On Wed, 18 Oct 2017 16:36:21 +0200 Miquel Raynal <miquel.raynal@xxxxxxxxxxxxxxxxxx> wrote: > Introduce the new way to control the NAND controller drivers by > implementing the ->exec_op() core helpers and allowing new drivers to > use it instead of relying on ->cmd_ctrl(), ->cmdfunc() and > ->read/write_byte/word/buf(). " Introduce a new interface to instruct NAND controllers to send specific NAND operations. The new interface takes the form of a single method called ->exec_op(). This method is designed to replace ->cmd_ctrl(), ->cmdfunc() and ->read/write_byte/word/buf() hooks. " > > The logic is now to send to the controller driver a list of > instructions. " ->exec_op() is passed a set of instructions describing the operation to execute. Each instruction has a type (ADDR, CMD, CYCLE, WAITRDY) and delay. The type is directly matching the description of NAND commands in various NAND datasheet and standards (ONFI, JEDEC), the delay is here to help simple controllers wait enough time between each instruction. Advanced controllers with integrated timings control can ignore these delays. " > The driver shall use the parser added by this commit to > get the matching hook if any. That's true only for advanced controllers. For those who are executing each instruction individually (like the gpio-nand driver, or any old style driver where each ADDR/CMD/DATA cycle is controlled independently) this is not needed, and who add extra complexity for no real gain. > The instructions may be split by the > parser in order to comply with the controller constraints filled in an > array of supported patterns. Given only this description it's hard to tell what this parser is and why it's needed. I think a real example who be helpful to better understand what this is. > > Various helpers are also added to ease NAND controller drivers writing. > > This new interface should really ease the support of new vendor specific > instructions. Actually, it's more than easing support for vendor specific operations, it allows the core to check whether the NAND controller will be able to execute a specific operation or not, which before that was impossible. It doesn't mean all controllers will magically support all kind of NAND operations, but at least we'll know when it doesn't. > > Suggested-by: Boris Brezillon <boris.brezillon@xxxxxxxxxxxxxxxxxx> > Signed-off-by: Miquel Raynal <miquel.raynal@xxxxxxxxxxxxxxxxxx> > --- > drivers/mtd/nand/denali.c | 93 +++- > drivers/mtd/nand/nand_base.c | 949 +++++++++++++++++++++++++++++++++++++++-- > drivers/mtd/nand/nand_hynix.c | 91 +++- > drivers/mtd/nand/nand_micron.c | 32 +- > include/linux/mtd/rawnand.h | 366 +++++++++++++++- > 5 files changed, 1448 insertions(+), 83 deletions(-) > > diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c > index e5f38359f6df..8f0f18d9d9cf 100644 > --- a/drivers/mtd/nand/denali.c > +++ b/drivers/mtd/nand/denali.c > @@ -652,8 +652,6 @@ static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip, > int page, int write) > { > struct denali_nand_info *denali = mtd_to_denali(mtd); > - unsigned int start_cmd = write ? NAND_CMD_SEQIN : NAND_CMD_READ0; > - unsigned int rnd_cmd = write ? NAND_CMD_RNDIN : NAND_CMD_RNDOUT; > int writesize = mtd->writesize; > int oobsize = mtd->oobsize; > uint8_t *bufpoi = chip->oob_poi; > @@ -665,11 +663,22 @@ static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip, > int i, pos, len; > > /* BBM at the beginning of the OOB area */ > - chip->cmdfunc(mtd, start_cmd, writesize, page); > - if (write) > - chip->write_buf(mtd, bufpoi, oob_skip); > - else > - chip->read_buf(mtd, bufpoi, oob_skip); > + if (chip->exec_op) { > + if (write) > + nand_prog_page_begin_op(chip, page, writesize, bufpoi, > + oob_skip); > + else > + nand_read_page_op(chip, page, writesize, bufpoi, > + oob_skip); > + } else { > + if (write) { > + chip->cmdfunc(mtd, NAND_CMD_SEQIN, writesize, page); > + chip->write_buf(mtd, bufpoi, oob_skip); > + } else { > + chip->cmdfunc(mtd, NAND_CMD_READ0, writesize, page); > + chip->read_buf(mtd, bufpoi, oob_skip); > + } > + } Why do we have to keep the ->cmdfunc() logic? nand_prog_page_xxx() already abstracts this for us, right? > bufpoi += oob_skip; > > /* OOB ECC */ > @@ -682,30 +691,67 @@ static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip, > else if (pos + len > writesize) > len = writesize - pos; > > - chip->cmdfunc(mtd, rnd_cmd, pos, -1); > - if (write) > - chip->write_buf(mtd, bufpoi, len); > - else > - chip->read_buf(mtd, bufpoi, len); > - bufpoi += len; > - if (len < ecc_bytes) { > - len = ecc_bytes - len; > - chip->cmdfunc(mtd, rnd_cmd, writesize + oob_skip, -1); > + if (chip->exec_op) { > if (write) > - chip->write_buf(mtd, bufpoi, len); > + nand_change_write_column_op( > + chip, pos, bufpoi, len, false); Nitpick, but can you try to align things like that: nand_change_write_column_op(chip, pos, bufpoi, len, false); > else > + nand_change_read_column_op( > + chip, pos, bufpoi, len, false); Ditto. > + } else { > + if (write) { > + chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1); > + chip->write_buf(mtd, bufpoi, len); > + } else { > + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1); > chip->read_buf(mtd, bufpoi, len); > + } > + } Smae here: I don't think we need to support both ->cmdfunc() and nand_change_read/write_column(). > + bufpoi += len; > + if (len < ecc_bytes) { > + len = ecc_bytes - len; > + if (chip->exec_op) { > + if (write) > + nand_change_write_column_op( > + chip, writesize + oob_skip, > + bufpoi, len, false); > + else > + nand_change_read_column_op( > + chip, writesize + oob_skip, > + bufpoi, len, false); > + } else { > + if (write) { > + chip->cmdfunc(mtd, NAND_CMD_RNDIN, > + writesize + oob_skip, -1); > + chip->write_buf(mtd, bufpoi, len); > + } else { > + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, > + writesize + oob_skip, -1); > + chip->read_buf(mtd, bufpoi, len); > + } > + . Ditto. > bufpoi += len; > } > } > > /* OOB free */ > len = oobsize - (bufpoi - chip->oob_poi); > - chip->cmdfunc(mtd, rnd_cmd, size - len, -1); > - if (write) > - chip->write_buf(mtd, bufpoi, len); > - else > - chip->read_buf(mtd, bufpoi, len); > + if (chip->exec_op) { > + if (write) > + nand_change_write_column_op(chip, size - len, bufpoi, > + len, false); > + else > + nand_change_read_column_op(chip, size - len, bufpoi, > + len, false); > + } else { > + if (write) { > + chip->cmdfunc(mtd, NAND_CMD_RNDIN, size - len, -1); > + chip->write_buf(mtd, bufpoi, len); > + } else { > + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, size - len, -1); > + chip->read_buf(mtd, bufpoi, len); > + } > + } > } > > static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, > @@ -803,6 +849,9 @@ static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, > > denali_oob_xfer(mtd, chip, page, 1); > > + if (chip->exec_op) > + return nand_prog_page_end_op(chip); > + > chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); > status = chip->waitfunc(mtd, chip); All denali changes in this patch should actually be moved to patch 1. > > diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c > index bef20e06f0db..737f19bd2f83 100644 > --- a/drivers/mtd/nand/nand_base.c > +++ b/drivers/mtd/nand/nand_base.c > @@ -814,7 +814,7 @@ static void nand_ccs_delay(struct nand_chip *chip) > * Wait tCCS_min if it is correctly defined, otherwise wait 500ns > * (which should be safe for all NANDs). > */ > - if (chip->data_interface.timings.sdr.tCCS_min) > + if (&chip->data_interface.timings.sdr.tCCS_min) This condition is always true. I think this should be replaced by: if (chip->setup_data_interface) And BTW, it should go in patch 3. > ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000); > else > ndelay(500); > @@ -1233,6 +1233,118 @@ static int nand_init_data_interface(struct nand_chip *chip) > } > > /** > + * nand_fill_column_cycles - fill the column fields on an address array > + * @chip: The NAND chip > + * @addrs: Array of address cycles to fill > + * @offset_in_page: The offset in the page > + * > + * Fills the first or the two first bytes of the @addrs field depending > + * on the NAND bus width and the page size. > + */ > +int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, > + unsigned int offset_in_page) > +{ > + struct mtd_info *mtd = nand_to_mtd(chip); > + > + /* > + * The offset in page is expressed in bytes, if the NAND bus is 16-bit > + * wide, then it must be divided by 2. > + */ > + if (chip->options & NAND_BUSWIDTH_16) { > + if (offset_in_page % 2) { > + WARN_ON(true); > + return -EINVAL; > + } > + > + offset_in_page /= 2; > + } > + > + addrs[0] = offset_in_page; > + > + /* Small pages use 1 cycle for the columns, while large page need 2 */ > + if (mtd->writesize <= 512) > + return 1; > + > + addrs[1] = offset_in_page >> 8; > + > + return 2; > +} > +EXPORT_SYMBOL_GPL(nand_fill_column_cycles); > + > +static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, > + unsigned int offset_in_page, void *buf, > + unsigned int len) > +{ > + struct mtd_info *mtd = nand_to_mtd(chip); > + const struct nand_sdr_timings *sdr = > + nand_get_sdr_timings(&chip->data_interface); > + u8 addrs[4]; > + struct nand_op_instr instrs[] = { > + NAND_OP_CMD(NAND_CMD_READ0, 0), > + NAND_OP_ADDR(3, addrs, sdr->tWB_max), > + NAND_OP_WAIT_RDY(sdr->tR_max, sdr->tRR_min), > + NAND_OP_DATA_IN(len, buf, 0), > + }; > + struct nand_operation op = NAND_OPERATION(instrs); > + > + /* Drop the DATA_OUT instruction if len is set to 0. */ > + if (!len) > + op.ninstrs--; > + > + if (offset_in_page >= mtd->writesize) > + instrs[0].cmd.opcode = NAND_CMD_READOOB; > + else if (offset_in_page >= 256) > + instrs[0].cmd.opcode = NAND_CMD_READ1; > + > + if (nand_fill_column_cycles(chip, addrs, offset_in_page) < 0) Why not returning the retcode of nand_fill_column_cycles() directly? ret = nand_fill_column_cycles(chip, addrs, offset_in_page) if (ret < 0) return ret; > + return -EINVAL; > + > + addrs[1] = page; > + addrs[2] = page >> 8; > + > + if (chip->options & NAND_ROW_ADDR_3) { > + addrs[3] = page >> 16; > + instrs[1].addr.naddrs++; > + } > + > + return nand_exec_op(chip, &op); > +} > + > +static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, > + unsigned int offset_in_page, void *buf, > + unsigned int len) > +{ > + const struct nand_sdr_timings *sdr = > + nand_get_sdr_timings(&chip->data_interface); > + u8 addrs[5]; > + struct nand_op_instr instrs[] = { > + NAND_OP_CMD(NAND_CMD_READ0, 0), > + NAND_OP_ADDR(4, addrs, 0), > + NAND_OP_CMD(NAND_CMD_READSTART, sdr->tWB_max), > + NAND_OP_WAIT_RDY(sdr->tR_max, sdr->tRR_min), > + NAND_OP_DATA_IN(len, buf, 0), > + }; > + struct nand_operation op = NAND_OPERATION(instrs); > + > + /* Drop the DATA_IN instruction if len is set to 0. */ > + if (!len) > + op.ninstrs--; > + > + if (nand_fill_column_cycles(chip, addrs, offset_in_page)) Should be if (nand_fill_column_cycles(chip, addrs, offset_in_page) < 0) > + return -EINVAL; > + > + addrs[2] = page; > + addrs[3] = page >> 8; > + > + if (chip->options & NAND_ROW_ADDR_3) { > + addrs[4] = page >> 16; > + instrs[1].addr.naddrs++; > + } > + > + return nand_exec_op(chip, &op); > +} > + > +/** > * nand_read_page_op - Do a READ PAGE operation > * @chip: The NAND chip > * @page: page to read > @@ -1246,17 +1358,26 @@ static int nand_init_data_interface(struct nand_chip *chip) > * Returns 0 for success or negative error code otherwise > */ > int nand_read_page_op(struct nand_chip *chip, unsigned int page, > - unsigned int column, void *buf, unsigned int len) > + unsigned int offset_in_page, void *buf, unsigned int len) You should change the parameter name in patch 1 since this function is introduced there. > { > struct mtd_info *mtd = nand_to_mtd(chip); > > if (len && !buf) > return -EINVAL; > > - if (column + len > mtd->writesize + mtd->oobsize) > + if (offset_in_page + len > mtd->writesize + mtd->oobsize) > return -EINVAL; > > - chip->cmdfunc(mtd, NAND_CMD_READ0, column, page); > + if (chip->exec_op) { > + if (mtd->writesize > 512) > + return nand_lp_exec_read_page_op( > + chip, page, offset_in_page, buf, len); > + > + return nand_sp_exec_read_page_op(chip, page, offset_in_page, > + buf, len); > + } > + > + chip->cmdfunc(mtd, NAND_CMD_READ0, offset_in_page, page); > if (len) > chip->read_buf(mtd, buf, len); > > @@ -1286,6 +1407,25 @@ static int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, > if (len && !buf) > return -EINVAL; > > + if (chip->exec_op) { > + const struct nand_sdr_timings *sdr = > + nand_get_sdr_timings(&chip->data_interface); > + struct nand_op_instr instrs[] = { > + NAND_OP_CMD(NAND_CMD_PARAM, 0), > + NAND_OP_ADDR(1, &page, sdr->tWB_max), > + NAND_OP_WAIT_RDY(sdr->tR_max, sdr->tRR_min), > + NAND_OP_8BIT_DATA_IN(len, buf, 0), > + }; > + struct nand_operation op = > + NAND_OPERATION(instrs); > + > + /* Drop the DATA_IN instruction if len is set to 0. */ > + if (!len) > + op.ninstrs--; > + > + return nand_exec_op(chip, &op); > + } > + > chip->cmdfunc(mtd, NAND_CMD_PARAM, page, -1); > for (i = 0; i < len; i++) > p[i] = chip->read_byte(mtd); [...] > + > /** > * nand_prog_page_begin_op - starts a PROG PAGE operation > * @chip: The NAND chip > @@ -1371,7 +1608,7 @@ EXPORT_SYMBOL_GPL(nand_read_oob_op); > * Returns 0 for success or negative error code otherwise > */ > int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, > - unsigned int column, const void *buf, > + unsigned int offset_in_page, const void *buf, > unsigned int len) > { > struct mtd_info *mtd = nand_to_mtd(chip); > @@ -1379,10 +1616,14 @@ int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, > if (len && !buf) > return -EINVAL; > > - if (column + len > mtd->writesize + mtd->oobsize) > + if (offset_in_page + len > mtd->writesize + mtd->oobsize) > return -EINVAL; > > - chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page); > + if (chip->exec_op) > + return nand_exec_prog_page_op( > + chip, page, offset_in_page, buf, len, false); Param alignment please. > + > + chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page); > > if (buf) > chip->write_buf(mtd, buf, len); > @@ -1405,6 +1646,19 @@ int nand_prog_page_end_op(struct nand_chip *chip) > struct mtd_info *mtd = nand_to_mtd(chip); > int status; > > + if (chip->exec_op) { > + const struct nand_sdr_timings *sdr = > + nand_get_sdr_timings(&chip->data_interface); > + struct nand_op_instr instrs[] = { > + NAND_OP_CMD(NAND_CMD_PAGEPROG, sdr->tWB_max), > + NAND_OP_WAIT_RDY(sdr->tPROG_max, 0), > + }; > + struct nand_operation op = > + NAND_OPERATION(instrs); > + > + return nand_exec_op(chip, &op); > + } > + > chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); > > status = chip->waitfunc(mtd, chip); > @@ -1429,7 +1683,8 @@ EXPORT_SYMBOL_GPL(nand_prog_page_end_op); > * Returns 0 for success or negative error code otherwise > */ > int nand_prog_page_op(struct nand_chip *chip, unsigned int page, > - unsigned int column, const void *buf, unsigned int len) > + unsigned int offset_in_page, const void *buf, > + unsigned int len) > { > struct mtd_info *mtd = nand_to_mtd(chip); > int status; > @@ -1437,10 +1692,14 @@ int nand_prog_page_op(struct nand_chip *chip, unsigned int page, > if (!len || !buf) > return -EINVAL; > > - if (column + len > mtd->writesize + mtd->oobsize) > + if (offset_in_page + len > mtd->writesize + mtd->oobsize) > return -EINVAL; > > - chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page); > + if (chip->exec_op) > + return nand_exec_prog_page_op( > + chip, page, offset_in_page, buf, len, true); > + > + chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page); > chip->write_buf(mtd, buf, len); > chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); > > @@ -1465,7 +1724,8 @@ EXPORT_SYMBOL_GPL(nand_prog_page_op); > * > * Returns 0 for success or negative error code otherwise > */ > -int nand_change_write_column_op(struct nand_chip *chip, unsigned int column, > +int nand_change_write_column_op(struct nand_chip *chip, > + unsigned int offset_in_page, > const void *buf, unsigned int len, > bool force_8bit) > { > @@ -1474,10 +1734,38 @@ int nand_change_write_column_op(struct nand_chip *chip, unsigned int column, > if (len && !buf) > return -EINVAL; > > - if (column + len > mtd->writesize + mtd->oobsize) > + if (offset_in_page + len > mtd->writesize + mtd->oobsize) > return -EINVAL; > > - chip->cmdfunc(mtd, NAND_CMD_RNDIN, column, -1); > + /* Small page NANDs do not support column change. */ > + if (mtd->writesize <= 512) > + return -ENOTSUPP; > + > + if (chip->exec_op) { > + const struct nand_sdr_timings *sdr = > + nand_get_sdr_timings(&chip->data_interface); > + u8 addrs[2]; > + struct nand_op_instr instrs[] = { > + NAND_OP_CMD(NAND_CMD_RNDIN, 0), > + NAND_OP_ADDR(2, addrs, sdr->tCCS_min), > + NAND_OP_DATA_OUT(len, buf, 0), > + }; > + struct nand_operation op = > + NAND_OPERATION(instrs); > + > + if (nand_fill_column_cycles(chip, addrs, offset_in_page) < 0) > + return -EINVAL; > + > + instrs[2].data.force_8bit = force_8bit; > + > + /* Drop the DATA_OUT instruction if len is set to 0. */ > + if (!len) > + op.ninstrs--; > + > + return nand_exec_op(chip, &op); > + } > + > + chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset_in_page, -1); > if (len) > chip->write_buf(mtd, buf, len); > > @@ -1508,6 +1796,24 @@ int nand_readid_op(struct nand_chip *chip, u8 addr, > if (!len || !buf) > return -EINVAL; > > + if (chip->exec_op) { > + const struct nand_sdr_timings *sdr = > + nand_get_sdr_timings(&chip->data_interface); > + struct nand_op_instr instrs[] = { > + NAND_OP_CMD(NAND_CMD_READID, 0), > + NAND_OP_ADDR(1, &addr, sdr->tADL_min), > + NAND_OP_8BIT_DATA_IN(len, buf, 0), > + }; > + struct nand_operation op = > + NAND_OPERATION(instrs); > + > + /* Drop the DATA_IN instruction if len is set to 0. */ > + if (!len) > + op.ninstrs--; > + > + return nand_exec_op(chip, &op); > + } > + > chip->cmdfunc(mtd, NAND_CMD_READID, addr, -1); > > for (i = 0; i < len; i++) > @@ -1532,6 +1838,22 @@ int nand_status_op(struct nand_chip *chip, u8 *status) > { > struct mtd_info *mtd = nand_to_mtd(chip); > > + if (chip->exec_op) { > + const struct nand_sdr_timings *sdr = > + nand_get_sdr_timings(&chip->data_interface); > + struct nand_op_instr instrs[] = { > + NAND_OP_CMD(NAND_CMD_STATUS, sdr->tADL_min), > + NAND_OP_8BIT_DATA_IN(1, status, 0), > + }; > + struct nand_operation op = > + NAND_OPERATION(instrs); > + > + if (!status) > + op.ninstrs--; > + > + return nand_exec_op(chip, &op); > + } > + > chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); > if (status) > *status = chip->read_byte(mtd); > @@ -1558,6 +1880,25 @@ int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) > (chip->phys_erase_shift - chip->page_shift); > int status; > > + if (chip->exec_op) { > + const struct nand_sdr_timings *sdr = > + nand_get_sdr_timings(&chip->data_interface); > + u8 addrs[3] = { page, page >> 8, page >> 16 }; > + struct nand_op_instr instrs[] = { > + NAND_OP_CMD(NAND_CMD_ERASE1, 0), > + NAND_OP_ADDR(2, addrs, 0), > + NAND_OP_CMD(NAND_CMD_ERASE2, sdr->tWB_max), > + NAND_OP_WAIT_RDY(sdr->tBERS_max, 0), > + }; > + struct nand_operation op = > + NAND_OPERATION(instrs); > + > + if (chip->options & NAND_ROW_ADDR_3) > + instrs[1].addr.naddrs++; > + > + return nand_exec_op(chip, &op); > + } > + > chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); > chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); > > @@ -1591,6 +1932,22 @@ static int nand_set_features_op(struct nand_chip *chip, u8 feature, > const u8 *params = data; > int i, status; > > + if (chip->exec_op) { > + const struct nand_sdr_timings *sdr = > + nand_get_sdr_timings(&chip->data_interface); > + struct nand_op_instr instrs[] = { > + NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), > + NAND_OP_ADDR(1, &feature, sdr->tADL_min), > + NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, > + sdr->tWB_max), > + NAND_OP_WAIT_RDY(sdr->tFEAT_max, 0), > + }; > + struct nand_operation op = > + NAND_OPERATION(instrs); > + > + return nand_exec_op(chip, &op); > + } > + > chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, feature, -1); > for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) > chip->write_byte(mtd, params[i]); > @@ -1621,6 +1978,22 @@ static int nand_get_features_op(struct nand_chip *chip, u8 feature, > u8 *params = data; > int i; > > + if (chip->exec_op) { > + const struct nand_sdr_timings *sdr = > + nand_get_sdr_timings(&chip->data_interface); > + struct nand_op_instr instrs[] = { > + NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), > + NAND_OP_ADDR(1, &feature, sdr->tWB_max), > + NAND_OP_WAIT_RDY(sdr->tFEAT_max, sdr->tRR_min), > + NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, > + data, 0), > + }; > + struct nand_operation op = > + NAND_OPERATION(instrs); > + > + return nand_exec_op(chip, &op); > + } > + > chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, feature, -1); > for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) > params[i] = chip->read_byte(mtd); > @@ -1642,6 +2015,19 @@ int nand_reset_op(struct nand_chip *chip) > { > struct mtd_info *mtd = nand_to_mtd(chip); > > + if (chip->exec_op) { > + const struct nand_sdr_timings *sdr = > + nand_get_sdr_timings(&chip->data_interface); > + struct nand_op_instr instrs[] = { > + NAND_OP_CMD(NAND_CMD_RESET, sdr->tWB_max), > + NAND_OP_WAIT_RDY(sdr->tRST_max, 0), > + }; > + struct nand_operation op = > + NAND_OPERATION(instrs); > + > + return nand_exec_op(chip, &op); > + } > + > chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); > > return 0; > @@ -1669,6 +2055,18 @@ int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, > if (!len || !buf) > return -EINVAL; > > + if (chip->exec_op) { > + struct nand_op_instr instrs[] = { > + NAND_OP_DATA_IN(len, buf, 0), > + }; > + struct nand_operation op = > + NAND_OPERATION(instrs); > + > + instrs[0].data.force_8bit = force_8bit; > + > + return nand_exec_op(chip, &op); > + } > + > if (force_8bit) { > u8 *p = buf; > unsigned int i; > @@ -1704,6 +2102,18 @@ int nand_write_data_op(struct nand_chip *chip, const void *buf, > if (!len || !buf) > return -EINVAL; > > + if (chip->exec_op) { > + struct nand_op_instr instrs[] = { > + NAND_OP_DATA_OUT(len, buf, 0), > + }; > + struct nand_operation op = > + NAND_OPERATION(instrs); > + > + instrs[0].data.force_8bit = force_8bit; > + > + return nand_exec_op(chip, &op); > + } > + > if (force_8bit) { > const u8 *p = buf; > unsigned int i; > @@ -1719,6 +2129,471 @@ int nand_write_data_op(struct nand_chip *chip, const void *buf, > EXPORT_SYMBOL_GPL(nand_write_data_op); > > /** > + * struct nand_op_parser_ctx - Context used by the parser > + * @instrs: array of all the instructions that must be addressed > + * @ninstrs: length of the @instrs array > + * @instr_idx: index of the instruction in the @instrs array that matches the > + * first instruction of the subop structure > + * @instr_start_off: offset at which the first instruction of the subop > + * structure must start if it is and address or a data > + * instruction > + * > + * This structure is used by the core to handle splitting lengthy instructions > + * into sub-operations. > + */ > +struct nand_op_parser_ctx { > + const struct nand_op_instr *instrs; > + unsigned int ninstrs; > + unsigned int instr_idx; > + unsigned int instr_start_off; > + struct nand_subop subop; > +}; > + > +/** > + * nand_op_parser_must_split_instr - Checks if an instruction must be split > + * @pat: the parser pattern that match > + * @instr: the instruction array to check > + * @start_offset: the offset from which to start in the first instruction of the > + * @instr array > + * > + * Some NAND controllers are limited and cannot send X address cycles with a > + * unique operation, or cannot read/write more than Y bytes at the same time. > + * In this case, reduce the scope of this set of operation, and trigger another > + * instruction with the rest. " In this case, split the instruction that does not fit in a single controller-operation into two or more chunks. " > + * > + * Returns true if the array of instruction must be split, false otherwise. s/array of// > + * The @start_offset parameter is also updated to the offset at which the first > + * instruction of the next bundle of instruction must start (if an address or a " The @start_offset parameter is also updated to the offset at which the the next bundle of instructions must start ... " > + * data instruction). > + */ > +static bool > +nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, > + const struct nand_op_instr *instr, > + unsigned int *start_offset) > +{ > + switch (pat->type) { > + case NAND_OP_ADDR_INSTR: > + if (!pat->addr.maxcycles) > + break; > + > + if (instr->addr.naddrs - *start_offset > pat->addr.maxcycles) { > + *start_offset += pat->addr.maxcycles; > + return true; > + } > + break; > + > + case NAND_OP_DATA_IN_INSTR: > + case NAND_OP_DATA_OUT_INSTR: > + if (!pat->data.maxlen) > + break; > + > + if (instr->data.len - *start_offset > pat->data.maxlen) { > + *start_offset += pat->data.maxlen; > + return true; > + } > + break; > + > + default: > + break; > + } > + > + return false; > +} > + > +/** > + * nand_op_parser_match_pat - Checks a pattern > + * @pat: the parser pattern to check if it matches > + * @ctx: the context structure to match with the pattern @pat > + * > + * Check if *one* given pattern matches the given sequence of instructions > + */ > +static bool > +nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, > + struct nand_op_parser_ctx *ctx) > +{ > + unsigned int i, j, boundary_off = ctx->instr_start_off; > + > + ctx->subop.ninstrs = 0; > + > + for (i = ctx->instr_idx, j = 0; i < ctx->ninstrs && j < pat->nelems;) { > + const struct nand_op_instr *instr = &ctx->instrs[i]; > + > + /* > + * The pattern instruction does not match the operation > + * instruction. If the instruction is marked optional in the > + * pattern definition, we skip the pattern element and continue > + * to the next one. If the element is mandatory, there's no > + * match and we can return false directly. > + */ > + if (instr->type != pat->elems[j].type) { > + if (!pat->elems[j].optional) > + return false; > + > + j++; > + continue; > + } > + > + /* > + * Now check the pattern element constraints. If the pattern is > + * not able to handle the whole instruction in a single step, > + * we'll have to break it down into several instructions. > + * The *boudary_off value comes back updated to point to the > + * limit between the split instruction (the end of the original > + * chunk, the start of new next one). > + */ > + if (nand_op_parser_must_split_instr(&pat->elems[j], instr, > + &boundary_off)) { > + ctx->subop.ninstrs++; > + j++; > + break; > + } > + > + ctx->subop.ninstrs++; > + i++; > + j++; > + boundary_off = 0; > + } > + > + /* > + * This can happen if all instructions of a pattern are optional. > + * Still, if there's not at least one instruction handled by this > + * pattern, this is not a match, and we should try the next one (if > + * any). > + */ > + if (!ctx->subop.ninstrs) > + return false; > + > + /* > + * We had a match on the pattern head, but the pattern may be longer > + * than the instructions we're asked to execute. We need to make sure > + * there's no mandatory elements in the pattern tail. > + * > + * The case where all the operations of a pattern have been checked but > + * the number of instructions is bigger is handled right after this by > + * returning true on the pattern match, which will order the execution > + * of the subset of instructions later defined, while updating the > + * context ids to the next chunk of instructions. > + */ > + for (; j < pat->nelems; j++) { > + if (!pat->elems[j].optional) > + return false; > + } > + > + /* > + * We have a match: update the ctx and return true. The subop structure > + * will be used by the pattern's ->exec() function. > + */ > + ctx->subop.instrs = &ctx->instrs[ctx->instr_idx]; > + ctx->subop.first_instr_start_off = ctx->instr_start_off; > + ctx->subop.last_instr_end_off = boundary_off; > + > + /* > + * Update the pointers so the calling function will be able to recall > + * this one with a new subset of instructions. > + * > + * In the case where the last operation of this set is split, point to > + * the last unfinished job, knowing the starting offset. > + */ > + ctx->instr_idx = i; > + ctx->instr_start_off = boundary_off; > + > + return true; > +} > + > +#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) > +static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx, > + bool success) > +{ > + const struct nand_op_instr *instr; > + bool in_subop = false; > + char *is_in = " ->", *is_out = " ", *prefix; > + char *buf; > + unsigned int len, off = 0; > + int i, j; > + > + if (success) > + pr_debug("executing subop:\n"); > + else > + pr_debug("pattern not found:\n"); > + > + for (i = 0; i < ctx->ninstrs; i++) { > + instr = &ctx->instrs[i]; > + > + /* > + * ctx->instr_idx is not reliable because it may already had have > + * been updated by the parser. Use pointers comparison instead. > + */ > + if (instr == &ctx->subop.instrs[0]) > + in_subop = true; It seems in_subop is only used to select the prefix, so you can just get rid of it and do if (instr == &ctx->subop.instrs[0]) prefix = " ->"; BTW, if success is false, you should not even try to change the prefix, right? > + > + if (in_subop) > + prefix = is_in; > + else > + prefix = is_out; > + > + switch (instr->type) { > + case NAND_OP_CMD_INSTR: > + pr_debug("%sCMD [0x%02x]\n", prefix, > + instr->cmd.opcode); > + break; > + case NAND_OP_ADDR_INSTR: > + /* > + * A log line is much less than 50 bytes, plus 5 bytes > + * per address cycle to display. > + */ > + len = 50 + 5 * instr->addr.naddrs; > + buf = kmalloc(len, GFP_KERNEL); > + if (!buf) > + return; > + memset(buf, 0, len); > + off += snprintf(buf, len, "ADDR [%d cyc:", > + instr->addr.naddrs); > + for (j = 0; j < instr->addr.naddrs; j++) > + off += snprintf(&buf[off], len - off, " 0x%02x", > + instr->addr.addrs[j]); > + pr_debug("%s%s]\n", prefix, buf); > + break; > + case NAND_OP_DATA_IN_INSTR: > + pr_debug("%sDATA_IN [%d B%s]\n", prefix, > + instr->data.len, > + instr->data.force_8bit ? ", force 8-bit" : ""); > + break; > + case NAND_OP_DATA_OUT_INSTR: > + pr_debug("%sDATA_OUT [%d B%s]\n", prefix, > + instr->data.len, > + instr->data.force_8bit ? ", force 8-bit" : ""); > + break; > + case NAND_OP_WAITRDY_INSTR: > + pr_debug("%sWAITRDY [max %d ms]\n", prefix, > + instr->waitrdy.timeout_ms); > + break; > + } > + > + if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) > + in_subop = false; if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) prefix = " "; and initialize prefix to " " at the beginning of the function. > + } > +} > +#else > +static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx, > + bool success) > +{ > + /* NOP */ > +} > +#endif > + > +/** > + * nand_op_parser_exec_op - exec_op parser > + * @chip: the NAND chip > + * @parser: the parser to use given by the controller driver > + * @op: the NAND operation to address > + * @check_only: flag asking if the entire operation could be handled > + * > + * Function that must be called by each driver that implement the "exec_op API" > + * in their own ->exec_op() implementation. > + * > + * The function iterates on all the instructions asked and make use of internal > + * parsers to find matches between the instruction list and the handled patterns > + * filled by the controller drivers inside the @parser structure. If needed, the > + * instructions could be split into sub-operations and be executed sequentially. > + */ > +int nand_op_parser_exec_op(struct nand_chip *chip, > + const struct nand_op_parser *parser, > + const struct nand_operation *op, bool check_only) > +{ > + struct nand_op_parser_ctx ctx = { > + .instrs = op->instrs, > + .ninstrs = op->ninstrs, > + }; > + unsigned int i; > + > + while (ctx.instr_idx < op->ninstrs) { > + bool pattern_found = false; > + int ret; > + > + for (i = 0; i < parser->npatterns; i++) { > + const struct nand_op_parser_pattern *pattern; > + > + pattern = &parser->patterns[i]; > + if (!nand_op_parser_match_pat(pattern, &ctx)) > + continue; > + > + nand_op_parser_trace(&ctx, true); > + pattern_found should be set to true here. But I'm not even sure you really need this variable. > + if (check_only) > + break; > + > + ret = pattern->exec(chip, &ctx.subop); > + if (ret) > + return ret; > + > + pattern_found = true; > + } > + > + if (!pattern_found) { Just test if (i == parser->npatterns) { and you should be good. > + nand_op_parser_trace(&ctx, false); > + return -ENOTSUPP; > + } > + } > + > + return 0; > +} > +EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); > + > +static bool nand_instr_is_data(const struct nand_op_instr *instr) > +{ > + return instr && (instr->type == NAND_OP_DATA_IN_INSTR || > + instr->type == NAND_OP_DATA_OUT_INSTR); > +} > + > +static bool nand_subop_instr_is_valid(const struct nand_subop *subop, > + unsigned int op_id) s/op_id/instr_idx/ > +{ > + return subop && op_id < subop->ninstrs; > +} > + > +static int nand_subop_get_start_off(const struct nand_subop *subop, > + unsigned int op_id) Ditto. > +{ > + if (op_id) > + return 0; > + > + return subop->first_instr_start_off; > +} > + > +/** > + * nand_subop_get_addr_start_off - Get the start offset in an address array > + * @subop: The entire sub-operation > + * @op_id: Index of the instruction inside the sub-operation instr_idx. > + * > + * Instructions arrays may be split by the parser between instructions, > + * and also in the middle of an address instruction if the number of cycles > + * to assert in one operation is not supported by the controller. > + * > + * For this, instead of using the first index of the ->addr.addrs field from the > + * address instruction, the NAND controller driver must use this helper that > + * will either return 0 if the index does not point to the first instruction of > + * the sub-operation, or the offset of the next starting offset inside the > + * address cycles. I think you can drop this paragraph which IMO brings more confusion to what this function does. > + * > + * Returns the offset of the first address cycle to assert from the pointed > + * address instruction. This part is definitely clearer. > + */ > +int nand_subop_get_addr_start_off(const struct nand_subop *subop, > + unsigned int op_id) > +{ > + if (!nand_subop_instr_is_valid(subop, op_id) || > + subop->instrs[op_id].type != NAND_OP_ADDR_INSTR) > + return -EINVAL; > + > + return nand_subop_get_start_off(subop, op_id); > +} > +EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); > + > +/** > + * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert > + * @subop: The entire sub-operation > + * @op_id: Index of the instruction inside the sub-operation instr_idx > + * > + * Instructions arrays may be split by the parser between instructions, > + * and also in the middle of an address instruction if the number of cycles > + * to assert in one operation is not supported by the controller. > + * > + * For this, instead of using the ->addr.naddrs fields of the address > + * instruction, the NAND controller driver must use this helper that will > + * return the actual number of cycles to assert between the first and last > + * offset asked for this particular instruction. > + * > + * Returns the number of address cycles to assert from the pointed address > + * instruction. > + */ > +int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, > + unsigned int op_id) > +{ > + int start_off, end_off; > + > + if (!nand_subop_instr_is_valid(subop, op_id) || > + subop->instrs[op_id].type != NAND_OP_ADDR_INSTR) > + return -EINVAL; > + > + start_off = nand_subop_get_addr_start_off(subop, op_id); > + > + if (op_id == subop->ninstrs - 1 && > + subop->last_instr_end_off) > + end_off = subop->last_instr_end_off; > + else > + end_off = subop->instrs[op_id].addr.naddrs; > + > + return end_off - start_off; > +} > +EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); > + > +/** > + * nand_subop_get_data_start_off - Get the start offset in a data array > + * @subop: The entire sub-operation > + * @op_id: Index of the instruction inside the sub-operation > + * > + * Instructions arrays may be split by the parser between instructions, > + * and also in the middle of a data instruction if the number of bytes to access > + * in one operation is greater that the controller limit. > + * > + * For this, instead of using the first index of the ->data.buf field from the > + * data instruction, the NAND controller driver must use this helper that > + * will either return 0 if the index does not point to the first instruction of > + * the sub-operation, or the offset of the next starting offset inside the > + * data buffer. Same as for nand_subop_get_addr_start_off(), the explanation is confusing. I think we can drop it. > + * > + * Returns the data offset inside the pointed data instruction buffer from which > + * to start. > + */ > +int nand_subop_get_data_start_off(const struct nand_subop *subop, > + unsigned int op_id) > +{ > + if (!nand_subop_instr_is_valid(subop, op_id) || > + !nand_instr_is_data(&subop->instrs[op_id])) > + return -EINVAL; > + > + return nand_subop_get_start_off(subop, op_id); > +} > +EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); > + > +/** > + * nand_subop_get_data_len - Get the number of bytes to retrieve > + * @subop: The entire sub-operation > + * @op_id: Index of the instruction inside the sub-operation > + * > + * Instructions arrays may be split by the parser between instructions, > + * and also in the middle of a data instruction if the number of bytes to access > + * in one operation is greater that the controller limit. > + * > + * For this, instead of using the ->data.len field from the data instruction, > + * the NAND controller driver must use this helper that will return the actual > + * length of data to move between the first and last offset asked for this > + * particular instruction. > + * > + * Returns the length of the data to move from the pointed data instruction. > + */ > +int nand_subop_get_data_len(const struct nand_subop *subop, > + unsigned int op_id) > +{ > + int start_off = 0, end_off; > + > + if (!nand_subop_instr_is_valid(subop, op_id) || > + !nand_instr_is_data(&subop->instrs[op_id])) > + return -EINVAL; > + > + start_off = nand_subop_get_data_start_off(subop, op_id); > + > + if (op_id == subop->ninstrs - 1 && > + subop->last_instr_end_off) > + end_off = subop->last_instr_end_off; > + else > + end_off = subop->instrs[op_id].data.len; > + > + return end_off - start_off; > +} > +EXPORT_SYMBOL_GPL(nand_subop_get_data_len); > + > +/** > * nand_reset - Reset and initialize a NAND device > * @chip: The NAND chip > * @chipnr: Internal die id > @@ -3940,7 +4815,7 @@ static void nand_set_defaults(struct nand_chip *chip) > chip->chip_delay = 20; > > /* check, if a user supplied command function given */ > - if (chip->cmdfunc == NULL) > + if (chip->cmdfunc == NULL && !chip->exec_op) > chip->cmdfunc = nand_command; > > /* check, if a user supplied wait function given */ > @@ -4823,15 +5698,35 @@ int nand_scan_ident(struct mtd_info *mtd, int maxchips, > if (!mtd->name && mtd->dev.parent) > mtd->name = dev_name(mtd->dev.parent); > > - if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) { > + /* > + * ->cmdfunc() is legacy and will only be used if ->exec_op() is not > + * populated. > + */ > + if (chip->exec_op) { > /* > - * Default functions assigned for chip_select() and > - * cmdfunc() both expect cmd_ctrl() to be populated, > - * so we need to check that that's the case > + * The implementation of ->exec_op() heavily relies on timings > + * to be accessible through the nand_data_interface structure. > + * Thus, the ->setup_data_interface() hook must be provided. The > + * controller driver will be noticed of delays it must apply > + * after each ->exec_op() instruction (if any) through the > + * .delay_ns field. The driver will then choose to handle the > + * delays manually if the controller cannot do it natively. > */ > - pr_err("chip.cmd_ctrl() callback is not provided"); > - return -EINVAL; > + if (!chip->setup_data_interface) { > + pr_err("->setup_data_interface() should be provided\n"); > + return -EINVAL; > + } > + } else { > + /* > + * Default functions assigned for ->cmdfunc() and > + * ->select_chip() both expect ->cmd_ctrl() to be populated. > + */ > + if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) { > + pr_err("->cmd_ctrl() should be provided\n"); > + return -EINVAL; > + } > } > + > /* Set the default functions */ > nand_set_defaults(chip); > > diff --git a/drivers/mtd/nand/nand_hynix.c b/drivers/mtd/nand/nand_hynix.c > index 04e3ab7a476c..81c382f24513 100644 > --- a/drivers/mtd/nand/nand_hynix.c > +++ b/drivers/mtd/nand/nand_hynix.c > @@ -74,19 +74,36 @@ static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip) > return !strncmp("JEDEC", jedecid, sizeof(jedecid)); > } > > +static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd) Maybe you can introduce the helper in patch 1 > +{ > + struct mtd_info *mtd = nand_to_mtd(chip); > + > + if (chip->exec_op) { > + struct nand_op_instr instrs[] = { > + NAND_OP_CMD(cmd, 0), > + }; > + struct nand_operation op = NAND_OPERATION(instrs); > + > + return nand_exec_op(chip, &op); And then ass this block of code in this patch. > + } > + > + chip->cmdfunc(mtd, cmd, -1, -1); > + > + return 0; > +} > + > static int hynix_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) > { > struct nand_chip *chip = mtd_to_nand(mtd); > struct hynix_nand *hynix = nand_get_manufacturer_data(chip); > const u8 *values; > - int status; > int i; > > values = hynix->read_retry->values + > (retry_mode * hynix->read_retry->nregs); > > /* Enter 'Set Hynix Parameters' mode */ > - chip->cmdfunc(mtd, NAND_HYNIX_CMD_SET_PARAMS, -1, -1); > + hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); > > /* > * Configure the NAND in the requested read-retry mode. > @@ -101,16 +118,17 @@ static int hynix_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) > int column = hynix->read_retry->regs[i]; > > column |= column << 8; > - chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1); > - chip->write_byte(mtd, values[i]); > + if (chip->exec_op) { > + nand_change_write_column_op(chip, column, > + &values[i], 1, true); This is not a nand_change_write_column_op() op, here the cmd cycle is set to NAND_CMD_NONE. You should have your own operation defined to handle this sequence. > + } else { > + chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1); > + chip->write_byte(mtd, values[i]); > + } > } > > /* Apply the new settings. */ > - chip->cmdfunc(mtd, NAND_HYNIX_CMD_APPLY_PARAMS, -1, -1); > - > - status = chip->waitfunc(mtd, chip); > - if (status & NAND_STATUS_FAIL) > - return -EIO; > + hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); No, it's wrong, you miss the WAITRDY instruction to be compatible with what was done before. > > return 0; > } > @@ -173,32 +191,65 @@ static int hynix_read_rr_otp(struct nand_chip *chip, > > nand_reset_op(chip); > > - chip->cmdfunc(mtd, NAND_HYNIX_CMD_SET_PARAMS, -1, -1); > + hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); > > for (i = 0; i < info->nregs; i++) { > int column = info->regs[i]; > > column |= column << 8; > - chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1); > - chip->write_byte(mtd, info->values[i]); > + if (chip->exec_op) { > + nand_change_write_column_op(chip, column, > + &info->values[i], 1, true); > + } else { > + chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1); > + chip->write_byte(mtd, info->values[i]); > + } Same comments apply here. > } > > - chip->cmdfunc(mtd, NAND_HYNIX_CMD_APPLY_PARAMS, -1, -1); > + hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); > > /* Sequence to enter OTP mode? */ > - chip->cmdfunc(mtd, 0x17, -1, -1); > - chip->cmdfunc(mtd, 0x04, -1, -1); > - chip->cmdfunc(mtd, 0x19, -1, -1); > + if (chip->exec_op) { > + struct nand_op_instr instrs[] = { > + NAND_OP_CMD(0x17, 0), > + NAND_OP_CMD(0x04, 0), > + NAND_OP_CMD(0x19, 0), > + }; > + struct nand_operation op = NAND_OPERATION(instrs); > + > + nand_exec_op(chip, &op); > + } else { > + chip->cmdfunc(mtd, 0x17, -1, -1); > + chip->cmdfunc(mtd, 0x04, -1, -1); > + chip->cmdfunc(mtd, 0x19, -1, -1); > + } Why not creating a hynix_nand_enter_otp_mode_op() for that? > > /* Now read the page */ > nand_read_page_op(chip, info->page, 0, buf, info->size); > > /* Put everything back to normal */ > nand_reset_op(chip); > - chip->cmdfunc(mtd, NAND_HYNIX_CMD_SET_PARAMS, 0x38, -1); > - chip->write_byte(mtd, 0x0); > - chip->cmdfunc(mtd, NAND_HYNIX_CMD_APPLY_PARAMS, -1, -1); > - chip->cmdfunc(mtd, NAND_CMD_READ0, 0x0, -1); > + if (chip->exec_op) { > + const struct nand_sdr_timings *sdr = > + nand_get_sdr_timings(&chip->data_interface); > + u8 byte = 0; > + u8 addr = 0x38; > + struct nand_op_instr instrs[] = { > + NAND_OP_CMD(NAND_HYNIX_CMD_SET_PARAMS, 0), > + NAND_OP_ADDR(1, &addr, sdr->tCCS_min), > + NAND_OP_8BIT_DATA_OUT(1, &byte, 0), > + NAND_OP_CMD(NAND_HYNIX_CMD_APPLY_PARAMS, 0), > + NAND_OP_CMD(NAND_CMD_READ0, 0), > + }; > + struct nand_operation op = NAND_OPERATION(instrs); > + > + nand_exec_op(chip, &op); > + } else { > + chip->cmdfunc(mtd, NAND_HYNIX_CMD_SET_PARAMS, 0x38, -1); > + chip->write_byte(mtd, 0x0); > + chip->cmdfunc(mtd, NAND_HYNIX_CMD_APPLY_PARAMS, -1, -1); > + chip->cmdfunc(mtd, NAND_CMD_READ0, 0x0, -1); > + } Same here. > > return 0; > } > diff --git a/drivers/mtd/nand/nand_micron.c b/drivers/mtd/nand/nand_micron.c > index 543352380ffa..109d8003e33d 100644 > --- a/drivers/mtd/nand/nand_micron.c > +++ b/drivers/mtd/nand/nand_micron.c > @@ -117,14 +117,38 @@ micron_nand_read_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip, > uint8_t *buf, int oob_required, > int page) > { > - int status; > + u8 status; > int max_bitflips = 0; > > micron_nand_on_die_ecc_setup(chip, true); > > - chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); > - chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); > - status = chip->read_byte(mtd); > + if (chip->exec_op) { > + u8 addrs[5] = {}; > + struct nand_op_instr instrs[] = { > + NAND_OP_CMD(NAND_CMD_READ0, 0), > + NAND_OP_ADDR(4, addrs, 0), > + NAND_OP_CMD(NAND_CMD_STATUS, 0), > + NAND_OP_8BIT_DATA_IN(1, &status, 0), > + }; > + struct nand_operation op = NAND_OPERATION(instrs); > + > + if (nand_fill_column_cycles(chip, addrs, 0)) if (nand_fill_column_cycles(chip, addrs, 0) < 0) > + return -EINVAL; > + > + addrs[2] = page; > + addrs[3] = page >> 8; > + if (chip->options & NAND_ROW_ADDR_3) { > + addrs[4] = page >> 16; > + instrs[1].addr.naddrs++; > + } > + > + nand_exec_op(chip, &op); > + } else { > + chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); > + chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); > + status = chip->read_byte(mtd); > + } > + > if (status & NAND_STATUS_FAIL) > mtd->ecc_stats.failed++; > /* > diff --git a/include/linux/mtd/rawnand.h b/include/linux/mtd/rawnand.h > index 1acc26ed0e91..302f231df65e 100644 > --- a/include/linux/mtd/rawnand.h > +++ b/include/linux/mtd/rawnand.h > @@ -751,6 +751,337 @@ struct nand_manufacturer_ops { > }; > > /** > + * struct nand_op_cmd_instr - Definition of a command instruction > + * @opcode: the command to assert in one cycle > + */ > +struct nand_op_cmd_instr { > + u8 opcode; > +}; > + > +/** > + * struct nand_op_addr_instr - Definition of an address instruction > + * @naddrs: length of the @addrs array > + * @addrs: array containing the address cycles to assert > + */ > +struct nand_op_addr_instr { > + unsigned int naddrs; > + const u8 *addrs; > +}; > + > +/** > + * struct nand_op_data_instr - Definition of a data instruction > + * @len: number of data bytes to move > + * @in: buffer to fill when reading from the NAND chip > + * @out: buffer to read from when writing to the NAND chip > + * @force_8bit: force 8-bit access > + * > + * Please note that "in" and "out" are inverted from the ONFI specification > + * and are from the controller perspective, so a "in" is a read from the NAND > + * chip while a "out" is a write to the NAND chip. > + */ > +struct nand_op_data_instr { > + unsigned int len; > + union { > + void *in; > + const void *out; > + }; > + bool force_8bit; > +}; > + > +/** > + * struct nand_op_waitrdy_instr - Definition of a wait ready instruction > + * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms > + */ > +struct nand_op_waitrdy_instr { > + unsigned int timeout_ms; > +}; > + > +/** > + * enum nand_op_instr_type - Enumeration of all the instructions *of all instruction types > + * > + * Please note that data instructions are separated into DATA_IN and DATA_OUT > + * instructions. > + */ > +enum nand_op_instr_type { > + NAND_OP_CMD_INSTR, > + NAND_OP_ADDR_INSTR, > + NAND_OP_DATA_IN_INSTR, > + NAND_OP_DATA_OUT_INSTR, > + NAND_OP_WAITRDY_INSTR, > +}; > + > +/** > + * struct nand_op_instr - Generic definition of and instruction s/and/an/ > + * @type: an enumeration of the instruction type > + * @cmd/@addr/@data/@waitrdy: the actual instruction to refer depending on the > + * value of @type " extra data associated to the instruction. You'll have to use the appropriate element depending on @type" > + * @delay_ns: delay to apply by the controller after the instruction has been > + * actually executed (most of them are directly handled by the > + * controllers once the timings negociation has been done) > + */ > +struct nand_op_instr { > + enum nand_op_instr_type type; > + union { > + struct nand_op_cmd_instr cmd; > + struct nand_op_addr_instr addr; > + struct nand_op_data_instr data; > + struct nand_op_waitrdy_instr waitrdy; > + }; > + unsigned int delay_ns; > +}; > + > +/* > + * Special handling must be done for the WAITRDY timeout parameter as it usually > + * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or > + * tBERS (during an erase) which all of them are u64 values that cannot be > + * divided by usual kernel macros and must be handled with the special > + * DIV_ROUND_UP_ULL() macro. > + */ > +#define PSEC_TO_NSEC(x) DIV_ROUND_UP(x, 10^3) > +#define PSEC_TO_MSEC(x) DIV_ROUND_UP_ULL(x, 10^9) Hm, that's a bit of a mess to let each macro decide which converter they should use, because we don't know at this level whether the timing is stored in an u64 or u32. How about doing the conversion in the call-sites instead, because there you should know what you manipulate. Something like NAND_OP_CMD(FOO, PSEC_TO_NSEC_UL(sdr->tXX)) NAND_OP_WAITRDY(PSEC_TO_MSEC_ULL(sdr->tXX), PSEC_TO_NSEC_UL(sdr->tYY)) > + > +#define NAND_OP_CMD(id, delay_ps) \ > + { \ > + .type = NAND_OP_CMD_INSTR, \ > + .cmd.opcode = id, \ > + .delay_ns = PSEC_TO_NSEC(delay_ps), \ > + } > + > +#define NAND_OP_ADDR(ncycles, cycles, delay_ps) \ > + { \ > + .type = NAND_OP_ADDR_INSTR, \ > + .addr = { \ > + .naddrs = ncycles, \ > + .addrs = cycles, \ > + }, \ > + .delay_ns = PSEC_TO_NSEC(delay_ps), \ > + } > + > +#define NAND_OP_DATA_IN(l, buf, delay_ps) \ > + { \ > + .type = NAND_OP_DATA_IN_INSTR, \ > + .data = { \ > + .len = l, \ > + .in = buf, \ > + .force_8bit = false, \ > + }, \ > + .delay_ns = PSEC_TO_NSEC(delay_ps), \ > + } > + > +#define NAND_OP_DATA_OUT(l, buf, delay_ps) \ > + { \ > + .type = NAND_OP_DATA_OUT_INSTR, \ > + .data = { \ > + .len = l, \ > + .out = buf, \ > + .force_8bit = false, \ > + }, \ > + .delay_ns = PSEC_TO_NSEC(delay_ps), \ > + } > + > +#define NAND_OP_8BIT_DATA_IN(l, buf, delay_ps) \ > + { \ > + .type = NAND_OP_DATA_IN_INSTR, \ > + .data = { \ > + .len = l, \ > + .in = buf, \ > + .force_8bit = true, \ > + }, \ > + .delay_ns = PSEC_TO_NSEC(delay_ps), \ > + } > + > +#define NAND_OP_8BIT_DATA_OUT(l, buf, delay_ps) \ > + { \ > + .type = NAND_OP_DATA_OUT_INSTR, \ > + .data = { \ > + .len = l, \ > + .out = buf, \ > + .force_8bit = true, \ > + }, \ > + .delay_ns = PSEC_TO_NSEC(delay_ps), \ > + } > + > +#define NAND_OP_WAIT_RDY(tout_ps, delay_ps) \ > + { \ > + .type = NAND_OP_WAITRDY_INSTR, \ > + .waitrdy.timeout_ms = PSEC_TO_MSEC(tout_ps), \ > + .delay_ns = PSEC_TO_NSEC(delay_ps), \ > + } > + > +/** > + * struct nand_subop - a sub operation > + * @instrs: array of instructions > + * @ninstrs: length of the @instrs array > + * @first_instr_start_off: offset to start from for the first instruction > + * of the sub-operation > + * @last_instr_end_off: offset to end at (excluded) for the last instruction > + * of the sub-operation > + * > + * When an operation cannot be handled as is by the NAND controller, it will > + * be split by the parser and the remaining pieces will be handled as > + * sub-operations. > + */ > +struct nand_subop { > + const struct nand_op_instr *instrs; > + unsigned int ninstrs; > + /* > + * Specific offset for the first and the last instructions of the subop. > + * Applies for the address cycles in the case of address, or for data > + * offset in the case of data transfers. Otherwise, it is irrelevant. > + */ Can you move that in the kernel header doc? > + unsigned int first_instr_start_off; > + unsigned int last_instr_end_off; > +}; > + > +int nand_subop_get_addr_start_off(const struct nand_subop *subop, > + unsigned int op_id); > +int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, > + unsigned int op_id); > +int nand_subop_get_data_start_off(const struct nand_subop *subop, > + unsigned int op_id); > +int nand_subop_get_data_len(const struct nand_subop *subop, > + unsigned int op_id); > + > +/** > + * struct nand_op_parser_addr_constraints - Constraints for address instructions > + * @maxcycles: maximum number of cycles that the controller can assert by > + * instruction > + */ > +struct nand_op_parser_addr_constraints { > + unsigned int maxcycles; > +}; > + > +/** > + * struct nand_op_parser_data_constraints - Constraints for data instructions > + * @maxlen: maximum data length that the controller can handle with one > + * instruction > + */ > +struct nand_op_parser_data_constraints { > + unsigned int maxlen; At some point we should probably add minlen and alignment fields, but let's keep that for later. > +}; > + > +/** > + * struct nand_op_parser_pattern_elem - One element of a pattern > + * @type: the instructuction type > + * @optional: if this element of the pattern is optional or mandatory > + * @addr/@data: address or data constraint (number of cycles or data length) > + */ > +struct nand_op_parser_pattern_elem { > + enum nand_op_instr_type type; > + bool optional; > + union { > + struct nand_op_parser_addr_constraints addr; > + struct nand_op_parser_data_constraints data; > + }; > +}; > + > +#define NAND_OP_PARSER_PAT_CMD_ELEM(_opt) \ > + { \ > + .type = NAND_OP_CMD_INSTR, \ > + .optional = _opt, \ > + } > + > +#define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles) \ > + { \ > + .type = NAND_OP_ADDR_INSTR, \ > + .optional = _opt, \ > + .addr.maxcycles = _maxcycles, \ > + } > + > +#define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen) \ > + { \ > + .type = NAND_OP_DATA_IN_INSTR, \ > + .optional = _opt, \ > + .data.maxlen = _maxlen, \ > + } > + > +#define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen) \ > + { \ > + .type = NAND_OP_DATA_OUT_INSTR, \ > + .optional = _opt, \ > + .data.maxlen = _maxlen, \ > + } > + > +#define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt) \ > + { \ > + .type = NAND_OP_WAITRDY_INSTR, \ > + .optional = _opt, \ > + } > + > +/** > + * struct nand_op_parser_pattern - A complete pattern > + * @elems: array of pattern elements > + * @nelems: number of pattern elements in @elems array > + * @exec: the function that will actually execute this pattern, written in the > + * controller driver > + * > + * This is a complete pattern that is a list of elements, each one reprensenting > + * one instruction with its constraints. Controller drivers must declare as much > + * patterns as they support and give the list of the supported patterns (created > + * with the help of the following macro) at the call to nand_op_parser_exec_op s/at the call to nand_op_parser_exec_op/when calling nand_op_parser_exec_op()/ > + * which shall be the main thing to do in the driver implementation of > + * ->exec_op(). I'd be more lax than that. Yes the parser is the preferred approach when you deal with a complex controller. But for simple controllers it's not. > Once there is a match between the pattern and an operation, the > + * core calls the @exec function to actually do the operation. Not necessarily. The plan is still to ask the controller which operation it supports before actually executing them. So, in this case (when check_only param is true), nand_op_parser_exec_op() will never call ->exec(), it will just make sure the operation can be handled with the provided patterns. > + */ > +struct nand_op_parser_pattern { > + const struct nand_op_parser_pattern_elem *elems; > + unsigned int nelems; > + int (*exec)(struct nand_chip *chip, const struct nand_subop *subop); > +}; > + > +#define NAND_OP_PARSER_PATTERN(_exec, ...) \ > + { \ > + .exec = _exec, \ > + .elems = (struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }, \ > + .nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) / \ > + sizeof(struct nand_op_parser_pattern_elem), \ > + } > + > +/** > + * struct nand_op_parser - The actual parser > + * @patterns: array of patterns > + * @npatterns: length of the @patterns array > + * > + * The actual parser structure wich is an array of supported patterns. It's worth mentioning that patterns will be tested in their declaration order, and the first match will be taken, so it's important to oder patterns appropriately so that simple/inefficient patterns are placed at the end of the list. Usually, this is where you put single instruction patterns. > + */ > +struct nand_op_parser { > + const struct nand_op_parser_pattern *patterns; > + unsigned int npatterns; > +}; > + > +#define NAND_OP_PARSER(...) \ > + { \ > + .patterns = (struct nand_op_parser_pattern[]) { __VA_ARGS__ }, \ > + .npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) / \ > + sizeof(struct nand_op_parser_pattern), \ > + } > + > +/** > + * struct nand_operation - The actual operation > + * @instrs: array of instructions to execute > + * @ninstrs: length of the @instrs array > + * > + * The actual operation structure that will be given to the parser. Not only the parser, it will be passed to chip->exep_op() as well. > + */ > +struct nand_operation { > + const struct nand_op_instr *instrs; > + unsigned int ninstrs; > +}; > + > +#define NAND_OPERATION(_instrs) \ > + { \ > + .instrs = _instrs, \ > + .ninstrs = ARRAY_SIZE(_instrs), \ > + } > + > +int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, > + unsigned int offset_in_page); > + > +int nand_op_parser_exec_op(struct nand_chip *chip, > + const struct nand_op_parser *parser, > + const struct nand_operation *op, bool check_only); > + > +/** > * struct nand_chip - NAND Private Flash Chip Data > * @mtd: MTD device registered to the MTD framework > * @IO_ADDR_R: [BOARDSPECIFIC] address to read the 8 I/O lines of the > @@ -885,6 +1216,9 @@ struct nand_chip { > int (*setup_data_interface)(struct mtd_info *mtd, int chipnr, > const struct nand_data_interface *conf); > > + int (*exec_op)(struct nand_chip *chip, > + const struct nand_operation *op, > + bool check_only); > > int chip_delay; > unsigned int options; > @@ -945,6 +1279,15 @@ struct nand_chip { > } manufacturer; > }; > > +static inline int nand_exec_op(struct nand_chip *chip, > + const struct nand_operation *op) > +{ > + if (!chip->exec_op) > + return -ENOTSUPP; > + > + return chip->exec_op(chip, op, false); > +} > + > extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops; > extern const struct mtd_ooblayout_ops nand_ooblayout_lp_ops; > > @@ -1307,23 +1650,26 @@ int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, > int nand_status_op(struct nand_chip *chip, u8 *status); > int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock); > int nand_read_page_op(struct nand_chip *chip, unsigned int page, > - unsigned int column, void *buf, unsigned int len); > -int nand_change_read_column_op(struct nand_chip *chip, unsigned int column, > - void *buf, unsigned int len, bool force_8bit); > + unsigned int offset_in_page, void *buf, unsigned int len); > +int nand_change_read_column_op(struct nand_chip *chip, > + unsigned int offset_in_page, void *buf, > + unsigned int len, bool force_8bit); > int nand_read_oob_op(struct nand_chip *chip, unsigned int page, > - unsigned int column, void *buf, unsigned int len); > + unsigned int offset_in_page, void *buf, unsigned int len); > int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, > - unsigned int column, const void *buf, > + unsigned int offset_in_page, const void *buf, > unsigned int len); > int nand_prog_page_end_op(struct nand_chip *chip); > int nand_prog_page_op(struct nand_chip *chip, unsigned int page, > - unsigned int column, const void *buf, unsigned int len); > -int nand_change_write_column_op(struct nand_chip *chip, unsigned int column, > - const void *buf, unsigned int len, bool force_8bit); > + unsigned int offset_in_page, const void *buf, > + unsigned int len); > +int nand_change_write_column_op(struct nand_chip *chip, > + unsigned int offset_in_page, const void *buf, > + unsigned int len, bool force_8bit); > int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, > - bool force_8bits); > + bool force_8bit); > int nand_write_data_op(struct nand_chip *chip, const void *buf, > - unsigned int len, bool force_8bits); > + unsigned int len, bool force_8bit); > > /* Free resources held by the NAND device */ > void nand_cleanup(struct nand_chip *chip); _______________________________________________ devel mailing list devel@xxxxxxxxxxxxxxxxxxxxxx http://driverdev.linuxdriverproject.org/mailman/listinfo/driverdev-devel