On 17 June 2018 at 11:30, Ard Biesheuvel <ard.biesheuvel@xxxxxxxxxx> wrote: > On 17 June 2018 at 00:40, Stefan Agner <stefan@xxxxxxxx> wrote: >> Hi Eric, >> >> On 14.02.2018 19:42, Eric Biggers wrote: >>> Add an ARM NEON-accelerated implementation of Speck-XTS. It operates on >>> 128-byte chunks at a time, i.e. 8 blocks for Speck128 or 16 blocks for >>> Speck64. Each 128-byte chunk goes through XTS preprocessing, then is >>> encrypted/decrypted (doing one cipher round for all the blocks, then the >>> next round, etc.), then goes through XTS postprocessing. >>> >>> The performance depends on the processor but can be about 3 times faster >>> than the generic code. For example, on an ARMv7 processor we observe >>> the following performance with Speck128/256-XTS: >>> >>> xts-speck128-neon: Encryption 107.9 MB/s, Decryption 108.1 MB/s >>> xts(speck128-generic): Encryption 32.1 MB/s, Decryption 36.6 MB/s >>> >>> In comparison to AES-256-XTS without the Cryptography Extensions: >>> >>> xts-aes-neonbs: Encryption 41.2 MB/s, Decryption 36.7 MB/s >>> xts(aes-asm): Encryption 31.7 MB/s, Decryption 30.8 MB/s >>> xts(aes-generic): Encryption 21.2 MB/s, Decryption 20.9 MB/s >>> >>> Speck64/128-XTS is even faster: >>> >>> xts-speck64-neon: Encryption 138.6 MB/s, Decryption 139.1 MB/s >>> >>> Note that as with the generic code, only the Speck128 and Speck64 >>> variants are supported. Also, for now only the XTS mode of operation is >>> supported, to target the disk and file encryption use cases. The NEON >>> code also only handles the portion of the data that is evenly divisible >>> into 128-byte chunks, with any remainder handled by a C fallback. Of >>> course, other modes of operation could be added later if needed, and/or >>> the NEON code could be updated to handle other buffer sizes. >>> >>> The XTS specification is only defined for AES which has a 128-bit block >>> size, so for the GF(2^64) math needed for Speck64-XTS we use the >>> reducing polynomial 'x^64 + x^4 + x^3 + x + 1' given by the original XEX >>> paper. Of course, when possible users should use Speck128-XTS, but even >>> that may be too slow on some processors; Speck64-XTS can be faster. >>> >>> Signed-off-by: Eric Biggers <ebiggers@xxxxxxxxxx> >>> --- >>> arch/arm/crypto/Kconfig | 6 + >>> arch/arm/crypto/Makefile | 2 + >>> arch/arm/crypto/speck-neon-core.S | 432 ++++++++++++++++++++++++++++++ >>> arch/arm/crypto/speck-neon-glue.c | 288 ++++++++++++++++++++ >>> 4 files changed, 728 insertions(+) >>> create mode 100644 arch/arm/crypto/speck-neon-core.S >>> create mode 100644 arch/arm/crypto/speck-neon-glue.c >>> >>> diff --git a/arch/arm/crypto/Kconfig b/arch/arm/crypto/Kconfig >>> index b8e69fe282b8..925d1364727a 100644 >>> --- a/arch/arm/crypto/Kconfig >>> +++ b/arch/arm/crypto/Kconfig >>> @@ -121,4 +121,10 @@ config CRYPTO_CHACHA20_NEON >>> select CRYPTO_BLKCIPHER >>> select CRYPTO_CHACHA20 >>> >>> +config CRYPTO_SPECK_NEON >>> + tristate "NEON accelerated Speck cipher algorithms" >>> + depends on KERNEL_MODE_NEON >>> + select CRYPTO_BLKCIPHER >>> + select CRYPTO_SPECK >>> + >>> endif >>> diff --git a/arch/arm/crypto/Makefile b/arch/arm/crypto/Makefile >>> index 30ef8e291271..a758107c5525 100644 >>> --- a/arch/arm/crypto/Makefile >>> +++ b/arch/arm/crypto/Makefile >>> @@ -10,6 +10,7 @@ obj-$(CONFIG_CRYPTO_SHA1_ARM_NEON) += sha1-arm-neon.o >>> obj-$(CONFIG_CRYPTO_SHA256_ARM) += sha256-arm.o >>> obj-$(CONFIG_CRYPTO_SHA512_ARM) += sha512-arm.o >>> obj-$(CONFIG_CRYPTO_CHACHA20_NEON) += chacha20-neon.o >>> +obj-$(CONFIG_CRYPTO_SPECK_NEON) += speck-neon.o >>> >>> ce-obj-$(CONFIG_CRYPTO_AES_ARM_CE) += aes-arm-ce.o >>> ce-obj-$(CONFIG_CRYPTO_SHA1_ARM_CE) += sha1-arm-ce.o >>> @@ -53,6 +54,7 @@ ghash-arm-ce-y := ghash-ce-core.o ghash-ce-glue.o >>> crct10dif-arm-ce-y := crct10dif-ce-core.o crct10dif-ce-glue.o >>> crc32-arm-ce-y:= crc32-ce-core.o crc32-ce-glue.o >>> chacha20-neon-y := chacha20-neon-core.o chacha20-neon-glue.o >>> +speck-neon-y := speck-neon-core.o speck-neon-glue.o >>> >>> quiet_cmd_perl = PERL $@ >>> cmd_perl = $(PERL) $(<) > $(@) >>> diff --git a/arch/arm/crypto/speck-neon-core.S >>> b/arch/arm/crypto/speck-neon-core.S >>> new file mode 100644 >>> index 000000000000..3c1e203e53b9 >>> --- /dev/null >>> +++ b/arch/arm/crypto/speck-neon-core.S >>> @@ -0,0 +1,432 @@ >>> +// SPDX-License-Identifier: GPL-2.0 >>> +/* >>> + * NEON-accelerated implementation of Speck128-XTS and Speck64-XTS >>> + * >>> + * Copyright (c) 2018 Google, Inc >>> + * >>> + * Author: Eric Biggers <ebiggers@xxxxxxxxxx> >>> + */ >>> + >>> +#include <linux/linkage.h> >>> + >>> + .text >>> + .fpu neon >>> + >>> + // arguments >>> + ROUND_KEYS .req r0 // const {u64,u32} *round_keys >>> + NROUNDS .req r1 // int nrounds >>> + DST .req r2 // void *dst >>> + SRC .req r3 // const void *src >>> + NBYTES .req r4 // unsigned int nbytes >>> + TWEAK .req r5 // void *tweak >>> + >>> + // registers which hold the data being encrypted/decrypted >>> + X0 .req q0 >>> + X0_L .req d0 >>> + X0_H .req d1 >>> + Y0 .req q1 >>> + Y0_H .req d3 >>> + X1 .req q2 >>> + X1_L .req d4 >>> + X1_H .req d5 >>> + Y1 .req q3 >>> + Y1_H .req d7 >>> + X2 .req q4 >>> + X2_L .req d8 >>> + X2_H .req d9 >>> + Y2 .req q5 >>> + Y2_H .req d11 >>> + X3 .req q6 >>> + X3_L .req d12 >>> + X3_H .req d13 >>> + Y3 .req q7 >>> + Y3_H .req d15 >>> + >>> + // the round key, duplicated in all lanes >>> + ROUND_KEY .req q8 >>> + ROUND_KEY_L .req d16 >>> + ROUND_KEY_H .req d17 >>> + >>> + // index vector for vtbl-based 8-bit rotates >>> + ROTATE_TABLE .req d18 >>> + >>> + // multiplication table for updating XTS tweaks >>> + GF128MUL_TABLE .req d19 >>> + GF64MUL_TABLE .req d19 >>> + >>> + // current XTS tweak value(s) >>> + TWEAKV .req q10 >>> + TWEAKV_L .req d20 >>> + TWEAKV_H .req d21 >>> + >>> + TMP0 .req q12 >>> + TMP0_L .req d24 >>> + TMP0_H .req d25 >>> + TMP1 .req q13 >>> + TMP2 .req q14 >>> + TMP3 .req q15 >>> + >>> + .align 4 >>> +.Lror64_8_table: >>> + .byte 1, 2, 3, 4, 5, 6, 7, 0 >>> +.Lror32_8_table: >>> + .byte 1, 2, 3, 0, 5, 6, 7, 4 >>> +.Lrol64_8_table: >>> + .byte 7, 0, 1, 2, 3, 4, 5, 6 >>> +.Lrol32_8_table: >>> + .byte 3, 0, 1, 2, 7, 4, 5, 6 >>> +.Lgf128mul_table: >>> + .byte 0, 0x87 >>> + .fill 14 >>> +.Lgf64mul_table: >>> + .byte 0, 0x1b, (0x1b << 1), (0x1b << 1) ^ 0x1b >>> + .fill 12 >>> + >>> +/* >>> + * _speck_round_128bytes() - Speck encryption round on 128 bytes at a time >>> + * >>> + * Do one Speck encryption round on the 128 bytes (8 blocks for >>> Speck128, 16 for >>> + * Speck64) stored in X0-X3 and Y0-Y3, using the round key stored in all lanes >>> + * of ROUND_KEY. 'n' is the lane size: 64 for Speck128, or 32 for Speck64. >>> + * >>> + * The 8-bit rotates are implemented using vtbl instead of vshr + vsli because >>> + * the vtbl approach is faster on some processors and the same speed on others. >>> + */ >>> +.macro _speck_round_128bytes n >>> + >>> + // x = ror(x, 8) >>> + vtbl.8 X0_L, {X0_L}, ROTATE_TABLE >>> + vtbl.8 X0_H, {X0_H}, ROTATE_TABLE >>> + vtbl.8 X1_L, {X1_L}, ROTATE_TABLE >>> + vtbl.8 X1_H, {X1_H}, ROTATE_TABLE >>> + vtbl.8 X2_L, {X2_L}, ROTATE_TABLE >>> + vtbl.8 X2_H, {X2_H}, ROTATE_TABLE >>> + vtbl.8 X3_L, {X3_L}, ROTATE_TABLE >>> + vtbl.8 X3_H, {X3_H}, ROTATE_TABLE >>> + >>> + // x += y >>> + vadd.u\n X0, Y0 >>> + vadd.u\n X1, Y1 >>> + vadd.u\n X2, Y2 >>> + vadd.u\n X3, Y3 >>> + >>> + // x ^= k >>> + veor X0, ROUND_KEY >>> + veor X1, ROUND_KEY >>> + veor X2, ROUND_KEY >>> + veor X3, ROUND_KEY >>> + >>> + // y = rol(y, 3) >>> + vshl.u\n TMP0, Y0, #3 >>> + vshl.u\n TMP1, Y1, #3 >>> + vshl.u\n TMP2, Y2, #3 >>> + vshl.u\n TMP3, Y3, #3 >>> + vsri.u\n TMP0, Y0, #(\n - 3) >>> + vsri.u\n TMP1, Y1, #(\n - 3) >>> + vsri.u\n TMP2, Y2, #(\n - 3) >>> + vsri.u\n TMP3, Y3, #(\n - 3) >>> + >>> + // y ^= x >>> + veor Y0, TMP0, X0 >>> + veor Y1, TMP1, X1 >>> + veor Y2, TMP2, X2 >>> + veor Y3, TMP3, X3 >>> +.endm >>> + >>> +/* >>> + * _speck_unround_128bytes() - Speck decryption round on 128 bytes at a time >>> + * >>> + * This is the inverse of _speck_round_128bytes(). >>> + */ >>> +.macro _speck_unround_128bytes n >>> + >>> + // y ^= x >>> + veor TMP0, Y0, X0 >>> + veor TMP1, Y1, X1 >>> + veor TMP2, Y2, X2 >>> + veor TMP3, Y3, X3 >>> + >>> + // y = ror(y, 3) >>> + vshr.u\n Y0, TMP0, #3 >>> + vshr.u\n Y1, TMP1, #3 >>> + vshr.u\n Y2, TMP2, #3 >>> + vshr.u\n Y3, TMP3, #3 >>> + vsli.u\n Y0, TMP0, #(\n - 3) >>> + vsli.u\n Y1, TMP1, #(\n - 3) >>> + vsli.u\n Y2, TMP2, #(\n - 3) >>> + vsli.u\n Y3, TMP3, #(\n - 3) >>> + >>> + // x ^= k >>> + veor X0, ROUND_KEY >>> + veor X1, ROUND_KEY >>> + veor X2, ROUND_KEY >>> + veor X3, ROUND_KEY >>> + >>> + // x -= y >>> + vsub.u\n X0, Y0 >>> + vsub.u\n X1, Y1 >>> + vsub.u\n X2, Y2 >>> + vsub.u\n X3, Y3 >>> + >>> + // x = rol(x, 8); >>> + vtbl.8 X0_L, {X0_L}, ROTATE_TABLE >>> + vtbl.8 X0_H, {X0_H}, ROTATE_TABLE >>> + vtbl.8 X1_L, {X1_L}, ROTATE_TABLE >>> + vtbl.8 X1_H, {X1_H}, ROTATE_TABLE >>> + vtbl.8 X2_L, {X2_L}, ROTATE_TABLE >>> + vtbl.8 X2_H, {X2_H}, ROTATE_TABLE >>> + vtbl.8 X3_L, {X3_L}, ROTATE_TABLE >>> + vtbl.8 X3_H, {X3_H}, ROTATE_TABLE >>> +.endm >>> + >>> +.macro _xts128_precrypt_one dst_reg, tweak_buf, tmp >>> + >>> + // Load the next source block >>> + vld1.8 {\dst_reg}, [SRC]! >>> + >>> + // Save the current tweak in the tweak buffer >>> + vst1.8 {TWEAKV}, [\tweak_buf:128]! >>> + >>> + // XOR the next source block with the current tweak >>> + veor \dst_reg, TWEAKV >>> + >>> + /* >>> + * Calculate the next tweak by multiplying the current one by x, >>> + * modulo p(x) = x^128 + x^7 + x^2 + x + 1. >>> + */ >>> + vshr.u64 \tmp, TWEAKV, #63 >>> + vshl.u64 TWEAKV, #1 >>> + veor TWEAKV_H, \tmp\()_L >>> + vtbl.8 \tmp\()_H, {GF128MUL_TABLE}, \tmp\()_H >>> + veor TWEAKV_L, \tmp\()_H >>> +.endm >>> + >>> +.macro _xts64_precrypt_two dst_reg, tweak_buf, tmp >>> + >>> + // Load the next two source blocks >>> + vld1.8 {\dst_reg}, [SRC]! >>> + >>> + // Save the current two tweaks in the tweak buffer >>> + vst1.8 {TWEAKV}, [\tweak_buf:128]! >>> + >>> + // XOR the next two source blocks with the current two tweaks >>> + veor \dst_reg, TWEAKV >>> + >>> + /* >>> + * Calculate the next two tweaks by multiplying the current ones by x^2, >>> + * modulo p(x) = x^64 + x^4 + x^3 + x + 1. >>> + */ >>> + vshr.u64 \tmp, TWEAKV, #62 >>> + vshl.u64 TWEAKV, #2 >>> + vtbl.8 \tmp\()_L, {GF64MUL_TABLE}, \tmp\()_L >>> + vtbl.8 \tmp\()_H, {GF64MUL_TABLE}, \tmp\()_H >>> + veor TWEAKV, \tmp >>> +.endm >>> + >>> +/* >>> + * _speck_xts_crypt() - Speck-XTS encryption/decryption >>> + * >>> + * Encrypt or decrypt NBYTES bytes of data from the SRC buffer to the >>> DST buffer >>> + * using Speck-XTS, specifically the variant with a block size of >>> '2n' and round >>> + * count given by NROUNDS. The expanded round keys are given in >>> ROUND_KEYS, and >>> + * the current XTS tweak value is given in TWEAK. It's assumed that >>> NBYTES is a >>> + * nonzero multiple of 128. >>> + */ >>> +.macro _speck_xts_crypt n, decrypting >>> + push {r4-r7} >>> + mov r7, sp >>> + >>> + /* >>> + * The first four parameters were passed in registers r0-r3. Load the >>> + * additional parameters, which were passed on the stack. >>> + */ >>> + ldr NBYTES, [sp, #16] >>> + ldr TWEAK, [sp, #20] >>> + >>> + /* >>> + * If decrypting, modify the ROUND_KEYS parameter to point to the last >>> + * round key rather than the first, since for decryption the round keys >>> + * are used in reverse order. >>> + */ >>> +.if \decrypting >>> +.if \n == 64 >>> + add ROUND_KEYS, ROUND_KEYS, NROUNDS, lsl #3 >>> + sub ROUND_KEYS, #8 >>> +.else >>> + add ROUND_KEYS, ROUND_KEYS, NROUNDS, lsl #2 >>> + sub ROUND_KEYS, #4 >>> +.endif >>> +.endif >>> + >>> + // Load the index vector for vtbl-based 8-bit rotates >>> +.if \decrypting >>> + ldr r12, =.Lrol\n\()_8_table >>> +.else >>> + ldr r12, =.Lror\n\()_8_table >>> +.endif >>> + vld1.8 {ROTATE_TABLE}, [r12:64] >>> + >>> + // One-time XTS preparation >>> + >>> + /* >>> + * Allocate stack space to store 128 bytes worth of tweaks. For >>> + * performance, this space is aligned to a 16-byte boundary so that we >>> + * can use the load/store instructions that declare 16-byte alignment. >>> + */ >>> + sub sp, #128 >>> + bic sp, #0xf >> >> >> This fails here when building with CONFIG_THUMB2_KERNEL=y >> >> AS arch/arm/crypto/speck-neon-core.o >> >> arch/arm/crypto/speck-neon-core.S: Assembler messages: >> >> arch/arm/crypto/speck-neon-core.S:419: Error: r13 not allowed here -- >> `bic sp,#0xf' >> arch/arm/crypto/speck-neon-core.S:423: Error: r13 not allowed here -- >> `bic sp,#0xf' >> arch/arm/crypto/speck-neon-core.S:427: Error: r13 not allowed here -- >> `bic sp,#0xf' >> arch/arm/crypto/speck-neon-core.S:431: Error: r13 not allowed here -- >> `bic sp,#0xf' >> >> In a quick hack this change seems to address it: >> >> >> - sub sp, #128 >> - bic sp, #0xf >> + mov r6, sp >> + sub r6, #128 >> + bic r6, #0xf >> + mov sp, r6 >> >> But there is probably a better solution to address this. >> > > Given that there is no NEON on M class cores, I recommend we put something like > > THUMB(bx pc) > THUMB(nop.w) > THUMB(.arm) > > at the beginning and be done with it. I mean nop.n or just nop, of course, and we may need a '.align 2' at the beginning as well. -- To unsubscribe from this list: send the line "unsubscribe linux-fscrypt" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html