Re: [PATCH v2 1/2] docs/zh-CN: Add sched-capacity Chinese translation

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Tang Yizhou <tangyizhou@xxxxxxxxxx> 于2021年12月10日周五 17:35写道:
Subject
docs/zh-CN: -> docs/zh_CN:

>
> Translate scheduler/sched-capacity.rst into Chinese.
>
> Signed-off-by: Tang Yizhou <tangyizhou@xxxxxxxxxx>
> ---
>  .../zh_CN/scheduler/sched-capacity.rst        | 397 ++++++++++++++++++
>  1 file changed, 397 insertions(+)
>  create mode 100644 Documentation/translations/zh_CN/scheduler/sched-capacity.rst
>
> diff --git a/Documentation/translations/zh_CN/scheduler/sched-capacity.rst b/Documentation/translations/zh_CN/scheduler/sched-capacity.rst
> new file mode 100644
> index 000000000000..9a1633a2a57c
> --- /dev/null
> +++ b/Documentation/translations/zh_CN/scheduler/sched-capacity.rst
> @@ -0,0 +1,397 @@
> +.. SPDX-License-Identifier: GPL-2.0
> +.. include:: ../disclaimer-zh_CN.rst
> +
> +:Original: Documentation/scheduler/sched-capacity.rst
> +
> +:翻译:
> +
> +       唐艺舟 Tang Yizhou <tangyeechou@xxxxxxxxx>
> +
> +:校译:
> +
> +  时奎亮 Alex Shi <alexs@xxxxxxxxxx>
Signature needs to be aligned.
> +
> +=============
> +算力感知调度
> +=============
> +
> +1. CPU算力
> +==========
> +
> +1.1 简介
> +--------
> +
> +一般来说,同构的SMP平台由完全相同的CPU构成。异构的平台则由性能特征不同的CPU构成,
> +在这样的平台中,CPU不能被认为是相同的。
> +
> +我们引入CPU算力(capacity)的概念来测量每个CPU能达到的性能,
> +它的值相对系统中性能最强的CPU做过归一化处理。异构系统也被称为非对称CPU算力系统,
> +因为它们由不同算力的CPU组成。
> +
> +最大可达性能(换言之,最大CPU算力)的差异有两个主要来源:
> +
> +- 不是所有CPU的微架构都相同。
> +- 在动态电压频率升降(Dynamic Voltage and Frequency Scaling,DVFS)框架中,
> +  不是所有的CPU都能达到一样高的操作性能值
> +  (Operating Performance Points,OPP。译注,也就是“频率-电压”对)。
> +
> +Arm大小核(big.LITTLE)系统是同时具有两种差异的一个例子。相较小核,大核面向性能
> +(拥有更多的流水线层级,更大的缓存,更智能的分支预测器等),通常可以达到更高的操作性能值。
> +
> +CPU性能通常由每秒百万指令(Millions of Instructions Per Second,MIPS)表示,
> +也可表示为per Hz能执行的指令数,故::
> +
> +  capacity(cpu) = work_per_hz(cpu) * max_freq(cpu)
> +
> +1.2 调度器术语
> +--------------
> +
> +调度器使用了两种不同的算力值。CPU的 ``capacity_orig`` 是它的最大可达算力,
> +即最大可达性能等级。CPU的 ``capacity`` 是 ``capacity_orig``
> +扣除了一些性能损失(比如处理中断的耗时)的值。
> +
> +注意CPU的 ``capacity`` 仅仅被设计用于CFS调度类,而 ``capacity_orig``
> +是不感知调度类的。为简洁起见,本文档的剩余部分将不加区分的使用术语
> +``capacity`` 和 ``capacity_orig`` 。
> +
> +1.3 平台示例
> +------------
> +
> +1.3.1 操作性能值相同
> +~~~~~~~~~~~~~~~~~~~~
> +
> +考虑一个假想的双核非对称CPU算力系统,其中
> +
> +- work_per_hz(CPU0) = W
> +- work_per_hz(CPU1) = W/2
> +- 所有CPU以相同的固定频率运行
> +
> +根据上文对算力的定义:
> +
> +- capacity(CPU0) = C
> +- capacity(CPU1) = C/2
> +
> +若这是Arm大小核系统,那么CPU0是大核,而CPU1是小核。
> +
> +考虑一种周期性产生固定工作量的工作负载,你将会得到类似下图的执行轨迹::
> +
> + CPU0 work ^
> +           |     ____                ____                ____
> +           |    |    |              |    |              |    |
> +           +----+----+----+----+----+----+----+----+----+----+-> time
> +
> + CPU1 work ^
> +           |     _________           _________           ____
> +           |    |         |         |         |         |
> +           +----+----+----+----+----+----+----+----+----+----+-> time
> +
> +CPU0在系统中具有最高算力(C),它使用T个单位时间完成固定工作量W。
> +另一方面,CPU1只有CPU0一半算力,因此在T个单位时间内仅完成工作量W/2。
> +
> +1.3.2 最大操作性能值不同
> +~~~~~~~~~~~~~~~~~~~~~~~~
> +
> +具有不同算力值的CPU,通常来说最大操作性能值也不同。考虑上一小节提到的CPU
> +(也就是说,work_per_hz()相同):
> +
> +- max_freq(CPU0) = F
> +- max_freq(CPU1) = 2/3 * F
> +
> +这将推出:
> +
> +- capacity(CPU0) = C
> +- capacity(CPU1) = C/3
> +
> +执行1.3.1节描述的工作负载,每个CPU按最大频率运行,结果为::
> +
> + CPU0 work ^
> +           |     ____                ____                ____
> +           |    |    |              |    |              |    |
> +           +----+----+----+----+----+----+----+----+----+----+-> time
> +
> +                            workload on CPU1
> + CPU1 work ^
> +           |     ______________      ______________      ____
> +           |    |              |    |              |    |
> +           +----+----+----+----+----+----+----+----+----+----+-> time
> +
> +1.4 关于计算方式的注意事项
> +--------------------------
> +
> +需要注意的是,使用单一值来表示CPU性能的差异是有些争议的。
> +两个不同的微架构的相对性能差异应该描述为:X%整数运算差异,Y%浮点数运算差异,Z%分支跳转差异,
> +等等。尽管如此,使用简单计算方式的结果目前还是令人满意的。
> +
> +2. 任务使用率
> +=============
> +
> +2.1 简介
> +--------
> +
> +算力感知调度要求描述任务需求,描述方式要和CPU算力相关。
> +每个调度类可以用不同的方式描述它。任务使用率是CFS独有的描述方式,
> +不过在这里介绍它有助于引入更多一般性的概念。
> +
> +任务使用率是一种用百分比来描述任务吞吐率需求的方式。一个简单的近似是任务的占空比,也就是说::
> +
> +  task_util(p) = duty_cycle(p)
> +
> +在频率固定的SMP系统中,100%的利用率意味着任务是忙等待循环。反之,
> +10%的利用率暗示这是一个小周期任务,它在睡眠上花费的时间比执行更多。
> +
> +2.2 频率不变性
> +--------------
> +
> +一个需要考虑的议题是,工作负载的占空比受CPU正在运行的操作性能值直接影响。
> +考虑以给定的频率F执行周期性工作负载::
> +
> +  CPU work ^
> +           |     ____                ____                ____
> +           |    |    |              |    |              |    |
> +           +----+----+----+----+----+----+----+----+----+----+-> time
> +
> +可以算出 duty_cycle(p) == 25%。
> +
> +现在,考虑以给定频率F/2执行 *同一个* 工作负载::
> +
> +  CPU work ^
> +           |     _________           _________           ____
> +           |    |         |         |         |         |
> +           +----+----+----+----+----+----+----+----+----+----+-> time
> +
> +可以算出 duty_cycle(p) == 50%,尽管两次执行中,任务的行为完全一致
> +(也就是说,执行的工作量相同)。
> +
> +任务利用率信号可按下面公式处理成频率不变的(译注:这里的术语用到了信号与系统的概念)::
> +
> +  task_util_freq_inv(p) = duty_cycle(p) * (curr_frequency(cpu) / max_frequency(cpu))
> +
> +对上面两个例子运用该公式,可以算出频率不变的任务利用率均为25%。
> +
> +2.3 CPU不变性
> +-------------
> +
> +CPU算力与任务利用率具有类型的效应,在算力不同的CPU上执行完全相同的工作负载,
> +将算出不同的占空比。
> +
> +考虑1.3.2节提到的系统,也就是说::
> +
> +- capacity(CPU0) = C
> +- capacity(CPU1) = C/3
> +
> +每个CPU按最大频率执行指定周期性工作负载,结果为::
> +
> + CPU0 work ^
> +           |     ____                ____                ____
> +           |    |    |              |    |              |    |
> +           +----+----+----+----+----+----+----+----+----+----+-> time
> +
> + CPU1 work ^
> +           |     ______________      ______________      ____
> +           |    |              |    |              |    |
> +           +----+----+----+----+----+----+----+----+----+----+-> time
> +
> +也就是说,
> +
> +- duty_cycle(p) == 25%,如果任务p在CPU0上按最大频率运行。
> +- duty_cycle(p) == 75%,如果任务p在CPU1上按最大频率运行。
> +
> +任务利用率信号可按下面公式处理成CPU容量不变的::
> +
> +  task_util_cpu_inv(p) = duty_cycle(p) * (capacity(cpu) / max_capacity)
> +
> +其中 ``max_capacity`` 是系统中最高的CPU算力。对上面的例子运用该公式,
> +可以算出CPU算力不变的任务利用率均为25%。
> +
> +2.4 任务利用率不变量
> +--------------------
> +
> +频率和CPU算力不变性都需要被应用到任务利用率的计算中,以便求出真正的不变信号。
> +任务利用率的伪计算公式是同时具备CPU和频率不变性的,也就是说,对于指定任务p::
> +
> +                                     curr_frequency(cpu)   capacity(cpu)
> +  task_util_inv(p) = duty_cycle(p) * ------------------- * -------------
> +                                     max_frequency(cpu)    max_capacity
> +
> +也就是说,任务利用率不变量假定任务在系统中最高算力CPU上以最高频率运行,以此描述任务的行为。
> +
> +在接下来的章节中提到的任何任务利用率,均是不变量的形式。
> +
> +2.5 利用率估算
> +--------------
> +
> +由于预测未来的水晶球不存在,当任务第一次变成可运行时,任务的行为和任务利用率均不能被准确预测。
> +CFS调度类基于实体负载跟踪机制(Per-Entity Load Tracking, PELT)维护了少量CPU和任务信号,
> +其中之一可以算出平均利用率(与瞬时相反)。
> +
> +这意味着,尽管运用“真实的”任务利用率(凭借水晶球)写出算力感知调度的准则,
> +但是它的实现将只能用任务利用率的估算值。
> +
> +3. 算力感知调度的需求
> +=====================
> +
> +3.1 CPU算力
> +-----------
> +
> +当前,Linux无法凭自身算出CPU算力,因此必须要有把这个信息传递给Linux的方式。
> +每个架构必须为此定义arch_scale_cpu_capacity()函数。
> +
> +arm和arm64架构直接把这个信息映射到arch_topology驱动的CPU scaling数据中
> +(译注:参考arch_topology.h的percpu变量cpu_scale),
> +它是从capacity-dmips-mhz CPU binding中衍生计算出来的。参见
> +Documentation/devicetree/bindings/arm/cpu-capacity.txt。
> +
> +3.2 频率不变性
> +--------------
> +
> +如2.2节所述,算力感知调度需要频率不变的任务利用率。
> +每个架构必须为此定义arch_scale_freq_capacity(cpu)函数。
> +
> +实现该函数要求计算出每个CPU当前以什么频率在运行。实现它的一种方式是利用硬件计数器
> +(x86的APERF/MPERF,arm64的AMU),它能按CPU当前频率动态可扩展地升降递增计数器的速率。
> +另一种方式是在cpufreq频率变化时直接使用钩子函数,内核此时感知到将要被切换的频率
> +(也被arm/arm64实现了)。
> +
> +4. 调度器拓扑结构
> +=================
> +
> +在构建调度域时,调度器将会发现系统是否表现为非对称CPU算力。如果是,那么:
> +
> +- sched_asym_cpucapacity静态键(static key)将使能。
> +- SD_ASYM_CPUCAPACITY_FULL标志位将在尽量最低调度域层级中被设置,同时要满足条件:
> +  调度域恰好完整包含某个CPU算力值的全部CPU。
> +- SD_ASYM_CPUCAPACITY标志将在所有包含非对称CPU的调度域中被设置。
> +
> +sched_asym_cpucapacity静态键的设计意图是,保护为非对称CPU算力系统所准备的代码。
> +不过要注意的是,这个键是系统范围可见的。想象下面使用了cpuset的步骤::
> +
> +  capacity    C/2          C
> +            ________    ________
> +           /        \  /        \
> +  CPUs     0  1  2  3  4  5  6  7
> +           \__/  \______________/
> +  cpusets   cs0         cs1
> +
> +可以通过下面的方式创建:
> +
> +.. code-block:: sh
> +
> +  mkdir /sys/fs/cgroup/cpuset/cs0
> +  echo 0-1 > /sys/fs/cgroup/cpuset/cs0/cpuset.cpus
> +  echo 0 > /sys/fs/cgroup/cpuset/cs0/cpuset.mems
> +
> +  mkdir /sys/fs/cgroup/cpuset/cs1
> +  echo 2-7 > /sys/fs/cgroup/cpuset/cs1/cpuset.cpus
> +  echo 0 > /sys/fs/cgroup/cpuset/cs1/cpuset.mems
> +
> +  echo 0 > /sys/fs/cgroup/cpuset/cpuset.sched_load_balance
> +
> +由于“这是”非对称CPU算力系统,sched_asym_cpucapacity静态键将使能。
> +然而,CPU 0--1对应的调度域层级,算力值仅有一个,该层级中SD_ASYM_CPUCAPACITY未被设置,
> +它描述的是一个SMP区域,也应该被以此处理。
> +
> +因此,“典型的”保护非对称CPU算力代码路径的代码模式是:
> +
> +- 检查sched_asym_cpucapacity静态键
> +- 如果它被使能,接着检查调度域层级中SD_ASYM_CPUCAPACITY标志位是否出现
> +
> +5. 算力感知调度的实现
> +=====================
> +
> +5.1 CFS
> +-------
> +
> +5.1.1 算力适应性(fitness)
> +~~~~~~~~~~~~~~~~~~~~~~~~~~~
> +
> +CFS最主要的算力调度准则是::
> +
> +  task_util(p) < capacity(task_cpu(p))
> +
> +它通常被称为算力适应性准则。也就是说,CFS必须保证任务“适合”在某个CPU上运行。
> +如果准则被违反,任务将要更长地消耗该CPU,任务是CPU受限的(CPU-bound)。
> +
> +此外,uclamp允许用户空间指定任务的最小和最大利用率,要么以sched_setattr()的方式,
> +要么以cgroup接口的方式(参阅Documentation/admin-guide/cgroup-v2.rst)。
> +如其名字所暗示,uclamp可以被用在前一条准则中限制task_util()。
> +
> +5.1.2 被唤醒任务的CPU选择
> +~~~~~~~~~~~~~~~~~~~~~~~~~
> +
> +CFS任务唤醒的CPU选择,遵循上面描述的算力适应性准则。在此之上,
> +uclamp被用来限制任务利用率,这令用户空间对CFS任务的CPU选择有更多的控制。也就是说,
> +CFS被唤醒任务的CPU选择,搜索满足以下条件的CPU::
> +
> +  clamp(task_util(p), task_uclamp_min(p), task_uclamp_max(p)) < capacity(cpu)
> +
> +通过使用uclamp,举例来说,用户空间可以允许忙等待循环(100%使用率)在任意CPU上运行,
> +只要给它设置低的uclamp.max值。相反,uclamp能强制一个小的周期性任务(比如,10%利用率)
> +在最高性能的CPU上运行,只要给它设置高的uclamp.min值。
> +
> +.. note::
> +
> +  CFS的被唤醒的任务的CPU选择,可被能耗感知调度(Energy Aware Scheduling,EAS)
> +  覆盖,在Documentation/scheduler/sched-energy.rst中描述。
> +
> +5.1.3 负载均衡
> +~~~~~~~~~~~~~~
> +
> +被唤醒任务的CPU选择的一个病理性的例子是,任务几乎不睡眠,那么也几乎不发生唤醒。考虑::
> +
> +  w == wakeup event
> +
> +  capacity(CPU0) = C
> +  capacity(CPU1) = C / 3
> +
> +                           workload on CPU0
> +  CPU work ^
> +           |     _________           _________           ____
> +           |    |         |         |         |         |
> +           +----+----+----+----+----+----+----+----+----+----+-> time
> +                w                   w                   w
> +
> +                           workload on CPU1
> +  CPU work ^
> +           |     ____________________________________________
> +           |    |
> +           +----+----+----+----+----+----+----+----+----+----+->
> +                w
> +
> +该工作负载应该在CPU0上运行,不过如果任务满足以下条件之一:
> +
> +- 一开始发生不合适的调度(不准确的初始利用率估计)
> +- 一开始调度正确,但突然需要更多的处理器功率
I think a period can be added because I noticed that the original
document seems to have forgotten to add it here, while line 23 was
added.

Hi Yizhou Alex

Yizhou, Honestly, I can appreciate the effort you put into this, but
is it really worth breaking a neat block of text just to eliminate a
space in the html? After all, the text blocks in English documents are
so neat.

If this issue is resolved gracefully in the future, it is no longer
possible to align the text blocks in the documentation code. This is
because doing so would be equivalent to refactoring the documentation,
which would destroy the git log, and modifying the currently
translated documentation to be unaligned would also face this problem.

So, Let's reconsider it carefully?

**Sorry. My English is not very well, please allow me to repeat in Chinese:**

艺舟兄,亮兄:

艺舟,说实话,我能体会到你为了解决网页版文档中的空格问题所做的努力,你肯定在翻译时因为换行而绞尽脑汁。但是咱们为了一个空格问题就破坏掉整整齐齐的文本块,这真的值得吗?要知道,英文文档都是很整齐的文本块呀。

从目前咱们拿到的信息来看,这个空格问题在将来很有可能通过浏览器和渲染引擎解决的,一旦被解决了,已经存在的为了避免空格问题的“非对齐”文档就再也没有改回对齐的可能,因为如果改回对齐就等同于重构整个文档,这将会破坏git
log这个宝库。同样,如果我们把现存的已经翻译过的文档改成解决空格问题的“非对齐”状态,依旧会面临破坏git log的问题。

两位老大哥,这个问题咱们是不是再慎重考虑考虑?

Thanks,
Yanteng




[Index of Archives]     [Kernel Newbies]     [Security]     [Netfilter]     [Bugtraq]     [Linux FS]     [Yosemite Forum]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Samba]     [Video 4 Linux]     [Device Mapper]     [Linux Resources]

  Powered by Linux