On Tue, 7 Dec 2021 at 16:34, yanteng si <siyanteng01@xxxxxxxxx> wrote: > > Tang Yizhou <tangyizhou@xxxxxxxxxx> 于2021年12月7日周二 15:46写道: > > > > On 2021/12/7 13:37, Alex Shi wrote: > > > On Mon, Dec 6, 2021 at 4:41 PM Tang Yizhou <tangyizhou@xxxxxxxxxx> wrote: > > >> > > >> Translate scheduler/sched-capacity.rst into Chinese. > > >> > > >> Signed-off-by: Tang Yizhou <tangyizhou@xxxxxxxxxx> > > >> --- > > >> .../translations/zh_CN/sched-capacity.rst | 383 ++++++++++++++++++ > > >> 1 file changed, 383 insertions(+) > > >> create mode 100644 Documentation/translations/zh_CN/sched-capacity.rst > > >> > > >> diff --git a/Documentation/translations/zh_CN/sched-capacity.rst b/Documentation/translations/zh_CN/sched-capacity.rst > > >> new file mode 100644 > > >> index 000000000000..30c258144881 > > >> --- /dev/null > > >> +++ b/Documentation/translations/zh_CN/sched-capacity.rst > > >> @@ -0,0 +1,383 @@ > > >> +.. SPDX-License-Identifier: GPL-2.0 > > >> +.. include:: ../disclaimer-zh_CN.rst > > >> + > > >> +:Original: Documentation/scheduler/sched-capacity.rst > > >> + > > >> +:翻译: > > >> + > > >> + 唐艺舟 Tang Yizhou <tangyeechou@xxxxxxxxx> > > >> + > > >> +================ > > >> +capacity感知调度 > > >> +================ > > >> + > > >> +1. CPU Capacity > > >> +=============== > > >> + > > >> +1.1 简介 > > >> +-------- > > >> + > > >> +一般来说,同构的SMP平台由完全相同的CPU构成。异构的平台则由性能特征不同的CPU构成, > > >> +在这样的平台中,CPU不能被认为是相同的。 > > >> + > > >> +我们引入CPU capacity的概念来测量每个CPU能达到的性能,它的值相对系统中性能最强的CPU做过归一化处理。 > > >> +异构系统也被称为非对称CPU capacity系统,因为它们由不同capacity的CPU组成。 > > >> + > > >> +最大可达性能(换言之,最大CPU capacity)的差异有两个主要来源: > > >> + > > >> +- 不是所有CPU的微架构都相同。 > > >> +- 在动态电压频率升降(Dynamic Voltage and Frequency Scaling ,DVFS)框架中, > > >> + 不是所有的CPU都能达到一样高的可操作性能点(Operating Performance Points,OPP。译注,也就是“频率-电压”对)。 > > >> + > > >> +Arm big.LITTLE系统是同时具有两种差异的一个例子。相较LITTLE CPUs,big CPUs面向性能 > > >> +(拥有更多的pipeline stages,更大的cache,更智能的predictors等),通常可以达到更高的OPP。 > > >> + > > >> +一般来说,同构的SMP平台由完全相同的CPU构成。异构的平台则由性能特征不同的CPU构成,在这样的平台中,CPU不能被认为是相同的。 > > > > > > Good job! > > > Just the line is too long. Enghlish word should leass than 80 chars, > > > for Chinese should less than 40 chars. > > > > After reading some English documents, I find the length of a single line > > usually is 80 columns. But sometimes this rule is not followed. > > > > As Linus mentioned earlier this year, perhaps we can apply a longer > > length limit. I suggest 60 chars for Chinese (120 chars for English). > Why 60 chars per line? What's wrong with 40 chars? :) > > Feiyang is my colleague and he agrees with the 60 chars per line, so > let's discuss it. > CC Feiyang chris.chenfeiyang@xxxxxxxxx Hi, Alex, Yanteng, Yizhou, I think the readability of the rendered documentation is more important than the readability of the documentation source code. For English documents, a line break at the appropriate length can make the source code more elegant. More importantly, this does not break the sentences of the rendered documentation. However, for Chinese documents, the rendered documentation has a lot of spaces in the sentences because of line breaks in the source code, which leads to a poor reading experience. I suggest that for Chinese documents, the per-line length limit should be *abandoned* and lines should be break at punctuation marks whenever possible. Thanks, Feiyang > > Thanks, > Yanteng > > > > This document is written without exceeding 60 columns at most times. > > I will fix the lines which are too long. > > > > > > > > with the change > > > > > > Reviewed-by: Alex Shi <alexs@xxxxxxxxxx> > > > > > >> +(比如终端设备的ARM CPU可能包含大、中、小三个性能不同的cluster,每个cluster中的CPU性能相同):: > > > > > > I see 'sluster' was translated as 集 or 簇, could we change to them? or > > > keep the English, it's up to you. > > > > This tranlation is added by me. There isn't a corresponding sentence in > > the English version. I'll delete it in the next patch. > > > > > > > > Thanks > > > Alex > > > > > >> + > > >> + capacity(cpu) = work_per_hz(cpu) * max_freq(cpu) > > >> + > > >> +1.2 调度器术语 > > >> +-------------- > > >> + > > >> +调度器使用了两种不同的capacity值。CPU的 ``capacity_orig`` 是它的最大可达capacity,即最大可达性能等级。 > > >> +CPU的 ``capacity`` 是 ``capacity_orig`` 扣除了一些性能损失(比如处理中断的耗时)的值。 > > >> + > > >> +注意CPU的 ``capacity`` 仅仅被设计用于CFS调度类,而 ``capacity_orig`` 是不感知调度类的。 > > >> +为简洁起见,本文档的剩余部分将不加区分的使用术语 ``capacity`` 和 ``capacity_orig`` 。 > > >> + > > >> +1.3 平台示例 > > >> +------------ > > >> + > > >> +1.3.1 OPP相同 > > >> +~~~~~~~~~~~~~ > > >> + > > >> +考虑一个假想的双核非对称CPU capacity系统,其中 > > >> + > > >> +- work_per_hz(CPU0) = W > > >> +- work_per_hz(CPU1) = W/2 > > >> +- 所有CPU以相同的固定频率运行 > > >> + > > >> +根据上文对capacity的定义: > > >> + > > >> +- capacity(CPU0) = C > > >> +- capacity(CPU1) = C/2 > > >> + > > >> +若这是Arm big.LITTLE系统,CPU0是big CPU,而CPU1是LITTLE CPU。 > > >> + > > >> +考虑一种周期性产生固定工作量的工作负载,你将会得到类似下图的执行轨迹:: > > >> + > > >> + CPU0 work ^ > > >> + | ____ ____ ____ > > >> + | | | | | | | > > >> + +----+----+----+----+----+----+----+----+----+----+-> time > > >> + > > >> + CPU1 work ^ > > >> + | _________ _________ ____ > > >> + | | | | | | > > >> + +----+----+----+----+----+----+----+----+----+----+-> time > > >> + > > >> +CPU0在系统中具有最高capacity(C),它使用T个单位时间完成固定工作量W。 > > >> +另一方面,CPU1只有CPU0一半capacity,因此在T个单位时间内仅完成工作量W/2。 > > >> + > > >> +1.3.2 最大OPP不同 > > >> +~~~~~~~~~~~~~~~~~ > > >> + > > >> +具有不同capacity值的CPU,通常来说最大OPP也不同。考虑上一小节提到的CPU(也就是说,work_per_hz()相同): > > >> + > > >> +- max_freq(CPU0) = F > > >> +- max_freq(CPU1) = 2/3 * F > > >> + > > >> +这将推出: > > >> + > > >> +- capacity(CPU0) = C > > >> +- capacity(CPU1) = C/3 > > >> + > > >> +执行1.3.1节描述的工作负载,每个CPU按最大频率运行,结果为:: > > >> + > > >> + CPU0 work ^ > > >> + | ____ ____ ____ > > >> + | | | | | | | > > >> + +----+----+----+----+----+----+----+----+----+----+-> time > > >> + > > >> + workload on CPU1 > > >> + CPU1 work ^ > > >> + | ______________ ______________ ____ > > >> + | | | | | | > > >> + +----+----+----+----+----+----+----+----+----+----+-> time > > >> + > > >> +1.4 关于计算方式的注意事项 > > >> +-------------------------- > > >> + > > >> +需要注意的是,使用单一值来表示CPU性能的差异是有些争议的。 > > >> +两个不同的微架构的相对性能差异应该描述为:X%整数运算差异,Y%浮点数运算差异,Z%分支跳转差异,等等。 > > >> +尽管如此,使用简单计算方式的结果目前还是令人满意的。 > > >> + > > >> +2. 任务使用率 Task utilization > > >> +============================== > > >> + > > >> +2.1 简介 > > >> +-------- > > >> + > > >> +capacity感知调度要求描述任务需求,描述方式要和CPU capacity相关。 > > >> +每个调度类可以用不同的方式描述它。任务使用率是CFS独有的描述方式,不过在这里介绍它有助于引入更多一般性的概念。 > > >> + > > >> +任务使用率是一种用百分比来描述任务吞吐率需求的方式。一个简单的近似是任务的占空比,也就是说:: > > >> + > > >> + task_util(p) = duty_cycle(p) > > >> + > > >> +在频率固定的SMP系统中,100%的利用率意味着任务是忙等待循环。反之,10%的利用率暗示这是一个小周期任务, > > >> +它在睡眠上花费的时间比执行更多。 > > >> + > > >> +2.2 频率不变性 Frequency invariance > > >> +----------------------------------- > > >> + > > >> +一个需要考虑的议题是,工作负载的占空比受CPU正在运行的OPP直接影响。考虑以给定的频率F执行周期性工作负载:: > > >> + > > >> + CPU work ^ > > >> + | ____ ____ ____ > > >> + | | | | | | | > > >> + +----+----+----+----+----+----+----+----+----+----+-> time > > >> + > > >> +可以算出 duty_cycle(p) == 25%。 > > >> + > > >> +现在,考虑以给定频率F/2执行 *同一个* 工作负载:: > > >> + > > >> + CPU work ^ > > >> + | _________ _________ ____ > > >> + | | | | | | > > >> + +----+----+----+----+----+----+----+----+----+----+-> time > > >> + > > >> +可以算出 duty_cycle(p) == 50%,尽管两次执行中,任务的行为完全一致(也就是说,执行的工作量相同)。 > > >> + > > >> +任务利用率信号可按下面公式处理成频率不变的(译注:这里的术语用到了信号与系统的概念):: > > >> + > > >> + task_util_freq_inv(p) = duty_cycle(p) * (curr_frequency(cpu) / max_frequency(cpu)) > > >> + > > >> +对上面两个例子运用该公式,可以算出频率不变的任务利用率均为25%。 > > >> + > > >> +2.3 CPU不变性 CPU invariance > > >> +---------------------------- > > >> + > > >> +CPU capacity与任务利用率具有类型的效应,在capacity不同的CPU上执行完全相同的工作负载, > > >> +将算出不同的占空比。 > > >> + > > >> +考虑1.3.2节提到的系统,也就是说:: > > >> + > > >> +- capacity(CPU0) = C > > >> +- capacity(CPU1) = C/3 > > >> + > > >> +每个CPU按最大频率执行指定周期性工作负载,结果为:: > > >> + > > >> + CPU0 work ^ > > >> + | ____ ____ ____ > > >> + | | | | | | | > > >> + +----+----+----+----+----+----+----+----+----+----+-> time > > >> + > > >> + CPU1 work ^ > > >> + | ______________ ______________ ____ > > >> + | | | | | | > > >> + +----+----+----+----+----+----+----+----+----+----+-> time > > >> + > > >> +也就是说, > > >> + > > >> +- duty_cycle(p) == 25%,如果任务p在CPU0上按最大频率运行。 > > >> +- duty_cycle(p) == 75%,如果任务p在CPU1上按最大频率运行。 > > >> + > > >> +任务利用率信号可按下面公式处理成CPU容量不变的:: > > >> + > > >> + task_util_cpu_inv(p) = duty_cycle(p) * (capacity(cpu) / max_capacity) > > >> + > > >> +其中 ``max_capacity`` 是系统中最高的CPU capacity。对上面的例子运用该公式, > > >> +可以算出CPU capacity不变的任务利用率均为25%。 > > >> + > > >> +2.4 任务利用率不变量 Invariant task utilization > > >> +----------------------------------------------- > > >> + > > >> +频率和CPU capacity不变性都需要被应用到任务利用率的计算中,以便求出真正的不变信号。 > > >> +任务利用率的伪计算公式是同时具备CPU和频率不变性的,也就是说,对于指定任务p:: > > >> + > > >> + curr_frequency(cpu) capacity(cpu) > > >> + task_util_inv(p) = duty_cycle(p) * ------------------- * ------------- > > >> + max_frequency(cpu) max_capacity > > >> + > > >> +也就是说,任务利用率不变量假定任务在系统中最高capacity CPU上以最高频率运行,以此描述任务的行为。 > > >> + > > >> +在接下来的章节中提到的任何任务利用率,均是不变量的形式。 > > >> + > > >> +2.5 利用率估算 > > >> +-------------- > > >> + > > >> +由于预测未来的水晶球不存在,当任务第一次变成可运行时,任务的行为和任务利用率均不能被准确预测。 > > >> +CFS调度类基于实体负载跟踪机制(Per-Entity Load Tracking, PELT)维护了少量CPU和任务信号, > > >> +其中之一可以算出平均利用率(与瞬时相反)。 > > >> + > > >> +这意味着,尽管运用“真实的”任务利用率(凭借水晶球)写出capacity感知调度的准则, > > >> +但是它的实现将只能用任务利用率的估算值。 > > >> + > > >> +3. capacity感知调度的需求 > > >> +========================= > > >> + > > >> +3.1 CPU capacity > > >> +---------------- > > >> + > > >> +当前,Linux无法凭自身算出CPU capacity,因此必须要有把这个信息传递给Linux的方式。 > > >> +每个架构必须为此定义arch_scale_cpu_capacity()函数。 > > >> + > > >> +arm和arm64架构直接把这个信息映射到arch_topology驱动的CPU scaling数据中 > > >> +(译注:参考arch_topology.h的percpu变量cpu_scale), > > >> +它是从capacity-dmips-mhz CPU binding中衍生计算出来的。参见 > > >> +Documentation/devicetree/bindings/arm/cpu-capacity.txt。 > > >> + > > >> +3.2 Frequency invariance > > >> +------------------------ > > >> + > > >> +如2.2节所述,capacity感知调度需要频率不变的任务利用率。 > > >> +每个架构必须为此定义arch_scale_freq_capacity(cpu)函数。 > > >> + > > >> +实现该函数要求计算出每个CPU当前以什么频率在运行。实现它的一种方式是利用硬件计数器 > > >> +(x86的APERF/MPERF,arm64的AMU),它能按CPU当前频率动态可扩展地升降递增计数器的速率。 > > >> +另一种方式是在cpufreq频率变化时直接使用钩子函数,内核此时感知到将要被切换的频率(也被arm/arm64实现了)。 > > >> + > > >> +4. 调度器拓扑结构 > > >> +================= > > >> + > > >> +在构建调度域时,调度器将会发现系统是否表现为非对称CPU capacity。如果是,那么: > > >> + > > >> +- sched_asym_cpucapacity static key将使能。 > > >> +- SD_ASYM_CPUCAPACITY_FULL标志位将在尽量最低调度域层级中被设置,同时要满足条件: > > >> + 调度域恰好完整包含某个CPU capacity值的全部CPU。 > > >> +- SD_ASYM_CPUCAPACITY标志将在所有包含非对称CPU的调度域中被设置。 > > >> + > > >> +sched_asym_cpucapacity static key的设计意图是,保护为非对称CPU capacity系统所准备的代码。 > > >> +不过要注意的是,这个key是系统范围可见的。想象下面使用了cpuset的步骤:: > > >> + > > >> + capacity C/2 C > > >> + ________ ________ > > >> + / \ / \ > > >> + CPUs 0 1 2 3 4 5 6 7 > > >> + \__/ \______________/ > > >> + cpusets cs0 cs1 > > >> + > > >> +可以通过下面的方式创建: > > >> + > > >> +.. code-block:: sh > > >> + > > >> + mkdir /sys/fs/cgroup/cpuset/cs0 > > >> + echo 0-1 > /sys/fs/cgroup/cpuset/cs0/cpuset.cpus > > >> + echo 0 > /sys/fs/cgroup/cpuset/cs0/cpuset.mems > > >> + > > >> + mkdir /sys/fs/cgroup/cpuset/cs1 > > >> + echo 2-7 > /sys/fs/cgroup/cpuset/cs1/cpuset.cpus > > >> + echo 0 > /sys/fs/cgroup/cpuset/cs1/cpuset.mems > > >> + > > >> + echo 0 > /sys/fs/cgroup/cpuset/cpuset.sched_load_balance > > >> + > > >> +由于“这是”非对称CPU capacity系统,sched_asym_cpucapacity static key将使能。 > > >> +然而,CPU 0--1对应的调度域层级,capacity值仅有一个,该层级中SD_ASYM_CPUCAPACITY未被设置, > > >> +它描述的是一个SMP区域,也应该被以此处理。 > > >> + > > >> +因此,“典型的”保护非对称CPU capacity代码路径的代码模式是: > > >> + > > >> +- 检查sched_asym_cpucapacity static key > > >> +- 如果它被使能,接着检查调度域层级中SD_ASYM_CPUCAPACITY标志位是否出现 > > >> + > > >> +5. capacity感知调度的实现 > > >> +========================= > > >> + > > >> +5.1 CFS > > >> +------- > > >> + > > >> +5.1.1 capacity适应性(fitness) > > >> +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > > >> + > > >> +CFS最主要的capacity调度准则是:: > > >> + > > >> + task_util(p) < capacity(task_cpu(p)) > > >> + > > >> +它通常被称为capacity适应性准则。也就是说,CFS必须保证任务“适合”在某个CPU上运行。 > > >> +如果准则被违反,任务将要更长地消耗该CPU,任务是CPU受限的(CPU-bound)。 > > >> + > > >> +此外,uclamp允许用户空间指定任务的最小和最大利用率,要么以sched_setattr()的方式, > > >> +要么以cgroup接口的方式(参阅Documentation/admin-guide/cgroup-v2.rst)。 > > >> +如其名字所暗示,uclamp可以被用在前一条准则中限制task_util()。 > > >> + > > >> +5.1.2 被唤醒任务的CPU选择 > > >> +~~~~~~~~~~~~~~~~~~~~~~~~~ > > >> + > > >> +CFS任务唤醒的CPU选择,遵循上面描述的capacity适应性准则。在此之上,uclamp被用来限制任务利用率, > > >> +这令用户空间对CFS任务的CPU选择有更多的控制。也就是说,CFS被唤醒任务的CPU选择,搜索满足以下条件的CPU:: > > >> + > > >> + clamp(task_util(p), task_uclamp_min(p), task_uclamp_max(p)) < capacity(cpu) > > >> + > > >> +通过使用uclamp,举例来说,用户空间可以允许忙等待循环(100%使用率)在任意CPU上运行, > > >> +只要给它设置低的uclamp.max值。相反,uclamp能强制一个小的周期性任务(比如,10%利用率) > > >> +在最高性能的CPU上运行,只要给它设置高的uclamp.min值。 > > >> + > > >> +.. note:: > > >> + > > >> + CFS的被唤醒的任务的CPU选择,可被能耗感知调度(Energy Aware Scheduling,EAS) > > >> + 覆盖,在Documentation/scheduler/sched-energy.rst中描述。 > > >> + > > >> +5.1.3 负载均衡 > > >> +~~~~~~~~~~~~~~ > > >> + > > >> +被唤醒任务的CPU选择的一个病理性的例子是,任务几乎不睡眠,那么也几乎不发生唤醒。考虑:: > > >> + > > >> + w == wakeup event > > >> + > > >> + capacity(CPU0) = C > > >> + capacity(CPU1) = C / 3 > > >> + > > >> + workload on CPU0 > > >> + CPU work ^ > > >> + | _________ _________ ____ > > >> + | | | | | | > > >> + +----+----+----+----+----+----+----+----+----+----+-> time > > >> + w w w > > >> + > > >> + workload on CPU1 > > >> + CPU work ^ > > >> + | ____________________________________________ > > >> + | | > > >> + +----+----+----+----+----+----+----+----+----+----+-> > > >> + w > > >> + > > >> +该工作负载应该在CPU0上运行,不过如果任务满足以下条件之一: > > >> + > > >> +- 一开始发生不合适的调度(不准确的初始利用率估计) > > >> +- 一开始调度正确,但突然需要更多的处理器功率 > > >> + > > >> +则任务可能变为CPU受限的,也就是说 ``task_util(p) > capacity(task_cpu(p))``; > > >> +CPU capacity调度准则被违反,将不会有任何唤醒事件来修复这个错误的CPU选择。 > > >> + > > >> +这种场景下的任务被称为“不合适的”(misfit)任务,处理这个场景的机制同样也以此命名。 > > >> +Misfit任务迁移借助CFS负载均衡器,更明确的说,是主动负载均衡的部分(用来迁移正在运行的任务)。 > > >> +当发生负载均衡时,如果一个misfit任务可以被迁移到一个相较当前运行的CPU具有更高capacity的CPU上, > > >> +那么misfit任务的主动负载均衡将被触发。 > > >> + > > >> +5.2 RT > > >> +------ > > >> + > > >> +5.2.1 被唤醒任务的CPU选择 > > >> +~~~~~~~~~~~~~~~~~~~~~~~~~ > > >> + > > >> +RT任务唤醒时的CPU选择,搜索满足以下条件的CPU:: > > >> + > > >> + task_uclamp_min(p) <= capacity(task_cpu(cpu)) > > >> + > > >> +同时仍然允许接着使用常规的优先级限制。如果没有CPU能满足这个capacity准则,那么将使用基于严格优先级的调度, > > >> +CPU capacity将被忽略。 > > >> + > > >> +5.3 DL > > >> +------ > > >> + > > >> +5.3.1 被唤醒任务的CPU选择 > > >> +~~~~~~~~~~~~~~~~~~~~~~~~~ > > >> + > > >> +DL任务唤醒时的CPU选择,搜索满足以下条件的CPU:: > > >> + > > >> + task_bandwidth(p) < capacity(task_cpu(p)) > > >> + > > >> +同时仍然允许接着使用常规的带宽和截止期限限制。如果没有CPU能满足这个capacity准则, > > >> +那么任务依然在当前CPU队列中。 > > >> -- > > >> 2.17.1 > > >> > > > > Thanks, > > Tang