On Fri, Nov 1, 2024 at 7:03 AM Boqun Feng <boqun.feng@xxxxxxxxx> wrote: > > To provide using LKMM atomics for Rust code, a generic `Atomic<T>` is > added, currently `T` needs to be Send + Copy because these are the > straightforward usages and all basic types support this. The trait > `AllowAtomic` should be only ipmlemented inside atomic mod until the > generic atomic framework is mature enough (unless the ipmlementer is a > `#[repr(transparent)]` new type). > > `AtomicIpml` types are automatically `AllowAtomic`, and so far only > basic operations load() and store() are introduced. The ipml typo continues in this patch. > Signed-off-by: Boqun Feng <boqun.feng@xxxxxxxxx> > --- > rust/kernel/sync/atomic.rs | 2 + > rust/kernel/sync/atomic/generic.rs | 253 +++++++++++++++++++++++++++++ > 2 files changed, 255 insertions(+) > create mode 100644 rust/kernel/sync/atomic/generic.rs > > diff --git a/rust/kernel/sync/atomic.rs b/rust/kernel/sync/atomic.rs > index be2e8583595f..b791abc59b61 100644 > --- a/rust/kernel/sync/atomic.rs > +++ b/rust/kernel/sync/atomic.rs > @@ -16,7 +16,9 @@ > //! > //! [`LKMM`]: srctree/tools/memory-mode/ > > +pub mod generic; > pub mod ops; > pub mod ordering; > > +pub use generic::Atomic; > pub use ordering::{Acquire, Full, Relaxed, Release}; > diff --git a/rust/kernel/sync/atomic/generic.rs b/rust/kernel/sync/atomic/generic.rs > new file mode 100644 > index 000000000000..204da38e2691 > --- /dev/null > +++ b/rust/kernel/sync/atomic/generic.rs > @@ -0,0 +1,253 @@ > +// SPDX-License-Identifier: GPL-2.0 > + > +//! Generic atomic primitives. > + > +use super::ops::*; > +use super::ordering::*; > +use crate::types::Opaque; > + > +/// A generic atomic variable. > +/// > +/// `T` must impl [`AllowAtomic`], that is, an [`AtomicImpl`] has to be chosen. > +/// > +/// # Invariants > +/// > +/// Doing an atomic operation while holding a reference of [`Self`] won't cause a data race, this > +/// is guaranteed by the safety requirement of [`Self::from_ptr`] and the extra safety requirement > +/// of the usage on pointers returned by [`Self::as_ptr`]. > +#[repr(transparent)] > +pub struct Atomic<T: AllowAtomic>(Opaque<T>); > + > +// SAFETY: `Atomic<T>` is safe to share among execution contexts because all accesses are atomic. > +unsafe impl<T: AllowAtomic> Sync for Atomic<T> {} Surely it should also be Send? > +/// Atomics that support basic atomic operations. > +/// > +/// TODO: Unless the `impl` is a `#[repr(transparet)]` new type of an existing [`AllowAtomic`], the > +/// impl block should be only done in atomic mod. And currently only basic integer types can > +/// implement this trait in atomic mod. What's up with this TODO? Can't you just write an appropriate safety requirement? > +/// # Safety > +/// > +/// [`Self`] must have the same size and alignment as [`Self::Repr`]. > +pub unsafe trait AllowAtomic: Sized + Send + Copy { > + /// The backing atomic implementation type. > + type Repr: AtomicImpl; > + > + /// Converts into a [`Self::Repr`]. > + fn into_repr(self) -> Self::Repr; > + > + /// Converts from a [`Self::Repr`]. > + fn from_repr(repr: Self::Repr) -> Self; What do you need these methods for? > +} > + > +// SAFETY: `T::Repr` is `Self` (i.e. `T`), so they have the same size and alignment. > +unsafe impl<T: AtomicImpl> AllowAtomic for T { > + type Repr = Self; > + > + fn into_repr(self) -> Self::Repr { > + self > + } > + > + fn from_repr(repr: Self::Repr) -> Self { > + repr > + } > +} > + > +impl<T: AllowAtomic> Atomic<T> { > + /// Creates a new atomic. > + pub const fn new(v: T) -> Self { > + Self(Opaque::new(v)) > + } > + > + /// Creates a reference to [`Self`] from a pointer. > + /// > + /// # Safety > + /// > + /// - `ptr` has to be a valid pointer. > + /// - `ptr` has to be valid for both reads and writes for the whole lifetime `'a`. > + /// - For the whole lifetime of '`a`, other accesses to the object cannot cause data races > + /// (defined by [`LKMM`]) against atomic operations on the returned reference. > + /// > + /// [`LKMM`]: srctree/tools/memory-model > + /// > + /// # Examples > + /// > + /// Using [`Atomic::from_ptr()`] combined with [`Atomic::load()`] or [`Atomic::store()`] can > + /// achieve the same functionality as `READ_ONCE()`/`smp_load_acquire()` or > + /// `WRITE_ONCE()`/`smp_store_release()` in C side: > + /// > + /// ```rust > + /// # use kernel::types::Opaque; > + /// use kernel::sync::atomic::{Atomic, Relaxed, Release}; > + /// > + /// // Assume there is a C struct `Foo`. > + /// mod cbindings { > + /// #[repr(C)] > + /// pub(crate) struct foo { pub(crate) a: i32, pub(crate) b: i32 } > + /// } > + /// > + /// let tmp = Opaque::new(cbindings::foo { a: 1, b: 2}); > + /// > + /// // struct foo *foo_ptr = ..; > + /// let foo_ptr = tmp.get(); > + /// > + /// // SAFETY: `foo_ptr` is a valid pointer, and `.a` is inbound. > + /// let foo_a_ptr = unsafe { core::ptr::addr_of_mut!((*foo_ptr).a) }; > + /// > + /// // a = READ_ONCE(foo_ptr->a); > + /// // > + /// // SAFETY: `foo_a_ptr` is a valid pointer for read, and all accesses on it is atomic, so no > + /// // data race. > + /// let a = unsafe { Atomic::from_ptr(foo_a_ptr) }.load(Relaxed); > + /// # assert_eq!(a, 1); > + /// > + /// // smp_store_release(&foo_ptr->a, 2); > + /// // > + /// // SAFETY: `foo_a_ptr` is a valid pointer for write, and all accesses on it is atomic, so no > + /// // data race. > + /// unsafe { Atomic::from_ptr(foo_a_ptr) }.store(2, Release); > + /// ``` > + /// > + /// However, this should be only used when communicating with C side or manipulating a C struct. > + pub unsafe fn from_ptr<'a>(ptr: *mut T) -> &'a Self > + where > + T: Sync, > + { > + // CAST: `T` is transparent to `Atomic<T>`. > + // SAFETY: Per function safety requirement, `ptr` is a valid pointer and the object will > + // live long enough. It's safe to return a `&Atomic<T>` because function safety requirement > + // guarantees other accesses won't cause data races. > + unsafe { &*ptr.cast::<Self>() } > + } > + > + /// Returns a pointer to the underlying atomic variable. > + /// > + /// Extra safety requirement on using the return pointer: the operations done via the pointer > + /// cannot cause data races defined by [`LKMM`]. > + /// > + /// [`LKMM`]: srctree/tools/memory-model > + pub const fn as_ptr(&self) -> *mut T { > + self.0.get() > + } > + > + /// Returns a mutable reference to the underlying atomic variable. > + /// > + /// This is safe because the mutable reference of the atomic variable guarantees the exclusive > + /// access. > + pub fn get_mut(&mut self) -> &mut T { > + // SAFETY: `self.as_ptr()` is a valid pointer to `T`, and the object has already been > + // initialized. `&mut self` guarantees the exclusive access, so it's safe to reborrow > + // mutably. > + unsafe { &mut *self.as_ptr() } > + } > +} > + > +impl<T: AllowAtomic> Atomic<T> > +where > + T::Repr: AtomicHasBasicOps, > +{ > + /// Loads the value from the atomic variable. > + /// > + /// # Examples > + /// > + /// Simple usages: > + /// > + /// ```rust > + /// use kernel::sync::atomic::{Atomic, Relaxed}; > + /// > + /// let x = Atomic::new(42i32); > + /// > + /// assert_eq!(42, x.load(Relaxed)); > + /// > + /// let x = Atomic::new(42i64); > + /// > + /// assert_eq!(42, x.load(Relaxed)); > + /// ``` > + /// > + /// Customized new types in [`Atomic`]: > + /// > + /// ```rust > + /// use kernel::sync::atomic::{generic::AllowAtomic, Atomic, Relaxed}; > + /// > + /// #[derive(Clone, Copy)] > + /// #[repr(transparent)] > + /// struct NewType(u32); > + /// > + /// // SAFETY: `NewType` is transparent to `u32`, which has the same size and alignment as > + /// // `i32`. > + /// unsafe impl AllowAtomic for NewType { > + /// type Repr = i32; > + /// > + /// fn into_repr(self) -> Self::Repr { > + /// self.0 as i32 > + /// } > + /// > + /// fn from_repr(repr: Self::Repr) -> Self { > + /// NewType(repr as u32) > + /// } > + /// } > + /// > + /// let n = Atomic::new(NewType(0)); > + /// > + /// assert_eq!(0, n.load(Relaxed).0); > + /// ``` > + #[inline(always)] > + pub fn load<Ordering: AcquireOrRelaxed>(&self, _: Ordering) -> T { > + let a = self.as_ptr().cast::<T::Repr>(); > + > + // SAFETY: > + // - For calling the atomic_read*() function: > + // - `self.as_ptr()` is a valid pointer, and per the safety requirement of `AllocAtomic`, > + // a `*mut T` is a valid `*mut T::Repr`. Therefore `a` is a valid pointer, > + // - per the type invariants, the following atomic operation won't cause data races. > + // - For extra safety requirement of usage on pointers returned by `self.as_ptr(): > + // - atomic operations are used here. > + let v = unsafe { > + if Ordering::IS_RELAXED { > + T::Repr::atomic_read(a) > + } else { > + T::Repr::atomic_read_acquire(a) > + } > + }; > + > + T::from_repr(v) > + } > + > + /// Stores a value to the atomic variable. > + /// > + /// # Examples > + /// > + /// ```rust > + /// use kernel::sync::atomic::{Atomic, Relaxed}; > + /// > + /// let x = Atomic::new(42i32); > + /// > + /// assert_eq!(42, x.load(Relaxed)); > + /// > + /// x.store(43, Relaxed); > + /// > + /// assert_eq!(43, x.load(Relaxed)); > + /// ``` > + /// > + #[inline(always)] > + pub fn store<Ordering: ReleaseOrRelaxed>(&self, v: T, _: Ordering) { > + let v = T::into_repr(v); > + let a = self.as_ptr().cast::<T::Repr>(); > + > + // SAFETY: > + // - For calling the atomic_set*() function: > + // - `self.as_ptr()` is a valid pointer, and per the safety requirement of `AllocAtomic`, > + // a `*mut T` is a valid `*mut T::Repr`. Therefore `a` is a valid pointer, > + // - per the type invariants, the following atomic operation won't cause data races. > + // - For extra safety requirement of usage on pointers returned by `self.as_ptr(): > + // - atomic operations are used here. > + unsafe { > + if Ordering::IS_RELAXED { > + T::Repr::atomic_set(a, v) > + } else { > + T::Repr::atomic_set_release(a, v) > + } > + }; > + } > +} > -- > 2.45.2 >