On Thu, Dec 12, 2024 at 11:57:07AM +0100, Alice Ryhl wrote: [...] > > diff --git a/rust/kernel/sync/atomic/generic.rs b/rust/kernel/sync/atomic/generic.rs > > new file mode 100644 > > index 000000000000..204da38e2691 > > --- /dev/null > > +++ b/rust/kernel/sync/atomic/generic.rs > > @@ -0,0 +1,253 @@ > > +// SPDX-License-Identifier: GPL-2.0 > > + > > +//! Generic atomic primitives. > > + > > +use super::ops::*; > > +use super::ordering::*; > > +use crate::types::Opaque; > > + > > +/// A generic atomic variable. > > +/// > > +/// `T` must impl [`AllowAtomic`], that is, an [`AtomicImpl`] has to be chosen. > > +/// > > +/// # Invariants > > +/// > > +/// Doing an atomic operation while holding a reference of [`Self`] won't cause a data race, this > > +/// is guaranteed by the safety requirement of [`Self::from_ptr`] and the extra safety requirement > > +/// of the usage on pointers returned by [`Self::as_ptr`]. > > +#[repr(transparent)] > > +pub struct Atomic<T: AllowAtomic>(Opaque<T>); > > + > > +// SAFETY: `Atomic<T>` is safe to share among execution contexts because all accesses are atomic. > > +unsafe impl<T: AllowAtomic> Sync for Atomic<T> {} > > Surely it should also be Send? > It's `Send` here because `Opaque<T>` is `Send` when `T` is `Send`. And in patch #9, I changed the definition of `AllowAtomic`, which is not a subtrait of `Send` anymore, and an `impl Send` block was added there. > > +/// Atomics that support basic atomic operations. > > +/// > > +/// TODO: Unless the `impl` is a `#[repr(transparet)]` new type of an existing [`AllowAtomic`], the > > +/// impl block should be only done in atomic mod. And currently only basic integer types can > > +/// implement this trait in atomic mod. > > What's up with this TODO? Can't you just write an appropriate safety > requirement? > Because the limited scope of types that allows atomic is an artificial choice, i.e. we want to start with a limited number of types and make forward progress, and the types that we don't want to support atomics for now are not because of safety reasons, but more of a lack of users/motivations. So I don't think this is something we should use safety requirement to describe. > > +/// # Safety > > +/// > > +/// [`Self`] must have the same size and alignment as [`Self::Repr`]. > > +pub unsafe trait AllowAtomic: Sized + Send + Copy { > > + /// The backing atomic implementation type. > > + type Repr: AtomicImpl; > > + > > + /// Converts into a [`Self::Repr`]. > > + fn into_repr(self) -> Self::Repr; > > + > > + /// Converts from a [`Self::Repr`]. > > + fn from_repr(repr: Self::Repr) -> Self; > > What do you need these methods for? > Converting a `AtomicImpl` value (currently only `i32` and `i64`) to a `AllowAtomic` value without using transmute in `impl` block of `Atomic<T>`. Any better idea? Regards, Boqun > > +} > > + > > +// SAFETY: `T::Repr` is `Self` (i.e. `T`), so they have the same size and alignment. > > +unsafe impl<T: AtomicImpl> AllowAtomic for T { > > + type Repr = Self; > > + > > + fn into_repr(self) -> Self::Repr { > > + self > > + } > > + > > + fn from_repr(repr: Self::Repr) -> Self { > > + repr > > + } > > +} > > + > > +impl<T: AllowAtomic> Atomic<T> { > > + /// Creates a new atomic. > > + pub const fn new(v: T) -> Self { > > + Self(Opaque::new(v)) > > + } > > + > > + /// Creates a reference to [`Self`] from a pointer. > > + /// > > + /// # Safety > > + /// > > + /// - `ptr` has to be a valid pointer. > > + /// - `ptr` has to be valid for both reads and writes for the whole lifetime `'a`. > > + /// - For the whole lifetime of '`a`, other accesses to the object cannot cause data races > > + /// (defined by [`LKMM`]) against atomic operations on the returned reference. > > + /// > > + /// [`LKMM`]: srctree/tools/memory-model > > + /// > > + /// # Examples > > + /// > > + /// Using [`Atomic::from_ptr()`] combined with [`Atomic::load()`] or [`Atomic::store()`] can > > + /// achieve the same functionality as `READ_ONCE()`/`smp_load_acquire()` or > > + /// `WRITE_ONCE()`/`smp_store_release()` in C side: > > + /// > > + /// ```rust > > + /// # use kernel::types::Opaque; > > + /// use kernel::sync::atomic::{Atomic, Relaxed, Release}; > > + /// > > + /// // Assume there is a C struct `Foo`. > > + /// mod cbindings { > > + /// #[repr(C)] > > + /// pub(crate) struct foo { pub(crate) a: i32, pub(crate) b: i32 } > > + /// } > > + /// > > + /// let tmp = Opaque::new(cbindings::foo { a: 1, b: 2}); > > + /// > > + /// // struct foo *foo_ptr = ..; > > + /// let foo_ptr = tmp.get(); > > + /// > > + /// // SAFETY: `foo_ptr` is a valid pointer, and `.a` is inbound. > > + /// let foo_a_ptr = unsafe { core::ptr::addr_of_mut!((*foo_ptr).a) }; > > + /// > > + /// // a = READ_ONCE(foo_ptr->a); > > + /// // > > + /// // SAFETY: `foo_a_ptr` is a valid pointer for read, and all accesses on it is atomic, so no > > + /// // data race. > > + /// let a = unsafe { Atomic::from_ptr(foo_a_ptr) }.load(Relaxed); > > + /// # assert_eq!(a, 1); > > + /// > > + /// // smp_store_release(&foo_ptr->a, 2); > > + /// // > > + /// // SAFETY: `foo_a_ptr` is a valid pointer for write, and all accesses on it is atomic, so no > > + /// // data race. > > + /// unsafe { Atomic::from_ptr(foo_a_ptr) }.store(2, Release); > > + /// ``` > > + /// > > + /// However, this should be only used when communicating with C side or manipulating a C struct. > > + pub unsafe fn from_ptr<'a>(ptr: *mut T) -> &'a Self > > + where > > + T: Sync, > > + { > > + // CAST: `T` is transparent to `Atomic<T>`. > > + // SAFETY: Per function safety requirement, `ptr` is a valid pointer and the object will > > + // live long enough. It's safe to return a `&Atomic<T>` because function safety requirement > > + // guarantees other accesses won't cause data races. > > + unsafe { &*ptr.cast::<Self>() } > > + } > > + > > + /// Returns a pointer to the underlying atomic variable. > > + /// > > + /// Extra safety requirement on using the return pointer: the operations done via the pointer > > + /// cannot cause data races defined by [`LKMM`]. > > + /// > > + /// [`LKMM`]: srctree/tools/memory-model > > + pub const fn as_ptr(&self) -> *mut T { > > + self.0.get() > > + } > > + > > + /// Returns a mutable reference to the underlying atomic variable. > > + /// > > + /// This is safe because the mutable reference of the atomic variable guarantees the exclusive > > + /// access. > > + pub fn get_mut(&mut self) -> &mut T { > > + // SAFETY: `self.as_ptr()` is a valid pointer to `T`, and the object has already been > > + // initialized. `&mut self` guarantees the exclusive access, so it's safe to reborrow > > + // mutably. > > + unsafe { &mut *self.as_ptr() } > > + } > > +} > > + > > +impl<T: AllowAtomic> Atomic<T> > > +where > > + T::Repr: AtomicHasBasicOps, > > +{ > > + /// Loads the value from the atomic variable. > > + /// > > + /// # Examples > > + /// > > + /// Simple usages: > > + /// > > + /// ```rust > > + /// use kernel::sync::atomic::{Atomic, Relaxed}; > > + /// > > + /// let x = Atomic::new(42i32); > > + /// > > + /// assert_eq!(42, x.load(Relaxed)); > > + /// > > + /// let x = Atomic::new(42i64); > > + /// > > + /// assert_eq!(42, x.load(Relaxed)); > > + /// ``` > > + /// > > + /// Customized new types in [`Atomic`]: > > + /// > > + /// ```rust > > + /// use kernel::sync::atomic::{generic::AllowAtomic, Atomic, Relaxed}; > > + /// > > + /// #[derive(Clone, Copy)] > > + /// #[repr(transparent)] > > + /// struct NewType(u32); > > + /// > > + /// // SAFETY: `NewType` is transparent to `u32`, which has the same size and alignment as > > + /// // `i32`. > > + /// unsafe impl AllowAtomic for NewType { > > + /// type Repr = i32; > > + /// > > + /// fn into_repr(self) -> Self::Repr { > > + /// self.0 as i32 > > + /// } > > + /// > > + /// fn from_repr(repr: Self::Repr) -> Self { > > + /// NewType(repr as u32) > > + /// } > > + /// } > > + /// > > + /// let n = Atomic::new(NewType(0)); > > + /// > > + /// assert_eq!(0, n.load(Relaxed).0); > > + /// ``` > > + #[inline(always)] > > + pub fn load<Ordering: AcquireOrRelaxed>(&self, _: Ordering) -> T { > > + let a = self.as_ptr().cast::<T::Repr>(); > > + > > + // SAFETY: > > + // - For calling the atomic_read*() function: > > + // - `self.as_ptr()` is a valid pointer, and per the safety requirement of `AllocAtomic`, > > + // a `*mut T` is a valid `*mut T::Repr`. Therefore `a` is a valid pointer, > > + // - per the type invariants, the following atomic operation won't cause data races. > > + // - For extra safety requirement of usage on pointers returned by `self.as_ptr(): > > + // - atomic operations are used here. > > + let v = unsafe { > > + if Ordering::IS_RELAXED { > > + T::Repr::atomic_read(a) > > + } else { > > + T::Repr::atomic_read_acquire(a) > > + } > > + }; > > + > > + T::from_repr(v) > > + } > > + > > + /// Stores a value to the atomic variable. > > + /// > > + /// # Examples > > + /// > > + /// ```rust > > + /// use kernel::sync::atomic::{Atomic, Relaxed}; > > + /// > > + /// let x = Atomic::new(42i32); > > + /// > > + /// assert_eq!(42, x.load(Relaxed)); > > + /// > > + /// x.store(43, Relaxed); > > + /// > > + /// assert_eq!(43, x.load(Relaxed)); > > + /// ``` > > + /// > > + #[inline(always)] > > + pub fn store<Ordering: ReleaseOrRelaxed>(&self, v: T, _: Ordering) { > > + let v = T::into_repr(v); > > + let a = self.as_ptr().cast::<T::Repr>(); > > + > > + // SAFETY: > > + // - For calling the atomic_set*() function: > > + // - `self.as_ptr()` is a valid pointer, and per the safety requirement of `AllocAtomic`, > > + // a `*mut T` is a valid `*mut T::Repr`. Therefore `a` is a valid pointer, > > + // - per the type invariants, the following atomic operation won't cause data races. > > + // - For extra safety requirement of usage on pointers returned by `self.as_ptr(): > > + // - atomic operations are used here. > > + unsafe { > > + if Ordering::IS_RELAXED { > > + T::Repr::atomic_set(a, v) > > + } else { > > + T::Repr::atomic_set_release(a, v) > > + } > > + }; > > + } > > +} > > -- > > 2.45.2 > >