG2_VTT_SEL_SET(dst, src) \
+		(((dst) & ~0x000000c0) | (((u32)(src) << 0x6) & 0x000000c0))
+#define RXTX_REG4			0x008
+#define  RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK	0x00000040
+#define  RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
+		(((dst) & ~0x0000c000) | (((u32)(src) << 0xe) & 0x0000c000))
+#define  RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
+		(((dst) & ~0x00003800) | (((u32)(src) << 0xb) & 0x00003800))
+#define RXTX_REG5			0x00a
+#define  RXTX_REG5_TX_CN1_SET(dst, src) \
+		(((dst) & ~0x0000f800) | (((u32)(src) << 0xb) & 0x0000f800))
+#define  RXTX_REG5_TX_CP1_SET(dst, src) \
+		(((dst) & ~0x000007e0) | (((u32)(src) << 0x5) & 0x000007e0))
+#define  RXTX_REG5_TX_CN2_SET(dst, src) \
+		(((dst) & ~0x0000001f) | (((u32)(src) << 0x0) & 0x0000001f))
+#define RXTX_REG6			0x00c
+#define  RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
+		(((dst) & ~0x00000780) | (((u32)(src) << 0x7) & 0x00000780))
+#define  RXTX_REG6_TXAMP_ENA_SET(dst, src) \
+		(((dst) & ~0x00000040) | (((u32)(src) << 0x6) & 0x00000040))
+#define  RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
+		(((dst) & ~0x00000001) | (((u32)(src) << 0x0) & 0x00000001))
+#define  RXTX_REG6_TX_IDLE_SET(dst, src) \
+		(((dst) & ~0x00000008) | (((u32)(src) << 0x3) & 0x00000008))
+#define  RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
+		(((dst) & ~0x00000002) | (((u32)(src) << 0x1) & 0x00000002))
+#define RXTX_REG7			0x00e
+#define  RXTX_REG7_RESETB_RXD_MASK	0x00000100
+#define  RXTX_REG7_RESETB_RXA_MASK	0x00000080
+#define  RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
+		(((dst) & ~0x00000040) | (((u32)(src) << 0x6) & 0x00000040))
+#define  RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
+		(((dst) & ~0x00003800) | (((u32)(src) << 0xb) & 0x00003800))
+#define RXTX_REG8			0x010
+#define  RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
+		(((dst) & ~0x00004000) | (((u32)(src) << 0xe) & 0x00004000))
+#define  RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
+		(((dst) & ~0x00000800) | (((u32)(src) << 0xb) & 0x00000800))
+#define  RXTX_REG8_SSC_ENABLE_SET(dst, src) \
+		(((dst) & ~0x00000200) | (((u32)(src) << 0x9) & 0x00000200))
+#define  RXTX_REG8_SD_VREF_SET(dst, src) \
+		(((dst) & ~0x000000f0) | (((u32)(src) << 0x4) & 0x000000f0))
+#define  RXTX_REG8_SD_DISABLE_SET(dst, src) \
+		(((dst) & ~0x00000100) | (((u32)(src) << 0x8) & 0x00000100))
+#define RXTX_REG7			0x00e
+#define  RXTX_REG7_RESETB_RXD_SET(dst, src) \
+		(((dst) & ~0x00000100) | (((u32)(src) << 0x8) & 0x00000100))
+#define  RXTX_REG7_RESETB_RXA_SET(dst, src) \
+		(((dst) & ~0x00000080) | (((u32)(src) << 0x7) & 0x00000080))
+#define  RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK	0x00004000
+#define  RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
+		(((dst) & ~0x00004000) | (((u32)(src) << 0xe) & 0x00004000))
+#define RXTX_REG11			0x016
+#define  RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
+		(((dst) & ~0x0000f800) | (((u32)(src) << 0xb) & 0x0000f800))
+#define RXTX_REG12			0x018
+#define  RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
+		(((dst) & ~0x00002000) | (((u32)(src) << 0xd) & 0x00002000))
+#define  RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
+		(((dst) & ~0x00000004) | (((u32)(src) << 0x2) & 0x00000004))
+#define  RXTX_REG12_RX_DET_TERM_ENABLE_MASK	0x00000002
+#define  RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
+		(((dst) & ~0x00000002) | (((u32)(src) << 0x1) & 0x00000002))
+#define RXTX_REG13			0x01a
+#define RXTX_REG14			0x01c
+#define  RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
+		(((dst) & ~0x0000003f) | (((u32)(src) << 0x0) & 0x0000003f))
+#define  RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
+		(((dst) & ~0x00000040) | (((u32)(src) << 0x6) & 0x00000040))
+#define RXTX_REG26			0x034
+#define  RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
+		(((dst) & ~0x00003800) | (((u32)(src) << 0xb) & 0x00003800))
+#define  RXTX_REG26_BLWC_ENA_SET(dst, src) \
+		(((dst) & ~0x00000008) | (((u32)(src) << 0x3) & 0x00000008))
+#define RXTX_REG21			0x02a
+#define  RXTX_REG21_DO_LATCH_CALOUT_RD(src) \
+		((0x0000fc00 & (u32)(src)) >> 0xa)
+#define  RXTX_REG21_XO_LATCH_CALOUT_RD(src) \
+		((0x000003f0 & (u32)(src)) >> 0x4)
+#define  RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src) \
+		((0x0000000f & (u32)(src)))
+#define RXTX_REG22			0x02c
+#define  RXTX_REG22_SO_LATCH_CALOUT_RD(src) \
+		((0x000003f0 & (u32)(src)) >> 0x4)
+#define  RXTX_REG22_EO_LATCH_CALOUT_RD(src) \
+		((0x0000fc00 & (u32)(src)) >> 0xa)
+#define  RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src) \
+		((0x0000000f & (u32)(src)))
+#define RXTX_REG23			0x02e
+#define  RXTX_REG23_DE_LATCH_CALOUT_RD(src) \
+		((0x0000fc00 & (u32)(src)) >> 0xa)
+#define  RXTX_REG23_XE_LATCH_CALOUT_RD(src) \
+		((0x000003f0 & (u32)(src)) >> 0x4)
+#define RXTX_REG24			0x030
+#define  RXTX_REG24_EE_LATCH_CALOUT_RD(src) \
+		((0x0000fc00 & (u32)(src)) >> 0xa)
+#define  RXTX_REG24_SE_LATCH_CALOUT_RD(src) \
+		((0x000003f0 & (u32)(src)) >> 0x4)
+#define RXTX_REG27			0x036
+#define RXTX_REG28			0x038
+#define RXTX_REG31			0x03e
+#define RXTX_REG38			0x04c
+#define  RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
+		(((dst) & 0x0000fffe) | (((u32)(src) << 0x1) & 0x0000fffe))
+#define RXTX_REG39			0x04e
+#define RXTX_REG40			0x050
+#define RXTX_REG41			0x052
+#define RXTX_REG42			0x054
+#define RXTX_REG43			0x056
+#define RXTX_REG44			0x058
+#define RXTX_REG45			0x05a
+#define RXTX_REG46			0x05c
+#define RXTX_REG47			0x05e
+#define RXTX_REG48			0x060
+#define RXTX_REG49			0x062
+#define RXTX_REG50			0x064
+#define RXTX_REG51			0x066
+#define RXTX_REG52			0x068
+#define RXTX_REG53			0x06a
+#define RXTX_REG54			0x06c
+#define RXTX_REG55			0x06e
+#define RXTX_REG61			0x07a
+#define  RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
+		(((dst) & ~0x00000010) | (((u32)(src) << 0x4) & 0x00000010))
+#define  RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
+		(((dst) & ~0x00000008) | (((u32)(src) << 0x3) & 0x00000008))
+#define  RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
+		(((dst) & ~0x000000c0) | (((u32)(src) << 0x6) & 0x000000c0))
+#define  RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
+		(((dst) & ~0x00003c00) | (((u32)(src) << 0xa) & 0x00003c00))
+#define RXTX_REG62			0x07c
+#define  RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
+		(((dst) & ~0x00003800) | (((u32)(src) << 0xb) & 0x00003800))
+#define RXTX_REG81			0x0a2
+#define  RXTX_REG89_MU_TH7_SET(dst, src) \
+		(((dst) & ~0x0000f800) | (((u32)(src) << 0xb) & 0x0000f800))
+#define  RXTX_REG89_MU_TH8_SET(dst, src) \
+		(((dst) & ~0x000007c0) | (((u32)(src) << 0x6) & 0x000007c0))
+#define  RXTX_REG89_MU_TH9_SET(dst, src) \
+		(((dst) & ~0x0000003e) | (((u32)(src) << 0x1) & 0x0000003e))
+#define RXTX_REG96			0x0c0
+#define  RXTX_REG96_MU_FREQ1_SET(dst, src) \
+		(((dst) & ~0x0000f800) | (((u32)(src) << 0xb) & 0x0000f800))
+#define  RXTX_REG96_MU_FREQ2_SET(dst, src) \
+		(((dst) & ~0x000007c0) | (((u32)(src) << 0x6) & 0x000007c0))
+#define  RXTX_REG96_MU_FREQ3_SET(dst, src) \
+		(((dst) & ~0x0000003e) | (((u32)(src) << 0x1) & 0x0000003e))
+#define RXTX_REG99			0x0c6
+#define  RXTX_REG99_MU_PHASE1_SET(dst, src) \
+		(((dst) & ~0x0000f800) | (((u32)(src) << 0xb) & 0x0000f800))
+#define  RXTX_REG99_MU_PHASE2_SET(dst, src) \
+		(((dst) & ~0x000007c0) | (((u32)(src) << 0x6) & 0x000007c0))
+#define  RXTX_REG99_MU_PHASE3_SET(dst, src) \
+		(((dst) & ~0x0000003e) | (((u32)(src) << 0x1) & 0x0000003e))
+#define RXTX_REG102			0x0cc
+#define  RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
+		(((dst) & ~0x00000060) | (((u32)(src) << 0x5) & 0x00000060))
+#define RXTX_REG114			0x0e4
+#define RXTX_REG121			0x0f2
+#define  RXTX_REG121_SUMOS_CAL_CODE_RD(src) \
+		((0x0000003e & (u32)(src)) >> 0x1)
+#define RXTX_REG125			0x0fa
+#define  RXTX_REG125_PQ_REG_SET(dst, src) \
+		(((dst) & ~0x0000fe00) | (((u32)(src) << 0x9) & 0x0000fe00))
+#define  RXTX_REG125_SIGN_PQ_SET(dst, src) \
+		(((dst) & ~0x00000100) | (((u32)(src) << 0x8) & 0x00000100))
+#define  RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
+		(((dst) & ~0x00000080) | (((u32)(src) << 0x7) & 0x00000080))
+#define  RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
+		(((dst) & ~0x0000007c) | (((u32)(src) << 0x2) & 0x0000007c))
+#define  RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
+		(((dst) & ~0x00000002) | (((u32)(src) << 0x1) & 0x00000002))
+#define RXTX_REG127			0x0fe
+#define  RXTX_REG127_FORCE_SUM_CAL_START_MASK	0x00000002
+#define  RXTX_REG127_FORCE_LAT_CAL_START_MASK	0x00000004
+#define  RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
+		(((dst) & ~0x00000002) | (((u32)(src) << 0x1) & 0x00000002))
+#define  RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
+		(((dst) & ~0x00000004) | (((u32)(src) << 0x2) & 0x00000004))
+#define  RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
+		(((dst) & ~0x00000008) | (((u32)(src) << 0x3) & 0x00000008))
+#define  RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
+		(((dst) & ~0x0000fc00) | (((u32)(src) << 0xa) & 0x0000fc00))
+#define  RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
+		(((dst) & ~0x000003f0) | (((u32)(src) << 0x4) & 0x000003f0))
+#define RXTX_REG128			0x100
+#define  RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
+		(((dst) & ~0x0000000c) | (((u32)(src) << 0x2) & 0x0000000c))
+#define  RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
+		(((dst) & ~0x0000fc00) | (((u32)(src) << 0xa) & 0x0000fc00))
+#define  RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
+		(((dst) & ~0x000003f0) | (((u32)(src) << 0x4) & 0x000003f0))
+#define RXTX_REG129			0x102
+#define  RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
+		(((dst) & ~0x0000fc00) | (((u32)(src) << 0xa) & 0x0000fc00))
+#define  RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
+		(((dst) & ~0x000003f0) | (((u32)(src) << 0x4) & 0x000003f0))
+#define RXTX_REG130			0x104
+#define  RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
+		(((dst) & ~0x0000fc00) | (((u32)(src) << 0xa) & 0x0000fc00))
+#define  RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
+		(((dst) & ~0x000003f0) | (((u32)(src) << 0x4) & 0x000003f0))
+#define RXTX_REG145			0x122
+#define  RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
+		(((dst) & ~0x00000001) | (((u32)(src) << 0x0) & 0x00000001))
+#define  RXTX_REG145_RXES_ENA_SET(dst, src) \
+		(((dst) & ~0x00000002) | (((u32)(src) << 0x1) & 0x00000002))
+#define  RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
+		(((dst) & ~0x0000c000) | (((u32)(src) << 0xe) & 0x0000c000))
+#define  RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
+		(((dst) & ~0x00000004) | (((u32)(src) << 0x2) & 0x00000004))
+#define RXTX_REG147			0x126
+#define RXTX_REG148			0x128
+
+/* Clock macro type */
+enum cmu_type_t {
+	REF_CMU = 0,	/* Clock macro is the internal reference clock */
+	PHY_CMU = 1,	/* Clock macro is the PLL for the Serdes */
+};
+
+enum mux_type_t {
+	MUX_SELECT_ATA = 0,	/* Switch the MUX to ATA */
+	MUX_SELECT_SGMMII = 0,	/* Switch the MUX to SGMII */
+};
+
+enum clk_type_t {
+	CLK_EXT_DIFF = 0,	/* External differential */
+	CLK_INT_DIFF = 1,	/* Internal differential */
+	CLK_INT_SING = 2,	/* Internal single ended */
+};
+
+enum phy_mode {
+	MODE_SATA	= 0,	/* List them for simple reference */
+	MODE_SGMII	= 1,
+	MODE_PCIE	= 2,
+	MODE_USB	= 3,
+	MODE_XFI	= 4,
+	MODE_MAX
+};
+
+struct xgene_sata_override_param {
+	u32 speed[MAX_LANE]; /* Index for override parameter per lane */
+	u32 txspeed[3]; 		/* Tx speed */
+	u32 txboostgain[MAX_LANE*3];	/* Tx freq boost and gain control */
+	u32 txeyetuning[MAX_LANE*3]; 	/* Tx eye tuning */
+	u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */
+	u32 txamplitude[MAX_LANE*3];	/* Tx amplitude control */
+	u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */
+	u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */
+	u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */
+};
+
+struct xgene_phy_ctx {
+	struct device *dev;
+	struct phy *phy;
+	enum phy_mode mode;		/* Mode of operation */
+	enum clk_type_t clk_type;	/* Input clock selection */
+	void __iomem *sds_base;		/* PHY CSR base addr */
+	struct clk *clk;		/* Optional clock */
+
+	/* Override Serdes parameters */
+	struct xgene_sata_override_param sata_param;
+};
+
+/*
+ * For chip earlier than A3 version, enable this flag.
+ * To enable, pass boot argument phy_xgene.preA3Chip=1
+ */
+static int preA3Chip;
+MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)");
+module_param_named(preA3Chip, preA3Chip, int, 0444);
+
+static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg,
+		   u32 indirect_data_reg, u32 addr, u32 data)
+{
+	u32 val;
+	u32 cmd;
+
+	cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK;
+	cmd = CFG_IND_ADDR_SET(cmd, addr);
+	writel(data, csr_base + indirect_data_reg);
+	readl(csr_base + indirect_data_reg); /* Force a barrier */
+	writel(cmd, csr_base + indirect_cmd_reg);
+	readl(csr_base + indirect_cmd_reg); /* Force a barrier */
+	do {
+		val = readl(csr_base + indirect_cmd_reg);
+	} while (!(val & CFG_IND_CMD_DONE_MASK));
+}
+
+static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg,
+		   u32 indirect_data_reg, u32 addr, u32 *data)
+{
+	u32 val;
+	u32 cmd;
+
+	cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK;
+	cmd = CFG_IND_ADDR_SET(cmd, addr);
+	writel(cmd, csr_base + indirect_cmd_reg);
+	readl(csr_base + indirect_cmd_reg); /* Force a barrier */
+	do {
+		val = readl(csr_base + indirect_cmd_reg);
+	} while (!(val & CFG_IND_CMD_DONE_MASK));
+	*data = readl(csr_base + indirect_data_reg);
+}
+
+static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
+		   u32 reg, u32 data)
+{
+	void __iomem *sds_base = ctx->sds_base;
+	u32 val;
+
+	if (cmu_type == REF_CMU)
+		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
+	else
+		reg += SERDES_PLL_INDIRECT_OFFSET;
+	sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
+		SATA_ENET_SDS_IND_WDATA_REG, reg, data);
+	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
+		SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
+	pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val);
+}
+
+static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
+		   u32 reg, u32 *data)
+{
+	void __iomem *sds_base = ctx->sds_base;
+
+	if (cmu_type == REF_CMU)
+		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
+	else
+		reg += SERDES_PLL_INDIRECT_OFFSET;
+	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
+		SATA_ENET_SDS_IND_RDATA_REG, reg, data);
+	pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data);
+}
+
+static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
+			   u32 reg, u32 bits)
+{
+	u32 val;
+
+	cmu_rd(ctx, cmu_type, reg, &val);
+	val |= bits;
+	cmu_wr(ctx, cmu_type, reg, val);
+	cmu_rd(ctx, cmu_type, reg, &val);
+	val &= ~bits;
+	cmu_wr(ctx, cmu_type, reg, val);
+}
+
+static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
+			u32 reg, u32 bits)
+{
+	u32 val;
+
+	cmu_rd(ctx, cmu_type, reg, &val);
+	val &= ~bits;
+	cmu_wr(ctx, cmu_type, reg, val);
+}
+
+static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
+			u32 reg, u32 bits)
+{
+	u32 val;
+
+	cmu_rd(ctx, cmu_type, reg, &val);
+	val |= bits;
+	cmu_wr(ctx, cmu_type, reg, val);
+}
+
+static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data)
+{
+	void __iomem *sds_base = ctx->sds_base;
+	u32 val;
+
+	reg += SERDES_INDIRECT_OFFSET;
+	reg += lane * SERDES_LANE_STRIDE;
+	sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
+	       SATA_ENET_SDS_IND_WDATA_REG, reg, data);
+	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
+	       SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
+	pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data,
+		 val);
+}
+
+static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data)
+{
+	void __iomem *sds_base = ctx->sds_base;
+
+	reg += SERDES_INDIRECT_OFFSET;
+	reg += lane * SERDES_LANE_STRIDE;
+	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
+	       SATA_ENET_SDS_IND_RDATA_REG, reg, data);
+	pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data);
+}
+
+static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
+			   u32 bits)
+{
+	u32 val;
+
+	serdes_rd(ctx, lane, reg, &val);
+	val &= ~bits;
+	serdes_wr(ctx, lane, reg, val);
+}
+
+static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
+			   u32 bits)
+{
+	u32 val;
+
+	serdes_rd(ctx, lane, reg, &val);
+	val |= bits;
+	serdes_wr(ctx, lane, reg, val);
+}
+
+static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx,
+				       enum cmu_type_t cmu_type,
+				       enum clk_type_t clk_type)
+{
+	u32 val;
+
+	/* Set the reset sequence delay for TX ready assertion */
+	cmu_rd(ctx, cmu_type, CMU_REG12, &val);
+	val = CMU_REG12_STATE_DELAY9_SET(val, 0x1);
+	cmu_wr(ctx, cmu_type, CMU_REG12, val);
+	/* Set the programmable stage delays between various enable stages */
+	cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222);
+	cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225);
+
+	/* Configure clock type */
+	if (clk_type == CLK_EXT_DIFF) {
+		/* Select external clock mux */
+		cmu_rd(ctx, cmu_type, CMU_REG0, &val);
+		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0);
+		cmu_wr(ctx, cmu_type, CMU_REG0, val);
+		/* Select CMOS as reference clock  */
+		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
+		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
+		cmu_wr(ctx, cmu_type, CMU_REG1, val);
+		dev_dbg(ctx->dev, "Set external reference clock\n");
+	} else if (clk_type == CLK_INT_DIFF) {
+		/* Select internal clock mux */
+		cmu_rd(ctx, cmu_type, CMU_REG0, &val);
+		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1);
+		cmu_wr(ctx, cmu_type, CMU_REG0, val);
+		/* Select CMOS as reference clock  */
+		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
+		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
+		cmu_wr(ctx, cmu_type, CMU_REG1, val);
+		dev_dbg(ctx->dev, "Set internal reference clock\n");
+	} else if (clk_type == CLK_INT_SING) {
+		/*
+		 * NOTE: This clock type is NOT support for controller
+		 *	 whose internal clock shared in the PCIe controller
+		 *
+		 * Select internal clock mux
+		 */
+		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
+		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
+		cmu_wr(ctx, cmu_type, CMU_REG1, val);
+		/* Select CML as reference clock */
+		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
+		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
+		cmu_wr(ctx, cmu_type, CMU_REG1, val);
+		dev_dbg(ctx->dev,
+			"Set internal single ended reference clock\n");
+	}
+}
+
+static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx,
+					enum cmu_type_t cmu_type,
+					enum clk_type_t clk_type)
+{
+	u32 val;
+	int ref_100MHz;
+
+	if (cmu_type == REF_CMU) {
+		/* Set VCO calibration voltage threshold */
+		cmu_rd(ctx, cmu_type, CMU_REG34, &val);
+		val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7);
+		val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc);
+		val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3);
+		val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8);
+		cmu_wr(ctx, cmu_type, CMU_REG34, val);
+	}
+
+	/* Set the VCO calibration counter */
+	cmu_rd(ctx, cmu_type, CMU_REG0, &val);
+	if (cmu_type == REF_CMU || preA3Chip)
+		val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4);
+	else
+		val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7);
+	cmu_wr(ctx, cmu_type, CMU_REG0, val);
+
+	/* Configure PLL for calibration */
+	cmu_rd(ctx, cmu_type, CMU_REG1, &val);
+	val = CMU_REG1_PLL_CP_SET(val, 0x1);
+	if (cmu_type == REF_CMU || preA3Chip)
+		val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5);
+	else
+		val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3);
+	if (cmu_type == REF_CMU)
+		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
+	else
+		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1);
+	cmu_wr(ctx, cmu_type, CMU_REG1, val);
+
+	if (cmu_type != REF_CMU)
+		cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
+
+	/* Configure the PLL for either 100MHz or 50MHz */
+	cmu_rd(ctx, cmu_type, CMU_REG2, &val);
+        if (cmu_type == REF_CMU) {
+		val = CMU_REG2_PLL_LFRES_SET(val, 0xa);
+		ref_100MHz = 1;
+	} else {
+		val = CMU_REG2_PLL_LFRES_SET(val, 0x3);
+		if (clk_type == CLK_EXT_DIFF)
+			ref_100MHz = 0;
+		else
+			ref_100MHz = 1;
+	}
+	if (ref_100MHz) {
+		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M);
+		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M);
+	} else {
+		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M);
+		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M);
+	}
+	cmu_wr(ctx, cmu_type, CMU_REG2, val);
+
+	/* Configure the VCO */
+	cmu_rd(ctx, cmu_type, CMU_REG3, &val);
+	if (cmu_type == REF_CMU) {
+		val = CMU_REG3_VCOVARSEL_SET(val, 0x3);
+		val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10);
+	} else {
+		val = CMU_REG3_VCOVARSEL_SET(val, 0xF);
+		if (preA3Chip)
+			val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15);
+		else
+			val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a);
+		val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15);
+	}
+	cmu_wr(ctx, cmu_type, CMU_REG3, val);
+
+	/* Disable force PLL lock */
+	cmu_rd(ctx, cmu_type, CMU_REG26, &val);
+	val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0);
+	cmu_wr(ctx, cmu_type, CMU_REG26, val);
+
+	/* Setup PLL loop filter */
+	cmu_rd(ctx, cmu_type, CMU_REG5, &val);
+	val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3);
+	val = CMU_REG5_PLL_LFCAP_SET(val, 0x3);
+	if (cmu_type == REF_CMU || !preA3Chip)
+		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7);
+	else
+		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4);
+	cmu_wr(ctx, cmu_type, CMU_REG5, val);
+
+	/* Enable or disable manual calibration */
+	cmu_rd(ctx, cmu_type, CMU_REG6, &val);
+	val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2);
+	val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0);
+	cmu_wr(ctx, cmu_type, CMU_REG6, val);
+
+	/* Configure lane for 20-bits */
+	if (cmu_type == PHY_CMU) {
+		cmu_rd(ctx, cmu_type, CMU_REG9, &val);
+		val = CMU_REG9_TX_WORD_MODE_CH1_SET(val,
+						    CMU_REG9_WORD_LEN_20BIT);
+		val = CMU_REG9_TX_WORD_MODE_CH0_SET(val,
+						    CMU_REG9_WORD_LEN_20BIT);
+		val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1);
+		if (!preA3Chip) {
+			val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0);
+			val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0);
+		}
+		cmu_wr(ctx, cmu_type, CMU_REG9, val);
+
+		if (!preA3Chip) {
+			cmu_rd(ctx, cmu_type, CMU_REG10, &val);
+			val = CMU_REG10_VREG_REFSEL_SET(val, 0x1);
+			cmu_wr(ctx, cmu_type, CMU_REG10, val);
+		}
+	}
+
+	cmu_rd(ctx, cmu_type, CMU_REG16, &val);
+	val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1);
+	val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1);
+	if (cmu_type == REF_CMU || preA3Chip)
+		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4);
+	else
+		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
+	cmu_wr(ctx, cmu_type, CMU_REG16, val);
+
+	/* Configure for SATA */
+	cmu_rd(ctx, cmu_type, CMU_REG30, &val);
+	val = CMU_REG30_PCIE_MODE_SET(val, 0x0);
+	val = CMU_REG30_LOCK_COUNT_SET(val, 0x3);
+	cmu_wr(ctx, cmu_type, CMU_REG30, val);
+
+	/* Disable state machine bypass */
+	cmu_wr(ctx, cmu_type, CMU_REG31, 0xF);
+
+	cmu_rd(ctx, cmu_type, CMU_REG32, &val);
+	val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3);
+	if (cmu_type == REF_CMU || preA3Chip)
+		val = CMU_REG32_IREF_ADJ_SET(val, 0x3);
+	else
+		val = CMU_REG32_IREF_ADJ_SET(val, 0x1);
+	cmu_wr(ctx, cmu_type, CMU_REG32, val);
+
+	/* Set VCO calibration threshold */
+	if (cmu_type != REF_CMU && preA3Chip)
+		cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27);
+	else
+		cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c);
+
+	/* Set CTLE Override and override waiting from state machine */
+	cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F);
+}
+
+static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx,
+				 enum cmu_type_t cmu_type)
+{
+	u32 val;
+
+	/* Set SSC modulation value */
+	cmu_rd(ctx, cmu_type, CMU_REG35, &val);
+	val = CMU_REG35_PLL_SSC_MOD_SET(val, 98);
+	cmu_wr(ctx, cmu_type, CMU_REG35, val);
+
+	/* Enable SSC, set vertical step and DSM value */
+	cmu_rd(ctx, cmu_type, CMU_REG36, &val);
+	val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30);
+	val = CMU_REG36_PLL_SSC_EN_SET(val, 1);
+	val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1);
+	cmu_wr(ctx, cmu_type, CMU_REG36, val);
+
+	/* Reset the PLL */
+	cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
+	cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
+
+	/* Force VCO calibration to restart */
+	cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
+		       CMU_REG32_FORCE_VCOCAL_START_MASK);
+}
+
+static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx)
+{
+	u32 val;
+	u32 reg;
+	int i;
+	int lane;
+
+	for (lane = 0; lane < MAX_LANE; lane++) {
+		serdes_wr(ctx, lane, RXTX_REG147, 0x6);
+
+		/* Set boost control for quarter, half, and full rate */
+		serdes_rd(ctx, lane, RXTX_REG0, &val);
+		val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10);
+		val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10);
+		val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10);
+		serdes_wr(ctx, lane, RXTX_REG0, val);
+
+		/* Set boost control value */
+		serdes_rd(ctx, lane, RXTX_REG1, &val);
+		val = RXTX_REG1_RXACVCM_SET(val, 0x7);
+		val = RXTX_REG1_CTLE_EQ_SET(val,
+			ctx->sata_param.txboostgain[lane * 3 +
+			ctx->sata_param.speed[lane]]);
+		serdes_wr(ctx, lane, RXTX_REG1, val);
+
+		/* Latch VTT value based on the termination to ground and
+		   enable TX FIFO */
+		serdes_rd(ctx, lane, RXTX_REG2, &val);
+		val = RXTX_REG2_VTT_ENA_SET(val, 0x1);
+		val = RXTX_REG2_VTT_SEL_SET(val, 0x1);
+		val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1);
+		serdes_wr(ctx, lane, RXTX_REG2, val);
+
+		/* Configure Tx for 20-bits */
+		serdes_rd(ctx, lane, RXTX_REG4, &val);
+		val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
+		serdes_wr(ctx, lane, RXTX_REG4, val);
+
+		if (!preA3Chip) {
+			serdes_rd(ctx, lane, RXTX_REG1, &val);
+     			val = RXTX_REG1_RXVREG1_SET(val, 0x2);
+			val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2);
+			serdes_wr(ctx, lane, RXTX_REG1, val);
+		}
+
+		/* Set pre-emphasis first 1 and 2, and post-emphasis values */
+		serdes_rd(ctx, lane, RXTX_REG5, &val);
+		val = RXTX_REG5_TX_CN1_SET(val,
+			ctx->sata_param.txprecursor_cn1[lane * 3 +
+			ctx->sata_param.speed[lane]]);
+		val = RXTX_REG5_TX_CP1_SET(val,
+			ctx->sata_param.txpostcursor_cp1[lane * 3 +
+			ctx->sata_param.speed[lane]]);
+		val = RXTX_REG5_TX_CN2_SET(val,
+			ctx->sata_param.txprecursor_cn2[lane * 3 +
+			ctx->sata_param.speed[lane]]);
+		serdes_wr(ctx, lane, RXTX_REG5, val);
+
+		/* Set TX amplitude value */
+		serdes_rd(ctx, lane, RXTX_REG6, &val);
+		val = RXTX_REG6_TXAMP_CNTL_SET(val,
+			ctx->sata_param.txamplitude[lane * 3 +
+			ctx->sata_param.speed[lane]]);
+		val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1);
+		val = RXTX_REG6_TX_IDLE_SET(val, 0x0);
+		val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0);
+		val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0);
+		serdes_wr(ctx, lane, RXTX_REG6, val);
+
+		/* Configure Rx for 20-bits */
+		serdes_rd(ctx, lane, RXTX_REG7, &val);
+		val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0);
+		val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
+		serdes_wr(ctx, lane, RXTX_REG7, val);
+
+		/* Set CDR and LOS values and enable Rx SSC */
+		serdes_rd(ctx, lane, RXTX_REG8, &val);
+		val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1);
+		val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0);
+		val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1);
+		val = RXTX_REG8_SD_DISABLE_SET(val, 0x0);
+		val = RXTX_REG8_SD_VREF_SET(val, 0x4);
+		serdes_wr(ctx, lane, RXTX_REG8, val);
+
+		/* Set phase adjust upper/lower limits */
+		serdes_rd(ctx, lane, RXTX_REG11, &val);
+		val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0);
+		serdes_wr(ctx, lane, RXTX_REG11, val);
+
+		/* Enable Latch Off; disable SUMOS and Tx termination */
+		serdes_rd(ctx, lane, RXTX_REG12, &val);
+		val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1);
+		val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0);
+		val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0);
+		serdes_wr(ctx, lane, RXTX_REG12, val);
+
+		/* Set period error latch to 512T and enable BWL */
+		serdes_rd(ctx, lane, RXTX_REG26, &val);
+		val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0);
+		val = RXTX_REG26_BLWC_ENA_SET(val, 0x1);
+		serdes_wr(ctx, lane, RXTX_REG26, val);
+
+		serdes_wr(ctx, lane, RXTX_REG28, 0x0);
+
+		/* Set DFE loop preset value */
+		serdes_wr(ctx, lane, RXTX_REG31, 0x0);
+
+		/* Set Eye Monitor counter width to 12-bit */
+		serdes_rd(ctx, lane, RXTX_REG61, &val);
+		val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1);
+		val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0);
+		val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0);
+		serdes_wr(ctx, lane, RXTX_REG61, val);
+
+		serdes_rd(ctx, lane, RXTX_REG62, &val);
+		val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0);
+		serdes_wr(ctx, lane, RXTX_REG62, val);
+
+		/* Set BW select tap X for DFE loop */
+		for (i = 0; i < 9; i++) {
+			reg = RXTX_REG81 + i * 2;
+			serdes_rd(ctx, lane, reg, &val);
+			val = RXTX_REG89_MU_TH7_SET(val, 0xe);
+			val = RXTX_REG89_MU_TH8_SET(val, 0xe);
+			val = RXTX_REG89_MU_TH9_SET(val, 0xe);
+			serdes_wr(ctx, lane, reg, val);
+		}
+
+		/* Set BW select tap X for frequency adjust loop */
+		for (i = 0; i < 3; i++) {
+			reg = RXTX_REG96 + i * 2;
+			serdes_rd(ctx, lane, reg, &val);
+			val = RXTX_REG96_MU_FREQ1_SET(val, 0x10);
+			val = RXTX_REG96_MU_FREQ2_SET(val, 0x10);
+			val = RXTX_REG96_MU_FREQ3_SET(val, 0x10);
+			serdes_wr(ctx, lane, reg, val);
+		}
+
+		/* Set BW select tap X for phase adjust loop */
+		for (i = 0; i < 3; i++) {
+			reg = RXTX_REG99 + i * 2;
+			serdes_rd(ctx, lane, reg, &val);
+			val = RXTX_REG99_MU_PHASE1_SET(val, 0x7);
+			val = RXTX_REG99_MU_PHASE2_SET(val, 0x7);
+			val = RXTX_REG99_MU_PHASE3_SET(val, 0x7);
+			serdes_wr(ctx, lane, reg, val);
+		}
+
+		serdes_rd(ctx, lane, RXTX_REG102, &val);
+		val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0);
+		serdes_wr(ctx, lane, RXTX_REG102, val);
+
+		serdes_wr(ctx, lane, RXTX_REG114, 0xffe0);
+
+		serdes_rd(ctx, lane, RXTX_REG125, &val);
+		val = RXTX_REG125_SIGN_PQ_SET(val,
+			ctx->sata_param.txeyedirection[lane * 3 +
+			ctx->sata_param.speed[lane]]);
+		val = RXTX_REG125_PQ_REG_SET(val,
+			ctx->sata_param.txeyetuning[lane * 3 +
+			ctx->sata_param.speed[lane]]);
+		val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1);
+		serdes_wr(ctx, lane, RXTX_REG125, val);
+
+		serdes_rd(ctx, lane, RXTX_REG127, &val);
+		val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0);
+		serdes_wr(ctx, lane, RXTX_REG127, val);
+
+		serdes_rd(ctx, lane, RXTX_REG128, &val);
+		val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3);
+		serdes_wr(ctx, lane, RXTX_REG128, val);
+
+		serdes_rd(ctx, lane, RXTX_REG145, &val);
+		val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3);
+		val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0);
+		if (preA3Chip) {
+			val = RXTX_REG145_RXES_ENA_SET(val, 0x1);
+			val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1);
+		} else {
+			val = RXTX_REG145_RXES_ENA_SET(val, 0x0);
+			val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0);
+		}
+		serdes_wr(ctx, lane, RXTX_REG145, val);
+
+		/*
+		 * Set Rx LOS filter clock rate, sample rate, and threshold
+		 * windows
+		 */
+		for (i = 0; i < 4; i++) {
+			reg = RXTX_REG148 + i * 2;
+			serdes_wr(ctx, lane, reg, 0xFFFF);
+		}
+	}
+}
+
+static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx,
+				 enum cmu_type_t cmu_type,
+				 enum clk_type_t clk_type)
+{
+	void __iomem *csr_serdes = ctx->sds_base;
+	int loop;
+	u32 val;
+
+	/* Release PHY main reset */
+	writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL);
+	readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
+
+	if (cmu_type != REF_CMU) {
+		cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
+		/*
+		 * As per PHY design spec, the PLL reset requires a minimum
+		 * of 800us.
+		 */
+		usleep_range(800, 1000);
+
+		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
+		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
+		cmu_wr(ctx, cmu_type, CMU_REG1, val);
+		/*
+		 * As per PHY design spec, the PLL auto calibration requires
+		 * a minimum of 800us.
+		 */
+		usleep_range(800, 1000);
+
+		cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
+			       CMU_REG32_FORCE_VCOCAL_START_MASK);
+		/*
+		 * As per PHY design spec, the PLL requires a minimum of
+		 * 800us to settle.
+		 */
+		usleep_range(800, 1000);
+	}
+
+	if (!preA3Chip)
+		goto skip_manual_cal;
+
+	/*
+	 * Configure the termination resister calibration
+	 * The serial receive pins, RXP/RXN, have TERMination resistor
+         * that is required to be calibrated.
+	 */
+	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
+	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12);
+	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
+	cmu_wr(ctx, cmu_type, CMU_REG17, val);
+	cmu_toggle1to0(ctx, cmu_type, CMU_REG17,
+		       CMU_REG17_PVT_TERM_MAN_ENA_MASK);
+	/*
+	 * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN
+         * resistors that are required to the calibrated.
+	 * Configure the pull DOWN calibration
+	 */
+	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
+	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29);
+	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
+	cmu_wr(ctx, cmu_type, CMU_REG17, val);
+	cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
+		       CMU_REG16_PVT_DN_MAN_ENA_MASK);
+	/* Configure the pull UP calibration */
+	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
+	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28);
+	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
+	cmu_wr(ctx, cmu_type, CMU_REG17, val);
+	cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
+		       CMU_REG16_PVT_UP_MAN_ENA_MASK);
+
+skip_manual_cal:
+	/* Poll the PLL calibration completion status for at least 1 ms */
+	loop = 100;
+	do {
+		cmu_rd(ctx, cmu_type, CMU_REG7, &val);
+		if (CMU_REG7_PLL_CALIB_DONE_RD(val))
+			break;
+		/*
+		 * As per PHY design spec, PLL calibration status requires
+		 * a minimum of 10us to be updated.
+		 */
+		usleep_range(10, 100);
+	} while (--loop > 0);
+
+	cmu_rd(ctx, cmu_type, CMU_REG7, &val);
+	dev_dbg(ctx->dev, "PLL calibration %s\n",
+		CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed");
+	if (CMU_REG7_VCO_CAL_FAIL_RD(val)) {
+		dev_err(ctx->dev,
+			"PLL calibration failed due to VCO failure\n");
+		return -1;
+	}
+	dev_dbg(ctx->dev, "PLL calibration successful\n");
+
+	cmu_rd(ctx, cmu_type, CMU_REG15, &val);
+	dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not ");
+	return 0;
+}
+
+static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx,
+				     enum cmu_type_t cmu_type,
+				     enum clk_type_t clk_type)
+{
+	u32 val;
+
+	dev_dbg(ctx->dev, "Reset VCO and re-start again\n");
+	if (cmu_type == PHY_CMU) {
+		cmu_rd(ctx, cmu_type, CMU_REG16, &val);
+		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
+		cmu_wr(ctx, cmu_type, CMU_REG16, val);
+	}
+
+	cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK);
+	cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
+		       CMU_REG32_FORCE_VCOCAL_START_MASK);
+}
+
+static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx,
+				  enum clk_type_t clk_type, int ssc_enable)
+{
+	void __iomem *sds_base = ctx->sds_base;
+	u32 val;
+	int i;
+
+	/* Configure the PHY for operation */
+	dev_dbg(ctx->dev, "Reset PHY\n");
+	/* Place PHY into reset */
+	writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL);
+	val = readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
+	/* Release PHY lane from reset (active high) */
+	writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL);
+	readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
+	/* Release all PHY module out of reset except PHY main reset */
+	writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL);
+	readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
+
+	/* Set the operation speed */
+	val = readl(sds_base + SATA_ENET_SDS_CTL1);
+	val = CFG_I_SPD_SEL_CDR_OVR1_SET(val,
+		ctx->sata_param.txspeed[ctx->sata_param.speed[0]]);
+	writel(val, sds_base + SATA_ENET_SDS_CTL1);
+
+	dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n");
+	val = readl(sds_base + SATA_ENET_SDS_CTL0);
+	val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421);
+	writel(val, sds_base + SATA_ENET_SDS_CTL0);
+
+	/* Configure the clock macro unit (CMU) clock type */
+	xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type);
+
+	/* Configure the clock macro */
+	xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type);
+
+	/* Enable SSC if enabled */
+	if (ssc_enable)
+		xgene_phy_ssc_enable(ctx, PHY_CMU);
+
+	/* Configure PHY lanes */
+	xgene_phy_sata_cfg_lanes(ctx);
+
+	/* Set Rx/Tx 20-bit */
+	val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0);
+	val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3);
+	val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3);
+	writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0);
+
+	/* Start PLL calibration and try for three times */
+	i = 10;
+	do {
+		if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type))
+			break;
+		/* If failed, toggle the VCO power signal and start again */
+		xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type);
+	} while (--i > 0);
+	/* Even on failure, allow to continue any way */
+	if (i <= 0)
+		dev_err(ctx->dev, "PLL calibration failed\n");
+
+	return 0;
+}
+
+static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx,
+				   enum clk_type_t clk_type,
+				   int ssc_enable)
+{
+	int rc;
+
+	dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type);
+
+	if (ctx->mode == MODE_SATA) {
+		rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable);
+		if (rc)
+			return rc;
+	} else {
+		dev_err(ctx->dev, "Un-supported customer pin mode %d\n",
+			ctx->mode);
+		return -ENODEV;
+	}
+
+	return 0;
+}
+
+/*
+ * Receiver Offset Calibration:
+ *
+ * Calibrate the receiver signal path offset in two steps - summar and
+ * latch calibrations
+ */
+static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane)
+{
+	int i;
+	struct {
+		u32 reg;
+		u32 val;
+	} serdes_reg[] = {
+		{RXTX_REG38, 0x0},
+		{RXTX_REG39, 0xff00},
+		{RXTX_REG40, 0xffff},
+		{RXTX_REG41, 0xffff},
+		{RXTX_REG42, 0xffff},
+		{RXTX_REG43, 0xffff},
+		{RXTX_REG44, 0xffff},
+		{RXTX_REG45, 0xffff},
+		{RXTX_REG46, 0xffff},
+		{RXTX_REG47, 0xfffc},
+		{RXTX_REG48, 0x0},
+		{RXTX_REG49, 0x0},
+		{RXTX_REG50, 0x0},
+		{RXTX_REG51, 0x0},
+		{RXTX_REG52, 0x0},
+		{RXTX_REG53, 0x0},
+		{RXTX_REG54, 0x0},
+		{RXTX_REG55, 0x0},
+	};
+
+	/* Start SUMMER calibration */
+	serdes_setbits(ctx, lane, RXTX_REG127,
+		       RXTX_REG127_FORCE_SUM_CAL_START_MASK);
+	/*
+	 * As per PHY design spec, the Summer calibration requires a minimum
+	 * of 100us to complete.
+	 */
+	usleep_range(100, 500);
+	serdes_clrbits(ctx, lane, RXTX_REG127,
+			RXTX_REG127_FORCE_SUM_CAL_START_MASK);
+	/*
+	 * As per PHY design spec, the auto calibration requires a minimum
+	 * of 100us to complete.
+	 */
+	usleep_range(100, 500);
+
+	/* Start latch calibration */
+	serdes_setbits(ctx, lane, RXTX_REG127,
+		       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
+	/*
+	 * As per PHY design spec, the latch calibration requires a minimum
+	 * of 100us to complete.
+	 */
+	usleep_range(100, 500);
+	serdes_clrbits(ctx, lane, RXTX_REG127,
+		       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
+
+	/* Configure the PHY lane for calibration */
+	serdes_wr(ctx, lane, RXTX_REG28, 0x7);
+	serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
+	serdes_clrbits(ctx, lane, RXTX_REG4,
+		       RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK);
+	serdes_clrbits(ctx, lane, RXTX_REG7,
+		       RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK);
+	for (i = 0; i < ARRAY_SIZE(serdes_reg); i++)
+		serdes_wr(ctx, lane, serdes_reg[i].reg,
+			  serdes_reg[i].val);
+}
+
+static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane)
+{
+	/* Reset digital Rx */
+	serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
+	/* As per PHY design spec, the reset requires a minimum of 100us. */
+	usleep_range(100, 150);
+	serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
+}
+
+static int xgene_phy_get_avg(int accum, int samples)
+{
+	return (accum + (samples / 2)) / samples;
+}
+
+static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane)
+{
+	int max_loop = 10;
+	int avg_loop = 0;
+	int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0;
+	int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0;
+	int sum_cal = 0;
+	int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr;
+	int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr;
+	int sum_cal_itr;
+	int fail_even;
+	int fail_odd;
+	u32 val;
+
+	dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n",
+		lane);
+
+	/* Enable RX Hi-Z termination */
+	serdes_setbits(ctx, lane, RXTX_REG12,
+			RXTX_REG12_RX_DET_TERM_ENABLE_MASK);
+	/* Turn off DFE */
+	serdes_wr(ctx, lane, RXTX_REG28, 0x0000);
+	/* DFE Presets to zero */
+	serdes_wr(ctx, lane, RXTX_REG31, 0x0000);
+
+	/*
+	 * Receiver Offset Calibration:
+	 * Calibrate the receiver signal path offset in two steps - summar
+	 * and latch calibration.
+	 * Runs the "Receiver Offset Calibration multiple times to determine
+	 * the average value to use.
+	 */
+	while (avg_loop < max_loop) {
+		/* Start the calibration */
+		xgene_phy_force_lat_summer_cal(ctx, lane);
+
+		serdes_rd(ctx, lane, RXTX_REG21, &val);
+		lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val);
+		lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val);
+		fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val);
+
+		serdes_rd(ctx, lane, RXTX_REG22, &val);
+		lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val);
+		lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val);
+		fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val);
+
+		serdes_rd(ctx, lane, RXTX_REG23, &val);
+		lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val);
+		lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val);
+
+		serdes_rd(ctx, lane, RXTX_REG24, &val);
+		lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val);
+		lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val);
+
+		serdes_rd(ctx, lane, RXTX_REG121, &val);
+		sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val);
+
+		/* Check for failure. If passed, sum them for averaging */
+		if ((fail_even == 0 || fail_even == 1) &&
+		    (fail_odd == 0 || fail_odd == 1)) {
+			lat_do += lat_do_itr;
+			lat_xo += lat_xo_itr;
+			lat_eo += lat_eo_itr;
+			lat_so += lat_so_itr;
+			lat_de += lat_de_itr;
+			lat_xe += lat_xe_itr;
+			lat_ee += lat_ee_itr;
+			lat_se += lat_se_itr;
+			sum_cal += sum_cal_itr;
+
+			dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop);
+			dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
+				lat_do_itr, lat_xo_itr, lat_eo_itr,
+				lat_so_itr);
+			dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
+				lat_de_itr, lat_xe_itr, lat_ee_itr,
+				lat_se_itr);
+			dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr);
+			++avg_loop;
+		} else {
+			dev_err(ctx->dev,
+				"Receiver calibration failed at %d loop\n",
+				avg_loop);
+		}
+		xgene_phy_reset_rxd(ctx, lane);
+	}
+
+	/* Update latch manual calibration with average value */
+	serdes_rd(ctx, lane, RXTX_REG127, &val);
+	val = RXTX_REG127_DO_LATCH_MANCAL_SET(val,
+		xgene_phy_get_avg(lat_do, max_loop));
+	val = RXTX_REG127_XO_LATCH_MANCAL_SET(val,
+		xgene_phy_get_avg(lat_xo, max_loop));
+	serdes_wr(ctx, lane, RXTX_REG127, val);
+
+	serdes_rd(ctx, lane, RXTX_REG128, &val);
+	val = RXTX_REG128_EO_LATCH_MANCAL_SET(val,
+		xgene_phy_get_avg(lat_eo, max_loop));
+	val = RXTX_REG128_SO_LATCH_MANCAL_SET(val,
+		xgene_phy_get_avg(lat_so, max_loop));
+	serdes_wr(ctx, lane, RXTX_REG128, val);
+
+	serdes_rd(ctx, lane, RXTX_REG129, &val);
+	val = RXTX_REG129_DE_LATCH_MANCAL_SET(val,
+		xgene_phy_get_avg(lat_de, max_loop));
+	val = RXTX_REG129_XE_LATCH_MANCAL_SET(val,
+		xgene_phy_get_avg(lat_xe, max_loop));
+	serdes_wr(ctx, lane, RXTX_REG129, val);
+
+	serdes_rd(ctx, lane, RXTX_REG130, &val);
+	val = RXTX_REG130_EE_LATCH_MANCAL_SET(val,
+		xgene_phy_get_avg(lat_ee, max_loop));
+	val = RXTX_REG130_SE_LATCH_MANCAL_SET(val,
+		xgene_phy_get_avg(lat_se, max_loop));
+	serdes_wr(ctx, lane, RXTX_REG130, val);
+
+	/* Update SUMMER calibration with average value */
+	serdes_rd(ctx, lane, RXTX_REG14, &val);
+	val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val,
+		xgene_phy_get_avg(sum_cal, max_loop));
+	serdes_wr(ctx, lane, RXTX_REG14, val);
+
+	dev_dbg(ctx->dev, "Average Value:\n");
+	dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
+		 xgene_phy_get_avg(lat_do, max_loop),
+		 xgene_phy_get_avg(lat_xo, max_loop),
+		 xgene_phy_get_avg(lat_eo, max_loop),
+		 xgene_phy_get_avg(lat_so, max_loop));
+	dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
+		 xgene_phy_get_avg(lat_de, max_loop),
+		 xgene_phy_get_avg(lat_xe, max_loop),
+		 xgene_phy_get_avg(lat_ee, max_loop),
+		 xgene_phy_get_avg(lat_se, max_loop));
+	dev_dbg(ctx->dev, "SUM 0x%x\n",
+		xgene_phy_get_avg(sum_cal, max_loop));
+
+	serdes_rd(ctx, lane, RXTX_REG14, &val);
+	val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1);
+	serdes_wr(ctx, lane, RXTX_REG14, val);
+	dev_dbg(ctx->dev, "Enable Manual Summer calibration\n");
+
+	serdes_rd(ctx, lane, RXTX_REG127, &val);
+	val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1);
+	dev_dbg(ctx->dev, "Enable Manual Latch calibration\n");
+	serdes_wr(ctx, lane, RXTX_REG127, val);
+
+	/* Disable RX Hi-Z termination */
+	serdes_rd(ctx, lane, RXTX_REG12, &val);
+	val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0);
+	serdes_wr(ctx, lane, RXTX_REG12, val);
+	/* Turn on DFE */
+	serdes_wr(ctx, lane, RXTX_REG28, 0x0007);
+	/* Set DFE preset */
+	serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
+}
+
+static int xgene_phy_hw_init(struct phy *phy)
+{
+	struct xgene_phy_ctx *ctx = phy_get_drvdata(phy);
+	int rc;
+	int i;
+
+	rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE);
+	if (rc) {
+		dev_err(ctx->dev, "PHY initialize failed %d\n", rc);
+		return rc;
+	}
+
+	/* Setup clock properly after PHY configuration */
+	if (!IS_ERR(ctx->clk)) {
+		/* HW requires an toggle */
+		clk_prepare_enable(ctx->clk);
+		clk_disable_unprepare(ctx->clk);
+		clk_prepare_enable(ctx->clk);
+	}
+
+	/* Compute average value */
+	for (i = 0; i < MAX_LANE; i++)
+		xgene_phy_gen_avg_val(ctx, i);
+
+	dev_dbg(ctx->dev, "PHY initialized\n");
+	return 0;
+}
+
+/*
+ * This function is used to configure the PHY to operation as either SATA Gen1
+ * or Gen2 speed.
+ */
+static void xgene_phy_sata_force_gen(struct xgene_phy_ctx *ctx,
+				     int lane, int gen)
+{
+	u32 val;
+
+	serdes_rd(ctx, lane, RXTX_REG38, &val);
+	val = RXTX_REG38_CUSTOMER_PINMODE_INV_SET(val, 0x400);
+	serdes_wr(ctx, lane, RXTX_REG38, val);
+
+	/* Set boost control value */
+	serdes_rd(ctx, lane, RXTX_REG1, &val);
+	val = RXTX_REG1_RXACVCM_SET(val, 0x7);
+	val = RXTX_REG1_CTLE_EQ_SET(val,
+			            ctx->sata_param.txboostgain[lane * 3 +
+			            ctx->sata_param.speed[lane]]);
+	serdes_wr(ctx, lane, RXTX_REG1, val);
+
+	serdes_rd(ctx, lane, RXTX_REG125, &val);
+	val = RXTX_REG125_PQ_REG_SET(val,
+			             ctx->sata_param.txeyetuning[lane * 3 +
+			             ctx->sata_param.speed[lane]]);
+	serdes_wr(ctx, lane, RXTX_REG125, val);
+
+	serdes_rd(ctx, lane, RXTX_REG61, &val);
+	val = RXTX_REG61_SPD_SEL_CDR_SET(val,
+                 ctx->sata_param.txspeed[ctx->sata_param.speed[lane]]);
+ 	serdes_wr(ctx, lane, RXTX_REG61, val);
+}
+
+static int xgene_phy_set_speed(struct phy *phy, int lane, u64 speed)
+{
+	struct xgene_phy_ctx *ctx = phy_get_drvdata(phy);
+
+	if (lane >= MAX_LANE)
+		return -EINVAL;
+	if (ctx->mode == MODE_SATA) {
+		if (speed >= 6000000000ULL /* 6Gbps */) {
+			ctx->sata_param.speed[lane] = 2;
+			xgene_phy_sata_force_gen(ctx, lane, SATA_SPD_SEL_GEN3);
+		} else if (speed >= 3000000000ULL /* 3Gbps */) {
+			ctx->sata_param.speed[lane] = 1;
+			xgene_phy_sata_force_gen(ctx, lane, SATA_SPD_SEL_GEN2);
+		} else if (speed >= 1500000000ULL /* 1.5Gbps */) {
+			ctx->sata_param.speed[lane] = 0;
+			xgene_phy_sata_force_gen(ctx, lane, SATA_SPD_SEL_GEN1);
+		} else if (speed == 0) {
+			xgene_phy_reset_rxd(ctx, lane);
+		}
+	}
+	return 0;
+}
+
+static const struct phy_ops xgene_phy_ops = {
+	.init		= xgene_phy_hw_init,
+	.set_speed	= xgene_phy_set_speed,
+	.owner		= THIS_MODULE,
+};
+
+static struct phy *xgene_phy_xlate(struct device *dev,
+				   struct of_phandle_args *args)
+{
+	struct xgene_phy_ctx *ctx = dev_get_drvdata(dev);
+
+	if (args->args_count > 0) {
+		if (args->args[0] >= MODE_MAX)
+			return NULL;
+		ctx->mode = args->args[0];
+	}
+	return ctx->phy;
+}
+
+static void xgene_phy_get_param(struct platform_device *pdev,
+				const char *name, u32 *buffer,
+				int count, u32 *default_val,
+				u32 conv_factor)
+{
+	int i;
+
+	if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer,
+					count)) {
+		for (i = 0; i < count; i++)
+			buffer[i] /= conv_factor;
+		return;
+	}
+	/* Does not exist, load default */
+	for (i = 0; i < count; i++)
+		buffer[i] = default_val[i % 3];
+}
+
+static int xgene_phy_probe(struct platform_device *pdev)
+{
+	struct phy_provider *phy_provider;
+	struct xgene_phy_ctx *ctx;
+	struct resource *res;
+	int rc = 0;
+	u32 default_spd[] = DEFAULT_SATA_SPD_SEL;
+	u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN;
+	u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION;
+	u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING;
+	u32 default_txamp[] = DEFAULT_SATA_TXAMP;
+	u32 default_txcn1[] = DEFAULT_SATA_TXCN1;
+	u32 default_txcn2[] = DEFAULT_SATA_TXCN2;
+	u32 default_txcp1[] = DEFAULT_SATA_TXCP1;
+	int i;
+
+	ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
+	if (!ctx) {
+		dev_err(&pdev->dev, "can't allocate PHY context\n");
+		return -ENOMEM;
+	}
+	ctx->dev = &pdev->dev;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	if (!res) {
+		dev_err(&pdev->dev, "no PHY resource address\n");
+		goto error;
+	}
+	ctx->sds_base = devm_ioremap_resource(&pdev->dev, res);
+	if (!ctx->sds_base) {
+		dev_err(&pdev->dev, "can't map PHY resource\n");
+		rc = -ENOMEM;
+		goto error;
+	}
+
+	/* Retrieve optional clock */
+	ctx->clk = clk_get(&pdev->dev, NULL);
+
+	/* Load override paramaters */
+	xgene_phy_get_param(pdev, "apm,tx-eye-tuning",
+		ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1);
+	xgene_phy_get_param(pdev, "apm,tx-eye-direction",
+		ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1);
+	xgene_phy_get_param(pdev, "apm,tx-boost-gain",
+		ctx->sata_param.txboostgain, 6, default_txboost_gain, 1);
+	xgene_phy_get_param(pdev, "apm,tx-amplitude",
+		ctx->sata_param.txamplitude, 6, default_txamp, 13300);
+	xgene_phy_get_param(pdev, "apm,tx-pre-cursor1",
+		ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200);
+	xgene_phy_get_param(pdev, "apm,tx-pre-cursor2",
+		ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200);
+	xgene_phy_get_param(pdev, "apm,tx-post-cursor",
+		ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200);
+	xgene_phy_get_param(pdev, "apm,tx-speed",
+		ctx->sata_param.txspeed, 3, default_spd, 1);
+	for (i = 0; i < MAX_LANE; i++)
+		ctx->sata_param.speed[i] = 2; /* Default to Gen3 */
+
+	ctx->dev = &pdev->dev;
+	platform_set_drvdata(pdev, ctx);
+
+	phy_provider = devm_of_phy_provider_register(ctx->dev,
+						     xgene_phy_xlate);
+	if (IS_ERR(phy_provider)) {
+		rc = PTR_ERR(phy_provider);
+		goto error;
+	}
+
+	ctx->phy = devm_phy_create(ctx->dev, &xgene_phy_ops, NULL);
+	if (IS_ERR(ctx->phy)) {
+		dev_dbg(&pdev->dev, "Failed to create PHY\n");
+		return PTR_ERR(ctx->phy);
+	}
+
+	phy_set_drvdata(ctx->phy, ctx);
+
+	dev_info(&pdev->dev, "X-Gene PHY registered\n");
+	return 0;
+
+error:
+	return rc;
+}
+
+static const struct of_device_id xgene_phy_of_match[] = {
+	{.compatible = "apm,xgene-phy",},
+	{},
+};
+MODULE_DEVICE_TABLE(of, xgene_phy_of_match);
+
+static struct platform_driver xgene_phy_driver = {
+	.probe = xgene_phy_probe,
+	.driver = {
+		   .name = "xgene-phy",
+		   .owner = THIS_MODULE,
+		   .of_match_table = xgene_phy_of_match,
+	},
+};
+
+static int __init xgene_phy_init(void)
+{
+	return platform_driver_register(&xgene_phy_driver);
+}
+module_init(xgene_phy_init);
+
+static void __exit xgene_phy_exit(void)
+{
+	platform_driver_unregister(&xgene_phy_driver);
+}
+module_exit(xgene_phy_exit);
+
+MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver");
+MODULE_AUTHOR("Loc Ho <lho@xxxxxxx>");
+MODULE_LICENSE("GPL");
+MODULE_VERSION("0.1");
-- 
1.5.5

--
To unsubscribe from this list: send the line "unsubscribe linux-ide" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at  http://vger.kernel.org/majordomo-info.html




[Index of Archives]     [Linux Filesystems]     [Linux SCSI]     [Linux RAID]     [Git]     [Kernel Newbies]     [Linux Newbie]     [Security]     [Netfilter]     [Bugtraq]     [Yosemite News]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Samba]     [Device Mapper]

  Powered by Linux