On 17.06.2018 11:40, Ard Biesheuvel wrote: > On 17 June 2018 at 11:30, Ard Biesheuvel <ard.biesheuvel@xxxxxxxxxx> wrote: >> On 17 June 2018 at 00:40, Stefan Agner <stefan@xxxxxxxx> wrote: >>> Hi Eric, >>> >>> On 14.02.2018 19:42, Eric Biggers wrote: >>>> Add an ARM NEON-accelerated implementation of Speck-XTS. It operates on >>>> 128-byte chunks at a time, i.e. 8 blocks for Speck128 or 16 blocks for >>>> Speck64. Each 128-byte chunk goes through XTS preprocessing, then is >>>> encrypted/decrypted (doing one cipher round for all the blocks, then the >>>> next round, etc.), then goes through XTS postprocessing. >>>> >>>> The performance depends on the processor but can be about 3 times faster >>>> than the generic code. For example, on an ARMv7 processor we observe >>>> the following performance with Speck128/256-XTS: >>>> >>>> xts-speck128-neon: Encryption 107.9 MB/s, Decryption 108.1 MB/s >>>> xts(speck128-generic): Encryption 32.1 MB/s, Decryption 36.6 MB/s >>>> >>>> In comparison to AES-256-XTS without the Cryptography Extensions: >>>> >>>> xts-aes-neonbs: Encryption 41.2 MB/s, Decryption 36.7 MB/s >>>> xts(aes-asm): Encryption 31.7 MB/s, Decryption 30.8 MB/s >>>> xts(aes-generic): Encryption 21.2 MB/s, Decryption 20.9 MB/s >>>> >>>> Speck64/128-XTS is even faster: >>>> >>>> xts-speck64-neon: Encryption 138.6 MB/s, Decryption 139.1 MB/s >>>> >>>> Note that as with the generic code, only the Speck128 and Speck64 >>>> variants are supported. Also, for now only the XTS mode of operation is >>>> supported, to target the disk and file encryption use cases. The NEON >>>> code also only handles the portion of the data that is evenly divisible >>>> into 128-byte chunks, with any remainder handled by a C fallback. Of >>>> course, other modes of operation could be added later if needed, and/or >>>> the NEON code could be updated to handle other buffer sizes. >>>> >>>> The XTS specification is only defined for AES which has a 128-bit block >>>> size, so for the GF(2^64) math needed for Speck64-XTS we use the >>>> reducing polynomial 'x^64 + x^4 + x^3 + x + 1' given by the original XEX >>>> paper. Of course, when possible users should use Speck128-XTS, but even >>>> that may be too slow on some processors; Speck64-XTS can be faster. >>>> >>>> Signed-off-by: Eric Biggers <ebiggers@xxxxxxxxxx> >>>> --- >>>> arch/arm/crypto/Kconfig | 6 + >>>> arch/arm/crypto/Makefile | 2 + >>>> arch/arm/crypto/speck-neon-core.S | 432 ++++++++++++++++++++++++++++++ >>>> arch/arm/crypto/speck-neon-glue.c | 288 ++++++++++++++++++++ >>>> 4 files changed, 728 insertions(+) >>>> create mode 100644 arch/arm/crypto/speck-neon-core.S >>>> create mode 100644 arch/arm/crypto/speck-neon-glue.c >>>> >>>> diff --git a/arch/arm/crypto/Kconfig b/arch/arm/crypto/Kconfig >>>> index b8e69fe282b8..925d1364727a 100644 >>>> --- a/arch/arm/crypto/Kconfig >>>> +++ b/arch/arm/crypto/Kconfig >>>> @@ -121,4 +121,10 @@ config CRYPTO_CHACHA20_NEON >>>> select CRYPTO_BLKCIPHER >>>> select CRYPTO_CHACHA20 >>>> >>>> +config CRYPTO_SPECK_NEON >>>> + tristate "NEON accelerated Speck cipher algorithms" >>>> + depends on KERNEL_MODE_NEON >>>> + select CRYPTO_BLKCIPHER >>>> + select CRYPTO_SPECK >>>> + >>>> endif >>>> diff --git a/arch/arm/crypto/Makefile b/arch/arm/crypto/Makefile >>>> index 30ef8e291271..a758107c5525 100644 >>>> --- a/arch/arm/crypto/Makefile >>>> +++ b/arch/arm/crypto/Makefile >>>> @@ -10,6 +10,7 @@ obj-$(CONFIG_CRYPTO_SHA1_ARM_NEON) += sha1-arm-neon.o >>>> obj-$(CONFIG_CRYPTO_SHA256_ARM) += sha256-arm.o >>>> obj-$(CONFIG_CRYPTO_SHA512_ARM) += sha512-arm.o >>>> obj-$(CONFIG_CRYPTO_CHACHA20_NEON) += chacha20-neon.o >>>> +obj-$(CONFIG_CRYPTO_SPECK_NEON) += speck-neon.o >>>> >>>> ce-obj-$(CONFIG_CRYPTO_AES_ARM_CE) += aes-arm-ce.o >>>> ce-obj-$(CONFIG_CRYPTO_SHA1_ARM_CE) += sha1-arm-ce.o >>>> @@ -53,6 +54,7 @@ ghash-arm-ce-y := ghash-ce-core.o ghash-ce-glue.o >>>> crct10dif-arm-ce-y := crct10dif-ce-core.o crct10dif-ce-glue.o >>>> crc32-arm-ce-y:= crc32-ce-core.o crc32-ce-glue.o >>>> chacha20-neon-y := chacha20-neon-core.o chacha20-neon-glue.o >>>> +speck-neon-y := speck-neon-core.o speck-neon-glue.o >>>> >>>> quiet_cmd_perl = PERL $@ >>>> cmd_perl = $(PERL) $(<) > $(@) >>>> diff --git a/arch/arm/crypto/speck-neon-core.S >>>> b/arch/arm/crypto/speck-neon-core.S >>>> new file mode 100644 >>>> index 000000000000..3c1e203e53b9 >>>> --- /dev/null >>>> +++ b/arch/arm/crypto/speck-neon-core.S >>>> @@ -0,0 +1,432 @@ >>>> +// SPDX-License-Identifier: GPL-2.0 >>>> +/* >>>> + * NEON-accelerated implementation of Speck128-XTS and Speck64-XTS >>>> + * >>>> + * Copyright (c) 2018 Google, Inc >>>> + * >>>> + * Author: Eric Biggers <ebiggers@xxxxxxxxxx> >>>> + */ >>>> + >>>> +#include <linux/linkage.h> >>>> + >>>> + .text >>>> + .fpu neon >>>> + >>>> + // arguments >>>> + ROUND_KEYS .req r0 // const {u64,u32} *round_keys >>>> + NROUNDS .req r1 // int nrounds >>>> + DST .req r2 // void *dst >>>> + SRC .req r3 // const void *src >>>> + NBYTES .req r4 // unsigned int nbytes >>>> + TWEAK .req r5 // void *tweak >>>> + >>>> + // registers which hold the data being encrypted/decrypted >>>> + X0 .req q0 >>>> + X0_L .req d0 >>>> + X0_H .req d1 >>>> + Y0 .req q1 >>>> + Y0_H .req d3 >>>> + X1 .req q2 >>>> + X1_L .req d4 >>>> + X1_H .req d5 >>>> + Y1 .req q3 >>>> + Y1_H .req d7 >>>> + X2 .req q4 >>>> + X2_L .req d8 >>>> + X2_H .req d9 >>>> + Y2 .req q5 >>>> + Y2_H .req d11 >>>> + X3 .req q6 >>>> + X3_L .req d12 >>>> + X3_H .req d13 >>>> + Y3 .req q7 >>>> + Y3_H .req d15 >>>> + >>>> + // the round key, duplicated in all lanes >>>> + ROUND_KEY .req q8 >>>> + ROUND_KEY_L .req d16 >>>> + ROUND_KEY_H .req d17 >>>> + >>>> + // index vector for vtbl-based 8-bit rotates >>>> + ROTATE_TABLE .req d18 >>>> + >>>> + // multiplication table for updating XTS tweaks >>>> + GF128MUL_TABLE .req d19 >>>> + GF64MUL_TABLE .req d19 >>>> + >>>> + // current XTS tweak value(s) >>>> + TWEAKV .req q10 >>>> + TWEAKV_L .req d20 >>>> + TWEAKV_H .req d21 >>>> + >>>> + TMP0 .req q12 >>>> + TMP0_L .req d24 >>>> + TMP0_H .req d25 >>>> + TMP1 .req q13 >>>> + TMP2 .req q14 >>>> + TMP3 .req q15 >>>> + >>>> + .align 4 >>>> +.Lror64_8_table: >>>> + .byte 1, 2, 3, 4, 5, 6, 7, 0 >>>> +.Lror32_8_table: >>>> + .byte 1, 2, 3, 0, 5, 6, 7, 4 >>>> +.Lrol64_8_table: >>>> + .byte 7, 0, 1, 2, 3, 4, 5, 6 >>>> +.Lrol32_8_table: >>>> + .byte 3, 0, 1, 2, 7, 4, 5, 6 >>>> +.Lgf128mul_table: >>>> + .byte 0, 0x87 >>>> + .fill 14 >>>> +.Lgf64mul_table: >>>> + .byte 0, 0x1b, (0x1b << 1), (0x1b << 1) ^ 0x1b >>>> + .fill 12 >>>> + >>>> +/* >>>> + * _speck_round_128bytes() - Speck encryption round on 128 bytes at a time >>>> + * >>>> + * Do one Speck encryption round on the 128 bytes (8 blocks for >>>> Speck128, 16 for >>>> + * Speck64) stored in X0-X3 and Y0-Y3, using the round key stored in all lanes >>>> + * of ROUND_KEY. 'n' is the lane size: 64 for Speck128, or 32 for Speck64. >>>> + * >>>> + * The 8-bit rotates are implemented using vtbl instead of vshr + vsli because >>>> + * the vtbl approach is faster on some processors and the same speed on others. >>>> + */ >>>> +.macro _speck_round_128bytes n >>>> + >>>> + // x = ror(x, 8) >>>> + vtbl.8 X0_L, {X0_L}, ROTATE_TABLE >>>> + vtbl.8 X0_H, {X0_H}, ROTATE_TABLE >>>> + vtbl.8 X1_L, {X1_L}, ROTATE_TABLE >>>> + vtbl.8 X1_H, {X1_H}, ROTATE_TABLE >>>> + vtbl.8 X2_L, {X2_L}, ROTATE_TABLE >>>> + vtbl.8 X2_H, {X2_H}, ROTATE_TABLE >>>> + vtbl.8 X3_L, {X3_L}, ROTATE_TABLE >>>> + vtbl.8 X3_H, {X3_H}, ROTATE_TABLE >>>> + >>>> + // x += y >>>> + vadd.u\n X0, Y0 >>>> + vadd.u\n X1, Y1 >>>> + vadd.u\n X2, Y2 >>>> + vadd.u\n X3, Y3 >>>> + >>>> + // x ^= k >>>> + veor X0, ROUND_KEY >>>> + veor X1, ROUND_KEY >>>> + veor X2, ROUND_KEY >>>> + veor X3, ROUND_KEY >>>> + >>>> + // y = rol(y, 3) >>>> + vshl.u\n TMP0, Y0, #3 >>>> + vshl.u\n TMP1, Y1, #3 >>>> + vshl.u\n TMP2, Y2, #3 >>>> + vshl.u\n TMP3, Y3, #3 >>>> + vsri.u\n TMP0, Y0, #(\n - 3) >>>> + vsri.u\n TMP1, Y1, #(\n - 3) >>>> + vsri.u\n TMP2, Y2, #(\n - 3) >>>> + vsri.u\n TMP3, Y3, #(\n - 3) >>>> + >>>> + // y ^= x >>>> + veor Y0, TMP0, X0 >>>> + veor Y1, TMP1, X1 >>>> + veor Y2, TMP2, X2 >>>> + veor Y3, TMP3, X3 >>>> +.endm >>>> + >>>> +/* >>>> + * _speck_unround_128bytes() - Speck decryption round on 128 bytes at a time >>>> + * >>>> + * This is the inverse of _speck_round_128bytes(). >>>> + */ >>>> +.macro _speck_unround_128bytes n >>>> + >>>> + // y ^= x >>>> + veor TMP0, Y0, X0 >>>> + veor TMP1, Y1, X1 >>>> + veor TMP2, Y2, X2 >>>> + veor TMP3, Y3, X3 >>>> + >>>> + // y = ror(y, 3) >>>> + vshr.u\n Y0, TMP0, #3 >>>> + vshr.u\n Y1, TMP1, #3 >>>> + vshr.u\n Y2, TMP2, #3 >>>> + vshr.u\n Y3, TMP3, #3 >>>> + vsli.u\n Y0, TMP0, #(\n - 3) >>>> + vsli.u\n Y1, TMP1, #(\n - 3) >>>> + vsli.u\n Y2, TMP2, #(\n - 3) >>>> + vsli.u\n Y3, TMP3, #(\n - 3) >>>> + >>>> + // x ^= k >>>> + veor X0, ROUND_KEY >>>> + veor X1, ROUND_KEY >>>> + veor X2, ROUND_KEY >>>> + veor X3, ROUND_KEY >>>> + >>>> + // x -= y >>>> + vsub.u\n X0, Y0 >>>> + vsub.u\n X1, Y1 >>>> + vsub.u\n X2, Y2 >>>> + vsub.u\n X3, Y3 >>>> + >>>> + // x = rol(x, 8); >>>> + vtbl.8 X0_L, {X0_L}, ROTATE_TABLE >>>> + vtbl.8 X0_H, {X0_H}, ROTATE_TABLE >>>> + vtbl.8 X1_L, {X1_L}, ROTATE_TABLE >>>> + vtbl.8 X1_H, {X1_H}, ROTATE_TABLE >>>> + vtbl.8 X2_L, {X2_L}, ROTATE_TABLE >>>> + vtbl.8 X2_H, {X2_H}, ROTATE_TABLE >>>> + vtbl.8 X3_L, {X3_L}, ROTATE_TABLE >>>> + vtbl.8 X3_H, {X3_H}, ROTATE_TABLE >>>> +.endm >>>> + >>>> +.macro _xts128_precrypt_one dst_reg, tweak_buf, tmp >>>> + >>>> + // Load the next source block >>>> + vld1.8 {\dst_reg}, [SRC]! >>>> + >>>> + // Save the current tweak in the tweak buffer >>>> + vst1.8 {TWEAKV}, [\tweak_buf:128]! >>>> + >>>> + // XOR the next source block with the current tweak >>>> + veor \dst_reg, TWEAKV >>>> + >>>> + /* >>>> + * Calculate the next tweak by multiplying the current one by x, >>>> + * modulo p(x) = x^128 + x^7 + x^2 + x + 1. >>>> + */ >>>> + vshr.u64 \tmp, TWEAKV, #63 >>>> + vshl.u64 TWEAKV, #1 >>>> + veor TWEAKV_H, \tmp\()_L >>>> + vtbl.8 \tmp\()_H, {GF128MUL_TABLE}, \tmp\()_H >>>> + veor TWEAKV_L, \tmp\()_H >>>> +.endm >>>> + >>>> +.macro _xts64_precrypt_two dst_reg, tweak_buf, tmp >>>> + >>>> + // Load the next two source blocks >>>> + vld1.8 {\dst_reg}, [SRC]! >>>> + >>>> + // Save the current two tweaks in the tweak buffer >>>> + vst1.8 {TWEAKV}, [\tweak_buf:128]! >>>> + >>>> + // XOR the next two source blocks with the current two tweaks >>>> + veor \dst_reg, TWEAKV >>>> + >>>> + /* >>>> + * Calculate the next two tweaks by multiplying the current ones by x^2, >>>> + * modulo p(x) = x^64 + x^4 + x^3 + x + 1. >>>> + */ >>>> + vshr.u64 \tmp, TWEAKV, #62 >>>> + vshl.u64 TWEAKV, #2 >>>> + vtbl.8 \tmp\()_L, {GF64MUL_TABLE}, \tmp\()_L >>>> + vtbl.8 \tmp\()_H, {GF64MUL_TABLE}, \tmp\()_H >>>> + veor TWEAKV, \tmp >>>> +.endm >>>> + >>>> +/* >>>> + * _speck_xts_crypt() - Speck-XTS encryption/decryption >>>> + * >>>> + * Encrypt or decrypt NBYTES bytes of data from the SRC buffer to the >>>> DST buffer >>>> + * using Speck-XTS, specifically the variant with a block size of >>>> '2n' and round >>>> + * count given by NROUNDS. The expanded round keys are given in >>>> ROUND_KEYS, and >>>> + * the current XTS tweak value is given in TWEAK. It's assumed that >>>> NBYTES is a >>>> + * nonzero multiple of 128. >>>> + */ >>>> +.macro _speck_xts_crypt n, decrypting >>>> + push {r4-r7} >>>> + mov r7, sp >>>> + >>>> + /* >>>> + * The first four parameters were passed in registers r0-r3. Load the >>>> + * additional parameters, which were passed on the stack. >>>> + */ >>>> + ldr NBYTES, [sp, #16] >>>> + ldr TWEAK, [sp, #20] >>>> + >>>> + /* >>>> + * If decrypting, modify the ROUND_KEYS parameter to point to the last >>>> + * round key rather than the first, since for decryption the round keys >>>> + * are used in reverse order. >>>> + */ >>>> +.if \decrypting >>>> +.if \n == 64 >>>> + add ROUND_KEYS, ROUND_KEYS, NROUNDS, lsl #3 >>>> + sub ROUND_KEYS, #8 >>>> +.else >>>> + add ROUND_KEYS, ROUND_KEYS, NROUNDS, lsl #2 >>>> + sub ROUND_KEYS, #4 >>>> +.endif >>>> +.endif >>>> + >>>> + // Load the index vector for vtbl-based 8-bit rotates >>>> +.if \decrypting >>>> + ldr r12, =.Lrol\n\()_8_table >>>> +.else >>>> + ldr r12, =.Lror\n\()_8_table >>>> +.endif >>>> + vld1.8 {ROTATE_TABLE}, [r12:64] >>>> + >>>> + // One-time XTS preparation >>>> + >>>> + /* >>>> + * Allocate stack space to store 128 bytes worth of tweaks. For >>>> + * performance, this space is aligned to a 16-byte boundary so that we >>>> + * can use the load/store instructions that declare 16-byte alignment. >>>> + */ >>>> + sub sp, #128 >>>> + bic sp, #0xf >>> >>> >>> This fails here when building with CONFIG_THUMB2_KERNEL=y >>> >>> AS arch/arm/crypto/speck-neon-core.o >>> >>> arch/arm/crypto/speck-neon-core.S: Assembler messages: >>> >>> arch/arm/crypto/speck-neon-core.S:419: Error: r13 not allowed here -- >>> `bic sp,#0xf' >>> arch/arm/crypto/speck-neon-core.S:423: Error: r13 not allowed here -- >>> `bic sp,#0xf' >>> arch/arm/crypto/speck-neon-core.S:427: Error: r13 not allowed here -- >>> `bic sp,#0xf' >>> arch/arm/crypto/speck-neon-core.S:431: Error: r13 not allowed here -- >>> `bic sp,#0xf' >>> >>> In a quick hack this change seems to address it: >>> >>> >>> - sub sp, #128 >>> - bic sp, #0xf >>> + mov r6, sp >>> + sub r6, #128 >>> + bic r6, #0xf >>> + mov sp, r6 >>> >>> But there is probably a better solution to address this. >>> >> >> Given that there is no NEON on M class cores, I recommend we put something like >> >> THUMB(bx pc) >> THUMB(nop.w) >> THUMB(.arm) >> >> at the beginning and be done with it. > > I mean nop.n or just nop, of course, and we may need a '.align 2' at > the beginning as well. Wouldn't it be preferable to have it assemble it in Thumb2 too? It seems that bic sp,#0xf is the only issue... -- Stefan -- To unsubscribe from this list: send the line "unsubscribe linux-fscrypt" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html