Re: [PATCH v6 2/5] power: avs: Add support for CPR (Core Power Reduction)

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Tue 19 Nov 07:46 PST 2019, Niklas Cassel wrote:

> CPR (Core Power Reduction) is a technology that reduces core power on a
> CPU or other device. It reads voltage settings in efuse from product
> test process as initial settings.
> Each OPP corresponds to a "corner" that has a range of valid voltages
> for a particular frequency. While the device is running at a particular
> frequency, CPR monitors dynamic factors such as temperature, etc. and
> adjusts the voltage for that frequency accordingly to save power
> and meet silicon characteristic requirements.
> 
> This driver is based on an RFC by Stephen Boyd[1], which in turn is
> based on work by others on codeaurora.org[2].
> 
> [1] https://lkml.org/lkml/2015/9/18/833
> [2] https://www.codeaurora.org/cgit/quic/la/kernel/msm-3.10/tree/drivers/regulator/cpr-regulator.c?h=msm-3.10
> 

Reviewed-by: Bjorn Andersson <bjorn.andersson@xxxxxxxxxx>

Regards,
Bjorn

> Co-developed-by: Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@xxxxxxxxxx>
> Signed-off-by: Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@xxxxxxxxxx>
> Signed-off-by: Niklas Cassel <niklas.cassel@xxxxxxxxxx>
> ---
> Changes since v5:
> -Removed pm_ops from platform_driver struct.
>  (This was embarrassingly not properly removed in previous patch revision.)
> 
>  MAINTAINERS                  |    8 +
>  drivers/power/avs/Kconfig    |   15 +
>  drivers/power/avs/Makefile   |    1 +
>  drivers/power/avs/qcom-cpr.c | 1754 ++++++++++++++++++++++++++++++++++
>  4 files changed, 1778 insertions(+)
>  create mode 100644 drivers/power/avs/qcom-cpr.c
> 
> diff --git a/MAINTAINERS b/MAINTAINERS
> index 9d61ef301811..b93433458574 100644
> --- a/MAINTAINERS
> +++ b/MAINTAINERS
> @@ -13657,6 +13657,14 @@ S:	Maintained
>  F:	Documentation/devicetree/bindings/opp/qcom-nvmem-cpufreq.txt
>  F:	drivers/cpufreq/qcom-cpufreq-nvmem.c
>  
> +QUALCOMM CORE POWER REDUCTION (CPR) AVS DRIVER
> +M:	Niklas Cassel <niklas.cassel@xxxxxxxxxx>
> +L:	linux-pm@xxxxxxxxxxxxxxx
> +L:	linux-arm-msm@xxxxxxxxxxxxxxx
> +S:	Maintained
> +F:	Documentation/devicetree/bindings/power/avs/qcom,cpr.txt
> +F:	drivers/power/avs/qcom-cpr.c
> +
>  QUALCOMM EMAC GIGABIT ETHERNET DRIVER
>  M:	Timur Tabi <timur@xxxxxxxxxx>
>  L:	netdev@xxxxxxxxxxxxxxx
> diff --git a/drivers/power/avs/Kconfig b/drivers/power/avs/Kconfig
> index b5a217b828dc..f4bf313257bb 100644
> --- a/drivers/power/avs/Kconfig
> +++ b/drivers/power/avs/Kconfig
> @@ -12,6 +12,21 @@ menuconfig POWER_AVS
>  
>  	  Say Y here to enable Adaptive Voltage Scaling class support.
>  
> +config QCOM_CPR
> +	tristate "QCOM Core Power Reduction (CPR) support"
> +	depends on POWER_AVS
> +	select PM_OPP
> +	help
> +	  Say Y here to enable support for the CPR hardware found on Qualcomm
> +	  SoCs like QCS404.
> +
> +	  This driver populates CPU OPPs tables and makes adjustments to the
> +	  tables based on feedback from the CPR hardware. If you want to do
> +	  CPUfrequency scaling say Y here.
> +
> +	  To compile this driver as a module, choose M here: the module will
> +	  be called qcom-cpr
> +
>  config ROCKCHIP_IODOMAIN
>          tristate "Rockchip IO domain support"
>          depends on POWER_AVS && ARCH_ROCKCHIP && OF
> diff --git a/drivers/power/avs/Makefile b/drivers/power/avs/Makefile
> index a1b8cd453f19..9007d05853e2 100644
> --- a/drivers/power/avs/Makefile
> +++ b/drivers/power/avs/Makefile
> @@ -1,3 +1,4 @@
>  # SPDX-License-Identifier: GPL-2.0-only
>  obj-$(CONFIG_POWER_AVS_OMAP)		+= smartreflex.o
> +obj-$(CONFIG_QCOM_CPR)			+= qcom-cpr.o
>  obj-$(CONFIG_ROCKCHIP_IODOMAIN)		+= rockchip-io-domain.o
> diff --git a/drivers/power/avs/qcom-cpr.c b/drivers/power/avs/qcom-cpr.c
> new file mode 100644
> index 000000000000..42e0de19b5df
> --- /dev/null
> +++ b/drivers/power/avs/qcom-cpr.c
> @@ -0,0 +1,1754 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
> + * Copyright (c) 2019, Linaro Limited
> + */
> +
> +#include <linux/module.h>
> +#include <linux/err.h>
> +#include <linux/debugfs.h>
> +#include <linux/string.h>
> +#include <linux/kernel.h>
> +#include <linux/list.h>
> +#include <linux/init.h>
> +#include <linux/io.h>
> +#include <linux/bitops.h>
> +#include <linux/slab.h>
> +#include <linux/of.h>
> +#include <linux/of_device.h>
> +#include <linux/platform_device.h>
> +#include <linux/pm_domain.h>
> +#include <linux/pm_opp.h>
> +#include <linux/interrupt.h>
> +#include <linux/regmap.h>
> +#include <linux/mfd/syscon.h>
> +#include <linux/regulator/consumer.h>
> +#include <linux/clk.h>
> +#include <linux/nvmem-consumer.h>
> +#include <linux/bitops.h>
> +
> +/* Register Offsets for RB-CPR and Bit Definitions */
> +
> +/* RBCPR Version Register */
> +#define REG_RBCPR_VERSION		0
> +#define RBCPR_VER_2			0x02
> +#define FLAGS_IGNORE_1ST_IRQ_STATUS	BIT(0)
> +
> +/* RBCPR Gate Count and Target Registers */
> +#define REG_RBCPR_GCNT_TARGET(n)	(0x60 + 4 * (n))
> +
> +#define RBCPR_GCNT_TARGET_TARGET_SHIFT	0
> +#define RBCPR_GCNT_TARGET_TARGET_MASK	GENMASK(11, 0)
> +#define RBCPR_GCNT_TARGET_GCNT_SHIFT	12
> +#define RBCPR_GCNT_TARGET_GCNT_MASK	GENMASK(9, 0)
> +
> +/* RBCPR Timer Control */
> +#define REG_RBCPR_TIMER_INTERVAL	0x44
> +#define REG_RBIF_TIMER_ADJUST		0x4c
> +
> +#define RBIF_TIMER_ADJ_CONS_UP_MASK	GENMASK(3, 0)
> +#define RBIF_TIMER_ADJ_CONS_UP_SHIFT	0
> +#define RBIF_TIMER_ADJ_CONS_DOWN_MASK	GENMASK(3, 0)
> +#define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT	4
> +#define RBIF_TIMER_ADJ_CLAMP_INT_MASK	GENMASK(7, 0)
> +#define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT	8
> +
> +/* RBCPR Config Register */
> +#define REG_RBIF_LIMIT			0x48
> +#define RBIF_LIMIT_CEILING_MASK		GENMASK(5, 0)
> +#define RBIF_LIMIT_CEILING_SHIFT	6
> +#define RBIF_LIMIT_FLOOR_BITS		6
> +#define RBIF_LIMIT_FLOOR_MASK		GENMASK(5, 0)
> +
> +#define RBIF_LIMIT_CEILING_DEFAULT	RBIF_LIMIT_CEILING_MASK
> +#define RBIF_LIMIT_FLOOR_DEFAULT	0
> +
> +#define REG_RBIF_SW_VLEVEL		0x94
> +#define RBIF_SW_VLEVEL_DEFAULT		0x20
> +
> +#define REG_RBCPR_STEP_QUOT		0x80
> +#define RBCPR_STEP_QUOT_STEPQUOT_MASK	GENMASK(7, 0)
> +#define RBCPR_STEP_QUOT_IDLE_CLK_MASK	GENMASK(3, 0)
> +#define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT	8
> +
> +/* RBCPR Control Register */
> +#define REG_RBCPR_CTL			0x90
> +
> +#define RBCPR_CTL_LOOP_EN			BIT(0)
> +#define RBCPR_CTL_TIMER_EN			BIT(3)
> +#define RBCPR_CTL_SW_AUTO_CONT_ACK_EN		BIT(5)
> +#define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN	BIT(6)
> +#define RBCPR_CTL_COUNT_MODE			BIT(10)
> +#define RBCPR_CTL_UP_THRESHOLD_MASK	GENMASK(3, 0)
> +#define RBCPR_CTL_UP_THRESHOLD_SHIFT	24
> +#define RBCPR_CTL_DN_THRESHOLD_MASK	GENMASK(3, 0)
> +#define RBCPR_CTL_DN_THRESHOLD_SHIFT	28
> +
> +/* RBCPR Ack/Nack Response */
> +#define REG_RBIF_CONT_ACK_CMD		0x98
> +#define REG_RBIF_CONT_NACK_CMD		0x9c
> +
> +/* RBCPR Result status Register */
> +#define REG_RBCPR_RESULT_0		0xa0
> +
> +#define RBCPR_RESULT0_BUSY_SHIFT	19
> +#define RBCPR_RESULT0_BUSY_MASK		BIT(RBCPR_RESULT0_BUSY_SHIFT)
> +#define RBCPR_RESULT0_ERROR_LT0_SHIFT	18
> +#define RBCPR_RESULT0_ERROR_SHIFT	6
> +#define RBCPR_RESULT0_ERROR_MASK	GENMASK(11, 0)
> +#define RBCPR_RESULT0_ERROR_STEPS_SHIFT	2
> +#define RBCPR_RESULT0_ERROR_STEPS_MASK	GENMASK(3, 0)
> +#define RBCPR_RESULT0_STEP_UP_SHIFT	1
> +
> +/* RBCPR Interrupt Control Register */
> +#define REG_RBIF_IRQ_EN(n)		(0x100 + 4 * (n))
> +#define REG_RBIF_IRQ_CLEAR		0x110
> +#define REG_RBIF_IRQ_STATUS		0x114
> +
> +#define CPR_INT_DONE		BIT(0)
> +#define CPR_INT_MIN		BIT(1)
> +#define CPR_INT_DOWN		BIT(2)
> +#define CPR_INT_MID		BIT(3)
> +#define CPR_INT_UP		BIT(4)
> +#define CPR_INT_MAX		BIT(5)
> +#define CPR_INT_CLAMP		BIT(6)
> +#define CPR_INT_ALL	(CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
> +			CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
> +#define CPR_INT_DEFAULT	(CPR_INT_UP | CPR_INT_DOWN)
> +
> +#define CPR_NUM_RING_OSC	8
> +
> +/* CPR eFuse parameters */
> +#define CPR_FUSE_TARGET_QUOT_BITS_MASK	GENMASK(11, 0)
> +
> +#define CPR_FUSE_MIN_QUOT_DIFF		50
> +
> +#define FUSE_REVISION_UNKNOWN		(-1)
> +
> +enum voltage_change_dir {
> +	NO_CHANGE,
> +	DOWN,
> +	UP,
> +};
> +
> +struct cpr_fuse {
> +	char *ring_osc;
> +	char *init_voltage;
> +	char *quotient;
> +	char *quotient_offset;
> +};
> +
> +struct fuse_corner_data {
> +	int ref_uV;
> +	int max_uV;
> +	int min_uV;
> +	int max_volt_scale;
> +	int max_quot_scale;
> +	/* fuse quot */
> +	int quot_offset;
> +	int quot_scale;
> +	int quot_adjust;
> +	/* fuse quot_offset */
> +	int quot_offset_scale;
> +	int quot_offset_adjust;
> +};
> +
> +struct cpr_fuses {
> +	int init_voltage_step;
> +	int init_voltage_width;
> +	struct fuse_corner_data *fuse_corner_data;
> +};
> +
> +struct corner_data {
> +	unsigned int fuse_corner;
> +	unsigned long freq;
> +};
> +
> +struct cpr_desc {
> +	unsigned int num_fuse_corners;
> +	int min_diff_quot;
> +	int *step_quot;
> +
> +	unsigned int		timer_delay_us;
> +	unsigned int		timer_cons_up;
> +	unsigned int		timer_cons_down;
> +	unsigned int		up_threshold;
> +	unsigned int		down_threshold;
> +	unsigned int		idle_clocks;
> +	unsigned int		gcnt_us;
> +	unsigned int		vdd_apc_step_up_limit;
> +	unsigned int		vdd_apc_step_down_limit;
> +	unsigned int		clamp_timer_interval;
> +
> +	struct cpr_fuses cpr_fuses;
> +	bool reduce_to_fuse_uV;
> +	bool reduce_to_corner_uV;
> +};
> +
> +struct acc_desc {
> +	unsigned int	enable_reg;
> +	u32		enable_mask;
> +
> +	struct reg_sequence	*config;
> +	struct reg_sequence	*settings;
> +	int			num_regs_per_fuse;
> +};
> +
> +struct cpr_acc_desc {
> +	const struct cpr_desc *cpr_desc;
> +	const struct acc_desc *acc_desc;
> +};
> +
> +struct fuse_corner {
> +	int min_uV;
> +	int max_uV;
> +	int uV;
> +	int quot;
> +	int step_quot;
> +	const struct reg_sequence *accs;
> +	int num_accs;
> +	unsigned long max_freq;
> +	u8 ring_osc_idx;
> +};
> +
> +struct corner {
> +	int min_uV;
> +	int max_uV;
> +	int uV;
> +	int last_uV;
> +	int quot_adjust;
> +	u32 save_ctl;
> +	u32 save_irq;
> +	unsigned long freq;
> +	struct fuse_corner *fuse_corner;
> +};
> +
> +struct cpr_drv {
> +	unsigned int		num_corners;
> +
> +	unsigned int		ref_clk_khz;
> +	unsigned int		performance_state;
> +
> +	struct generic_pm_domain pd;
> +	struct device		*dev;
> +	struct mutex		lock;
> +	void __iomem		*base;
> +	struct corner		*corner;
> +	struct regulator	*vdd_apc;
> +	struct clk		*cpu_clk;
> +	struct regmap		*tcsr;
> +	bool			loop_disabled;
> +	u32			gcnt;
> +	unsigned long		flags;
> +
> +	struct fuse_corner	*fuse_corners;
> +	struct corner		*corners;
> +
> +	const struct cpr_desc *desc;
> +	const struct acc_desc *acc_desc;
> +	const struct cpr_fuse *cpr_fuses;
> +
> +	struct dentry *debugfs;
> +};
> +
> +static bool cpr_is_allowed(struct cpr_drv *drv)
> +{
> +	return !drv->loop_disabled;
> +}
> +
> +static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value)
> +{
> +	writel_relaxed(value, drv->base + offset);
> +}
> +
> +static u32 cpr_read(struct cpr_drv *drv, u32 offset)
> +{
> +	return readl_relaxed(drv->base + offset);
> +}
> +
> +static void
> +cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value)
> +{
> +	u32 val;
> +
> +	val = readl_relaxed(drv->base + offset);
> +	val &= ~mask;
> +	val |= value & mask;
> +	writel_relaxed(val, drv->base + offset);
> +}
> +
> +static void cpr_irq_clr(struct cpr_drv *drv)
> +{
> +	cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
> +}
> +
> +static void cpr_irq_clr_nack(struct cpr_drv *drv)
> +{
> +	cpr_irq_clr(drv);
> +	cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
> +}
> +
> +static void cpr_irq_clr_ack(struct cpr_drv *drv)
> +{
> +	cpr_irq_clr(drv);
> +	cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
> +}
> +
> +static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits)
> +{
> +	cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits);
> +}
> +
> +static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value)
> +{
> +	cpr_masked_write(drv, REG_RBCPR_CTL, mask, value);
> +}
> +
> +static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner)
> +{
> +	u32 val, mask;
> +	const struct cpr_desc *desc = drv->desc;
> +
> +	/* Program Consecutive Up & Down */
> +	val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
> +	val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
> +	mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK;
> +	cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val);
> +	cpr_masked_write(drv, REG_RBCPR_CTL,
> +			 RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
> +			 RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
> +			 corner->save_ctl);
> +	cpr_irq_set(drv, corner->save_irq);
> +
> +	if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV)
> +		val = RBCPR_CTL_LOOP_EN;
> +	else
> +		val = 0;
> +	cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val);
> +}
> +
> +static void cpr_ctl_disable(struct cpr_drv *drv)
> +{
> +	cpr_irq_set(drv, 0);
> +	cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
> +		       RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
> +	cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST,
> +			 RBIF_TIMER_ADJ_CONS_UP_MASK |
> +			 RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
> +	cpr_irq_clr(drv);
> +	cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
> +	cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
> +	cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0);
> +}
> +
> +static bool cpr_ctl_is_enabled(struct cpr_drv *drv)
> +{
> +	u32 reg_val;
> +
> +	reg_val = cpr_read(drv, REG_RBCPR_CTL);
> +	return reg_val & RBCPR_CTL_LOOP_EN;
> +}
> +
> +static bool cpr_ctl_is_busy(struct cpr_drv *drv)
> +{
> +	u32 reg_val;
> +
> +	reg_val = cpr_read(drv, REG_RBCPR_RESULT_0);
> +	return reg_val & RBCPR_RESULT0_BUSY_MASK;
> +}
> +
> +static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner)
> +{
> +	corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL);
> +	corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0));
> +}
> +
> +static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner)
> +{
> +	u32 gcnt, ctl, irq, ro_sel, step_quot;
> +	struct fuse_corner *fuse = corner->fuse_corner;
> +	const struct cpr_desc *desc = drv->desc;
> +	int i;
> +
> +	ro_sel = fuse->ring_osc_idx;
> +	gcnt = drv->gcnt;
> +	gcnt |= fuse->quot - corner->quot_adjust;
> +
> +	/* Program the step quotient and idle clocks */
> +	step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT;
> +	step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK;
> +	cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot);
> +
> +	/* Clear the target quotient value and gate count of all ROs */
> +	for (i = 0; i < CPR_NUM_RING_OSC; i++)
> +		cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
> +
> +	cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt);
> +	ctl = corner->save_ctl;
> +	cpr_write(drv, REG_RBCPR_CTL, ctl);
> +	irq = corner->save_irq;
> +	cpr_irq_set(drv, irq);
> +	dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt,
> +		ctl, irq);
> +}
> +
> +static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f,
> +			struct fuse_corner *end)
> +{
> +	if (f < end) {
> +		for (f += 1; f <= end; f++)
> +			regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
> +	} else {
> +		for (f -= 1; f >= end; f--)
> +			regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
> +	}
> +}
> +
> +static int cpr_pre_voltage(struct cpr_drv *drv,
> +			   struct fuse_corner *fuse_corner,
> +			   enum voltage_change_dir dir)
> +{
> +	struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
> +
> +	if (drv->tcsr && dir == DOWN)
> +		cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
> +
> +	return 0;
> +}
> +
> +static int cpr_post_voltage(struct cpr_drv *drv,
> +			    struct fuse_corner *fuse_corner,
> +			    enum voltage_change_dir dir)
> +{
> +	struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
> +
> +	if (drv->tcsr && dir == UP)
> +		cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
> +
> +	return 0;
> +}
> +
> +static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner,
> +			     int new_uV, enum voltage_change_dir dir)
> +{
> +	int ret;
> +	struct fuse_corner *fuse_corner = corner->fuse_corner;
> +
> +	ret = cpr_pre_voltage(drv, fuse_corner, dir);
> +	if (ret)
> +		return ret;
> +
> +	ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV);
> +	if (ret) {
> +		dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n",
> +				    new_uV);
> +		return ret;
> +	}
> +
> +	ret = cpr_post_voltage(drv, fuse_corner, dir);
> +	if (ret)
> +		return ret;
> +
> +	return 0;
> +}
> +
> +static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir)
> +{
> +	u32 val, error_steps, reg_mask;
> +	int last_uV, new_uV, step_uV, ret;
> +	struct corner *corner;
> +	const struct cpr_desc *desc = drv->desc;
> +
> +	if (dir != UP && dir != DOWN)
> +		return 0;
> +
> +	step_uV = regulator_get_linear_step(drv->vdd_apc);
> +	if (!step_uV)
> +		return -EINVAL;
> +
> +	corner = drv->corner;
> +
> +	val = cpr_read(drv, REG_RBCPR_RESULT_0);
> +
> +	error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT;
> +	error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK;
> +	last_uV = corner->last_uV;
> +
> +	if (dir == UP) {
> +		if (desc->clamp_timer_interval &&
> +		    error_steps < desc->up_threshold) {
> +			/*
> +			 * Handle the case where another measurement started
> +			 * after the interrupt was triggered due to a core
> +			 * exiting from power collapse.
> +			 */
> +			error_steps = max(desc->up_threshold,
> +					  desc->vdd_apc_step_up_limit);
> +		}
> +
> +		if (last_uV >= corner->max_uV) {
> +			cpr_irq_clr_nack(drv);
> +
> +			/* Maximize the UP threshold */
> +			reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
> +			reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
> +			val = reg_mask;
> +			cpr_ctl_modify(drv, reg_mask, val);
> +
> +			/* Disable UP interrupt */
> +			cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP);
> +
> +			return 0;
> +		}
> +
> +		if (error_steps > desc->vdd_apc_step_up_limit)
> +			error_steps = desc->vdd_apc_step_up_limit;
> +
> +		/* Calculate new voltage */
> +		new_uV = last_uV + error_steps * step_uV;
> +		new_uV = min(new_uV, corner->max_uV);
> +
> +		dev_dbg(drv->dev,
> +			"UP: -> new_uV: %d last_uV: %d perf state: %d\n",
> +			new_uV, last_uV, drv->performance_state);
> +	} else if (dir == DOWN) {
> +		if (desc->clamp_timer_interval &&
> +		    error_steps < desc->down_threshold) {
> +			/*
> +			 * Handle the case where another measurement started
> +			 * after the interrupt was triggered due to a core
> +			 * exiting from power collapse.
> +			 */
> +			error_steps = max(desc->down_threshold,
> +					  desc->vdd_apc_step_down_limit);
> +		}
> +
> +		if (last_uV <= corner->min_uV) {
> +			cpr_irq_clr_nack(drv);
> +
> +			/* Enable auto nack down */
> +			reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
> +			val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
> +
> +			cpr_ctl_modify(drv, reg_mask, val);
> +
> +			/* Disable DOWN interrupt */
> +			cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN);
> +
> +			return 0;
> +		}
> +
> +		if (error_steps > desc->vdd_apc_step_down_limit)
> +			error_steps = desc->vdd_apc_step_down_limit;
> +
> +		/* Calculate new voltage */
> +		new_uV = last_uV - error_steps * step_uV;
> +		new_uV = max(new_uV, corner->min_uV);
> +
> +		dev_dbg(drv->dev,
> +			"DOWN: -> new_uV: %d last_uV: %d perf state: %d\n",
> +			new_uV, last_uV, drv->performance_state);
> +	}
> +
> +	ret = cpr_scale_voltage(drv, corner, new_uV, dir);
> +	if (ret) {
> +		cpr_irq_clr_nack(drv);
> +		return ret;
> +	}
> +	drv->corner->last_uV = new_uV;
> +
> +	if (dir == UP) {
> +		/* Disable auto nack down */
> +		reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
> +		val = 0;
> +	} else if (dir == DOWN) {
> +		/* Restore default threshold for UP */
> +		reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
> +		reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
> +		val = desc->up_threshold;
> +		val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
> +	}
> +
> +	cpr_ctl_modify(drv, reg_mask, val);
> +
> +	/* Re-enable default interrupts */
> +	cpr_irq_set(drv, CPR_INT_DEFAULT);
> +
> +	/* Ack */
> +	cpr_irq_clr_ack(drv);
> +
> +	return 0;
> +}
> +
> +static irqreturn_t cpr_irq_handler(int irq, void *dev)
> +{
> +	struct cpr_drv *drv = dev;
> +	const struct cpr_desc *desc = drv->desc;
> +	irqreturn_t ret = IRQ_HANDLED;
> +	u32 val;
> +
> +	mutex_lock(&drv->lock);
> +
> +	val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
> +	if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
> +		val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
> +
> +	dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val);
> +
> +	if (!cpr_ctl_is_enabled(drv)) {
> +		dev_dbg(drv->dev, "CPR is disabled\n");
> +		ret = IRQ_NONE;
> +	} else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) {
> +		dev_dbg(drv->dev, "CPR measurement is not ready\n");
> +	} else if (!cpr_is_allowed(drv)) {
> +		val = cpr_read(drv, REG_RBCPR_CTL);
> +		dev_err_ratelimited(drv->dev,
> +				    "Interrupt broken? RBCPR_CTL = %#02x\n",
> +				    val);
> +		ret = IRQ_NONE;
> +	} else {
> +		/*
> +		 * Following sequence of handling is as per each IRQ's
> +		 * priority
> +		 */
> +		if (val & CPR_INT_UP) {
> +			cpr_scale(drv, UP);
> +		} else if (val & CPR_INT_DOWN) {
> +			cpr_scale(drv, DOWN);
> +		} else if (val & CPR_INT_MIN) {
> +			cpr_irq_clr_nack(drv);
> +		} else if (val & CPR_INT_MAX) {
> +			cpr_irq_clr_nack(drv);
> +		} else if (val & CPR_INT_MID) {
> +			/* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
> +			dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n");
> +		} else {
> +			dev_dbg(drv->dev,
> +				"IRQ occurred for unknown flag (%#08x)\n", val);
> +		}
> +
> +		/* Save register values for the corner */
> +		cpr_corner_save(drv, drv->corner);
> +	}
> +
> +	mutex_unlock(&drv->lock);
> +
> +	return ret;
> +}
> +
> +static int cpr_enable(struct cpr_drv *drv)
> +{
> +	int ret;
> +
> +	ret = regulator_enable(drv->vdd_apc);
> +	if (ret)
> +		return ret;
> +
> +	mutex_lock(&drv->lock);
> +
> +	if (cpr_is_allowed(drv) && drv->corner) {
> +		cpr_irq_clr(drv);
> +		cpr_corner_restore(drv, drv->corner);
> +		cpr_ctl_enable(drv, drv->corner);
> +	}
> +
> +	mutex_unlock(&drv->lock);
> +
> +	return 0;
> +}
> +
> +static int cpr_disable(struct cpr_drv *drv)
> +{
> +	int ret;
> +
> +	mutex_lock(&drv->lock);
> +
> +	if (cpr_is_allowed(drv)) {
> +		cpr_ctl_disable(drv);
> +		cpr_irq_clr(drv);
> +	}
> +
> +	mutex_unlock(&drv->lock);
> +
> +	ret = regulator_disable(drv->vdd_apc);
> +	if (ret)
> +		return ret;
> +
> +	return 0;
> +}
> +
> +static int cpr_config(struct cpr_drv *drv)
> +{
> +	int i;
> +	u32 val, gcnt;
> +	struct corner *corner;
> +	const struct cpr_desc *desc = drv->desc;
> +
> +	/* Disable interrupt and CPR */
> +	cpr_write(drv, REG_RBIF_IRQ_EN(0), 0);
> +	cpr_write(drv, REG_RBCPR_CTL, 0);
> +
> +	/* Program the default HW ceiling, floor and vlevel */
> +	val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK)
> +		<< RBIF_LIMIT_CEILING_SHIFT;
> +	val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK;
> +	cpr_write(drv, REG_RBIF_LIMIT, val);
> +	cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);
> +
> +	/*
> +	 * Clear the target quotient value and gate count of all
> +	 * ring oscillators
> +	 */
> +	for (i = 0; i < CPR_NUM_RING_OSC; i++)
> +		cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
> +
> +	/* Init and save gcnt */
> +	gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000;
> +	gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK;
> +	gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT;
> +	drv->gcnt = gcnt;
> +
> +	/* Program the delay count for the timer */
> +	val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000;
> +	cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val);
> +	dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val,
> +		desc->timer_delay_us);
> +
> +	/* Program Consecutive Up & Down */
> +	val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
> +	val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
> +	val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT;
> +	cpr_write(drv, REG_RBIF_TIMER_ADJUST, val);
> +
> +	/* Program the control register */
> +	val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT;
> +	val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT;
> +	val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
> +	val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
> +	cpr_write(drv, REG_RBCPR_CTL, val);
> +
> +	for (i = 0; i < drv->num_corners; i++) {
> +		corner = &drv->corners[i];
> +		corner->save_ctl = val;
> +		corner->save_irq = CPR_INT_DEFAULT;
> +	}
> +
> +	cpr_irq_set(drv, CPR_INT_DEFAULT);
> +
> +	val = cpr_read(drv, REG_RBCPR_VERSION);
> +	if (val <= RBCPR_VER_2)
> +		drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;
> +
> +	return 0;
> +}
> +
> +static int cpr_set_performance(struct generic_pm_domain *domain,
> +			       unsigned int state)
> +{
> +	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
> +	struct corner *corner, *end;
> +	enum voltage_change_dir dir;
> +	int ret = 0, new_uV;
> +
> +	mutex_lock(&drv->lock);
> +
> +	dev_dbg(drv->dev, "%s: setting perf state: %d (prev state: %d)\n",
> +		__func__, state, drv->performance_state);
> +
> +	/*
> +	 * Determine new corner we're going to.
> +	 * Remove one since lowest performance state is 1.
> +	 */
> +	corner = drv->corners + state - 1;
> +	end = &drv->corners[drv->num_corners - 1];
> +	if (corner > end || corner < drv->corners) {
> +		ret = -EINVAL;
> +		goto unlock;
> +	}
> +
> +	/* Determine direction */
> +	if (drv->corner > corner)
> +		dir = DOWN;
> +	else if (drv->corner < corner)
> +		dir = UP;
> +	else
> +		dir = NO_CHANGE;
> +
> +	if (cpr_is_allowed(drv))
> +		new_uV = corner->last_uV;
> +	else
> +		new_uV = corner->uV;
> +
> +	if (cpr_is_allowed(drv))
> +		cpr_ctl_disable(drv);
> +
> +	ret = cpr_scale_voltage(drv, corner, new_uV, dir);
> +	if (ret)
> +		goto unlock;
> +
> +	if (cpr_is_allowed(drv)) {
> +		cpr_irq_clr(drv);
> +		if (drv->corner != corner)
> +			cpr_corner_restore(drv, corner);
> +		cpr_ctl_enable(drv, corner);
> +	}
> +
> +	drv->corner = corner;
> +	drv->performance_state = state;
> +
> +unlock:
> +	mutex_unlock(&drv->lock);
> +
> +	return ret;
> +}
> +
> +static int cpr_read_efuse(struct device *dev, const char *cname, u32 *data)
> +{
> +	struct nvmem_cell *cell;
> +	ssize_t len;
> +	char *ret;
> +	int i;
> +
> +	*data = 0;
> +
> +	cell = nvmem_cell_get(dev, cname);
> +	if (IS_ERR(cell)) {
> +		if (PTR_ERR(cell) != -EPROBE_DEFER)
> +			dev_err(dev, "undefined cell %s\n", cname);
> +		return PTR_ERR(cell);
> +	}
> +
> +	ret = nvmem_cell_read(cell, &len);
> +	nvmem_cell_put(cell);
> +	if (IS_ERR(ret)) {
> +		dev_err(dev, "can't read cell %s\n", cname);
> +		return PTR_ERR(ret);
> +	}
> +
> +	for (i = 0; i < len; i++)
> +		*data |= ret[i] << (8 * i);
> +
> +	kfree(ret);
> +	dev_dbg(dev, "efuse read(%s) = %x, bytes %ld\n", cname, *data, len);
> +
> +	return 0;
> +}
> +
> +static int
> +cpr_populate_ring_osc_idx(struct cpr_drv *drv)
> +{
> +	struct fuse_corner *fuse = drv->fuse_corners;
> +	struct fuse_corner *end = fuse + drv->desc->num_fuse_corners;
> +	const struct cpr_fuse *fuses = drv->cpr_fuses;
> +	u32 data;
> +	int ret;
> +
> +	for (; fuse < end; fuse++, fuses++) {
> +		ret = cpr_read_efuse(drv->dev, fuses->ring_osc,
> +				     &data);
> +		if (ret)
> +			return ret;
> +		fuse->ring_osc_idx = data;
> +	}
> +
> +	return 0;
> +}
> +
> +static int cpr_read_fuse_uV(const struct cpr_desc *desc,
> +			    const struct fuse_corner_data *fdata,
> +			    const char *init_v_efuse,
> +			    int step_volt,
> +			    struct cpr_drv *drv)
> +{
> +	int step_size_uV, steps, uV;
> +	u32 bits = 0;
> +	int ret;
> +
> +	ret = cpr_read_efuse(drv->dev, init_v_efuse, &bits);
> +	if (ret)
> +		return ret;
> +
> +	steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1);
> +	/* Not two's complement.. instead highest bit is sign bit */
> +	if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1))
> +		steps = -steps;
> +
> +	step_size_uV = desc->cpr_fuses.init_voltage_step;
> +
> +	uV = fdata->ref_uV + steps * step_size_uV;
> +	return DIV_ROUND_UP(uV, step_volt) * step_volt;
> +}
> +
> +static int cpr_fuse_corner_init(struct cpr_drv *drv)
> +{
> +	const struct cpr_desc *desc = drv->desc;
> +	const struct cpr_fuse *fuses = drv->cpr_fuses;
> +	const struct acc_desc *acc_desc = drv->acc_desc;
> +	int i;
> +	unsigned int step_volt;
> +	struct fuse_corner_data *fdata;
> +	struct fuse_corner *fuse, *end, *prev;
> +	int uV;
> +	const struct reg_sequence *accs;
> +	int ret;
> +
> +	accs = acc_desc->settings;
> +
> +	step_volt = regulator_get_linear_step(drv->vdd_apc);
> +	if (!step_volt)
> +		return -EINVAL;
> +
> +	/* Populate fuse_corner members */
> +	fuse = drv->fuse_corners;
> +	end = &fuse[desc->num_fuse_corners - 1];
> +	fdata = desc->cpr_fuses.fuse_corner_data;
> +
> +	for (i = 0, prev = NULL; fuse <= end; fuse++, fuses++, i++, fdata++) {
> +		/*
> +		 * Update SoC voltages: platforms might choose a different
> +		 * regulators than the one used to characterize the algorithms
> +		 * (ie, init_voltage_step).
> +		 */
> +		fdata->min_uV = roundup(fdata->min_uV, step_volt);
> +		fdata->max_uV = roundup(fdata->max_uV, step_volt);
> +
> +		/* Populate uV */
> +		uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage,
> +				      step_volt, drv);
> +		if (uV < 0)
> +			return ret;
> +
> +		fuse->min_uV = fdata->min_uV;
> +		fuse->max_uV = fdata->max_uV;
> +		fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV);
> +
> +		if (fuse == end) {
> +			/*
> +			 * Allow the highest fuse corner's PVS voltage to
> +			 * define the ceiling voltage for that corner in order
> +			 * to support SoC's in which variable ceiling values
> +			 * are required.
> +			 */
> +			end->max_uV = max(end->max_uV, end->uV);
> +		}
> +
> +		/* Populate target quotient by scaling */
> +		ret = cpr_read_efuse(drv->dev, fuses->quotient, &fuse->quot);
> +		if (ret)
> +			return ret;
> +
> +		fuse->quot *= fdata->quot_scale;
> +		fuse->quot += fdata->quot_offset;
> +		fuse->quot += fdata->quot_adjust;
> +		fuse->step_quot = desc->step_quot[fuse->ring_osc_idx];
> +
> +		/* Populate acc settings */
> +		fuse->accs = accs;
> +		fuse->num_accs = acc_desc->num_regs_per_fuse;
> +		accs += acc_desc->num_regs_per_fuse;
> +	}
> +
> +	/*
> +	 * Restrict all fuse corner PVS voltages based upon per corner
> +	 * ceiling and floor voltages.
> +	 */
> +	for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) {
> +		if (fuse->uV > fuse->max_uV)
> +			fuse->uV = fuse->max_uV;
> +		else if (fuse->uV < fuse->min_uV)
> +			fuse->uV = fuse->min_uV;
> +
> +		ret = regulator_is_supported_voltage(drv->vdd_apc,
> +						     fuse->min_uV,
> +						     fuse->min_uV);
> +		if (!ret) {
> +			dev_err(drv->dev,
> +				"min uV: %d (fuse corner: %d) not supported by regulator\n",
> +				fuse->min_uV, i);
> +			return -EINVAL;
> +		}
> +
> +		ret = regulator_is_supported_voltage(drv->vdd_apc,
> +						     fuse->max_uV,
> +						     fuse->max_uV);
> +		if (!ret) {
> +			dev_err(drv->dev,
> +				"max uV: %d (fuse corner: %d) not supported by regulator\n",
> +				fuse->max_uV, i);
> +			return -EINVAL;
> +		}
> +
> +		dev_dbg(drv->dev,
> +			"fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n",
> +			i, fuse->min_uV, fuse->uV, fuse->max_uV,
> +			fuse->ring_osc_idx, fuse->quot, fuse->step_quot);
> +	}
> +
> +	return 0;
> +}
> +
> +static int cpr_calculate_scaling(const char *quot_offset,
> +				 struct cpr_drv *drv,
> +				 const struct fuse_corner_data *fdata,
> +				 const struct corner *corner)
> +{
> +	u32 quot_diff = 0;
> +	unsigned long freq_diff;
> +	int scaling;
> +	const struct fuse_corner *fuse, *prev_fuse;
> +	int ret;
> +
> +	fuse = corner->fuse_corner;
> +	prev_fuse = fuse - 1;
> +
> +	if (quot_offset) {
> +		ret = cpr_read_efuse(drv->dev, quot_offset, &quot_diff);
> +		if (ret)
> +			return ret;
> +
> +		quot_diff *= fdata->quot_offset_scale;
> +		quot_diff += fdata->quot_offset_adjust;
> +	} else {
> +		quot_diff = fuse->quot - prev_fuse->quot;
> +	}
> +
> +	freq_diff = fuse->max_freq - prev_fuse->max_freq;
> +	freq_diff /= 1000000; /* Convert to MHz */
> +	scaling = 1000 * quot_diff / freq_diff;
> +	return min(scaling, fdata->max_quot_scale);
> +}
> +
> +static int cpr_interpolate(const struct corner *corner, int step_volt,
> +			   const struct fuse_corner_data *fdata)
> +{
> +	unsigned long f_high, f_low, f_diff;
> +	int uV_high, uV_low, uV;
> +	u64 temp, temp_limit;
> +	const struct fuse_corner *fuse, *prev_fuse;
> +
> +	fuse = corner->fuse_corner;
> +	prev_fuse = fuse - 1;
> +
> +	f_high = fuse->max_freq;
> +	f_low = prev_fuse->max_freq;
> +	uV_high = fuse->uV;
> +	uV_low = prev_fuse->uV;
> +	f_diff = fuse->max_freq - corner->freq;
> +
> +	/*
> +	 * Don't interpolate in the wrong direction. This could happen
> +	 * if the adjusted fuse voltage overlaps with the previous fuse's
> +	 * adjusted voltage.
> +	 */
> +	if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq)
> +		return corner->uV;
> +
> +	temp = f_diff * (uV_high - uV_low);
> +	do_div(temp, f_high - f_low);
> +
> +	/*
> +	 * max_volt_scale has units of uV/MHz while freq values
> +	 * have units of Hz.  Divide by 1000000 to convert to.
> +	 */
> +	temp_limit = f_diff * fdata->max_volt_scale;
> +	do_div(temp_limit, 1000000);
> +
> +	uV = uV_high - min(temp, temp_limit);
> +	return roundup(uV, step_volt);
> +}
> +
> +static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp)
> +{
> +	struct device_node *np;
> +	unsigned int fuse_corner = 0;
> +
> +	np = dev_pm_opp_get_of_node(opp);
> +	if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner))
> +		pr_err("%s: missing 'qcom,opp-fuse-level' property\n",
> +		       __func__);
> +
> +	of_node_put(np);
> +
> +	return fuse_corner;
> +}
> +
> +unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref)
> +{
> +	u64 rate = 0;
> +	struct device *cpu_dev;
> +	struct device_node *ref_np;
> +	struct device_node *desc_np;
> +	struct device_node *child_np = NULL;
> +	struct device_node *child_req_np = NULL;
> +
> +	cpu_dev = get_cpu_device(0);
> +	if (!cpu_dev)
> +		return 0;
> +
> +	desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
> +	if (!desc_np)
> +		return 0;
> +
> +	ref_np = dev_pm_opp_get_of_node(ref);
> +	if (!ref_np)
> +		goto out_ref;
> +
> +	do {
> +		of_node_put(child_req_np);
> +		child_np = of_get_next_available_child(desc_np, child_np);
> +		child_req_np = of_parse_phandle(child_np, "required-opps", 0);
> +	} while (child_np && child_req_np != ref_np);
> +
> +	if (child_np && child_req_np == ref_np)
> +		of_property_read_u64(child_np, "opp-hz", &rate);
> +
> +	of_node_put(child_req_np);
> +	of_node_put(child_np);
> +	of_node_put(ref_np);
> +out_ref:
> +	of_node_put(desc_np);
> +
> +	return (unsigned long) rate;
> +}
> +
> +static int cpr_corner_init(struct cpr_drv *drv)
> +{
> +	const struct cpr_desc *desc = drv->desc;
> +	const struct cpr_fuse *fuses = drv->cpr_fuses;
> +	int i, level, count, scaling = 0;
> +	unsigned int fnum, fc;
> +	const char *quot_offset;
> +	struct fuse_corner *fuse, *prev_fuse;
> +	struct corner *corner, *end;
> +	struct corner_data *cdata;
> +	const struct fuse_corner_data *fdata;
> +	bool apply_scaling;
> +	unsigned long freq_diff, freq_diff_mhz;
> +	unsigned long freq;
> +	int step_volt = regulator_get_linear_step(drv->vdd_apc);
> +	struct dev_pm_opp *opp;
> +	struct device *pd_dev;
> +
> +	if (!step_volt)
> +		return -EINVAL;
> +
> +	corner = drv->corners;
> +	end = &corner[drv->num_corners - 1];
> +
> +	pd_dev = &drv->pd.dev;
> +	cdata = devm_kcalloc(drv->dev, drv->num_corners,
> +			     sizeof(struct corner_data),
> +			     GFP_KERNEL);
> +	if (!cdata)
> +		return -ENOMEM;
> +
> +	/*
> +	 * Store maximum frequency for each fuse corner based on the frequency
> +	 * plan
> +	 */
> +	count = dev_pm_opp_get_opp_count(pd_dev);
> +	for (level = 1; level <= count; level++) {
> +		opp = dev_pm_opp_find_level_exact(pd_dev, level);
> +		if (IS_ERR(opp))
> +			return -EINVAL;
> +		fc = cpr_get_fuse_corner(opp);
> +		if (!fc) {
> +			dev_pm_opp_put(opp);
> +			return -EINVAL;
> +		}
> +		fnum = fc - 1;
> +		freq = cpr_get_opp_hz_for_req(opp);
> +		if (!freq) {
> +			dev_pm_opp_put(opp);
> +			return -EINVAL;
> +		}
> +		cdata[level - 1].fuse_corner = fnum;
> +		cdata[level - 1].freq = freq;
> +
> +		fuse = &drv->fuse_corners[fnum];
> +		dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n",
> +			freq, dev_pm_opp_get_level(opp) - 1, fnum);
> +		if (freq > fuse->max_freq)
> +			fuse->max_freq = freq;
> +		dev_pm_opp_put(opp);
> +	}
> +
> +	/*
> +	 * Get the quotient adjustment scaling factor, according to:
> +	 *
> +	 * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
> +	 *		/ (freq(corner_N) - freq(corner_N-1)), max_factor)
> +	 *
> +	 * QUOT(corner_N):	quotient read from fuse for fuse corner N
> +	 * QUOT(corner_N-1):	quotient read from fuse for fuse corner (N - 1)
> +	 * freq(corner_N):	max frequency in MHz supported by fuse corner N
> +	 * freq(corner_N-1):	max frequency in MHz supported by fuse corner
> +	 *			 (N - 1)
> +	 *
> +	 * Then walk through the corners mapped to each fuse corner
> +	 * and calculate the quotient adjustment for each one using the
> +	 * following formula:
> +	 *
> +	 * quot_adjust = (freq_max - freq_corner) * scaling / 1000
> +	 *
> +	 * freq_max: max frequency in MHz supported by the fuse corner
> +	 * freq_corner: frequency in MHz corresponding to the corner
> +	 * scaling: calculated from above equation
> +	 *
> +	 *
> +	 *     +                           +
> +	 *     |                         v |
> +	 *   q |           f c           o |           f c
> +	 *   u |         c               l |         c
> +	 *   o |       f                 t |       f
> +	 *   t |     c                   a |     c
> +	 *     | c f                     g | c f
> +	 *     |                         e |
> +	 *     +---------------            +----------------
> +	 *       0 1 2 3 4 5 6               0 1 2 3 4 5 6
> +	 *          corner                      corner
> +	 *
> +	 *    c = corner
> +	 *    f = fuse corner
> +	 *
> +	 */
> +	for (apply_scaling = false, i = 0; corner <= end; corner++, i++) {
> +		fnum = cdata[i].fuse_corner;
> +		fdata = &desc->cpr_fuses.fuse_corner_data[fnum];
> +		quot_offset = fuses[fnum].quotient_offset;
> +		fuse = &drv->fuse_corners[fnum];
> +		if (fnum)
> +			prev_fuse = &drv->fuse_corners[fnum - 1];
> +		else
> +			prev_fuse = NULL;
> +
> +		corner->fuse_corner = fuse;
> +		corner->freq = cdata[i].freq;
> +		corner->uV = fuse->uV;
> +
> +		if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) {
> +			scaling = cpr_calculate_scaling(quot_offset, drv,
> +							fdata, corner);
> +			if (scaling < 0)
> +				return scaling;
> +
> +			apply_scaling = true;
> +		} else if (corner->freq == fuse->max_freq) {
> +			/* This is a fuse corner; don't scale anything */
> +			apply_scaling = false;
> +		}
> +
> +		if (apply_scaling) {
> +			freq_diff = fuse->max_freq - corner->freq;
> +			freq_diff_mhz = freq_diff / 1000000;
> +			corner->quot_adjust = scaling * freq_diff_mhz / 1000;
> +
> +			corner->uV = cpr_interpolate(corner, step_volt, fdata);
> +		}
> +
> +		corner->max_uV = fuse->max_uV;
> +		corner->min_uV = fuse->min_uV;
> +		corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
> +		corner->last_uV = corner->uV;
> +
> +		/* Reduce the ceiling voltage if needed */
> +		if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
> +			corner->max_uV = corner->uV;
> +		else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
> +			corner->max_uV = max(corner->min_uV, fuse->uV);
> +
> +		dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i,
> +			corner->min_uV, corner->uV, corner->max_uV,
> +			fuse->quot - corner->quot_adjust);
> +	}
> +
> +	return 0;
> +}
> +
> +static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv)
> +{
> +	const struct cpr_desc *desc = drv->desc;
> +	struct cpr_fuse *fuses;
> +	int i;
> +
> +	fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners,
> +			     sizeof(struct cpr_fuse),
> +			     GFP_KERNEL);
> +	if (!fuses)
> +		return ERR_PTR(-ENOMEM);
> +
> +	for (i = 0; i < desc->num_fuse_corners; i++) {
> +		char tbuf[32];
> +
> +		snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1);
> +		fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
> +		if (!fuses[i].ring_osc)
> +			return ERR_PTR(-ENOMEM);
> +
> +		snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1);
> +		fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf,
> +						     GFP_KERNEL);
> +		if (!fuses[i].init_voltage)
> +			return ERR_PTR(-ENOMEM);
> +
> +		snprintf(tbuf, 32, "cpr_quotient%d", i + 1);
> +		fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
> +		if (!fuses[i].quotient)
> +			return ERR_PTR(-ENOMEM);
> +
> +		snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1);
> +		fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf,
> +							GFP_KERNEL);
> +		if (!fuses[i].quotient_offset)
> +			return ERR_PTR(-ENOMEM);
> +	}
> +
> +	return fuses;
> +}
> +
> +static void cpr_set_loop_allowed(struct cpr_drv *drv)
> +{
> +	drv->loop_disabled = false;
> +}
> +
> +static int cpr_init_parameters(struct cpr_drv *drv)
> +{
> +	const struct cpr_desc *desc = drv->desc;
> +	struct clk *clk;
> +
> +	clk = clk_get(drv->dev, "ref");
> +	if (IS_ERR(clk))
> +		return PTR_ERR(clk);
> +
> +	drv->ref_clk_khz = clk_get_rate(clk) / 1000;
> +	clk_put(clk);
> +
> +	if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK ||
> +	    desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK ||
> +	    desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK ||
> +	    desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK ||
> +	    desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK ||
> +	    desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK)
> +		return -EINVAL;
> +
> +	dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n",
> +		desc->up_threshold, desc->down_threshold);
> +
> +	return 0;
> +}
> +
> +static int cpr_find_initial_corner(struct cpr_drv *drv)
> +{
> +	unsigned long rate;
> +	const struct corner *end;
> +	struct corner *iter;
> +	int i = 0;
> +
> +	if (!drv->cpu_clk) {
> +		dev_err(drv->dev, "cannot get rate from NULL clk\n");
> +		return -EINVAL;
> +	}
> +
> +	end = &drv->corners[drv->num_corners - 1];
> +	rate = clk_get_rate(drv->cpu_clk);
> +
> +	for (iter = drv->corners; iter <= end; iter++) {
> +		if (iter->freq > rate)
> +			break;
> +		i++;
> +		if (iter->freq == rate) {
> +			drv->corner = iter;
> +			drv->performance_state = i;
> +			break;
> +		}
> +		if (iter->freq < rate) {
> +			drv->corner = iter;
> +			drv->performance_state = i;
> +		}
> +	}
> +
> +	if (!drv->corner) {
> +		dev_err(drv->dev, "boot up corner not found\n");
> +		return -EINVAL;
> +	}
> +
> +	dev_dbg(drv->dev, "boot up perf state: %d\n", i);
> +
> +	return 0;
> +}
> +
> +static const struct cpr_desc qcs404_cpr_desc = {
> +	.num_fuse_corners = 3,
> +	.min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF,
> +	.step_quot = (int []){ 25, 25, 25, },
> +	.timer_delay_us = 5000,
> +	.timer_cons_up = 0,
> +	.timer_cons_down = 2,
> +	.up_threshold = 1,
> +	.down_threshold = 3,
> +	.idle_clocks = 15,
> +	.gcnt_us = 1,
> +	.vdd_apc_step_up_limit = 1,
> +	.vdd_apc_step_down_limit = 1,
> +	.cpr_fuses = {
> +		.init_voltage_step = 8000,
> +		.init_voltage_width = 6,
> +		.fuse_corner_data = (struct fuse_corner_data[]){
> +			/* fuse corner 0 */
> +			{
> +				.ref_uV = 1224000,
> +				.max_uV = 1224000,
> +				.min_uV = 1048000,
> +				.max_volt_scale = 0,
> +				.max_quot_scale = 0,
> +				.quot_offset = 0,
> +				.quot_scale = 1,
> +				.quot_adjust = 0,
> +				.quot_offset_scale = 5,
> +				.quot_offset_adjust = 0,
> +			},
> +			/* fuse corner 1 */
> +			{
> +				.ref_uV = 1288000,
> +				.max_uV = 1288000,
> +				.min_uV = 1048000,
> +				.max_volt_scale = 2000,
> +				.max_quot_scale = 1400,
> +				.quot_offset = 0,
> +				.quot_scale = 1,
> +				.quot_adjust = -20,
> +				.quot_offset_scale = 5,
> +				.quot_offset_adjust = 0,
> +			},
> +			/* fuse corner 2 */
> +			{
> +				.ref_uV = 1352000,
> +				.max_uV = 1384000,
> +				.min_uV = 1088000,
> +				.max_volt_scale = 2000,
> +				.max_quot_scale = 1400,
> +				.quot_offset = 0,
> +				.quot_scale = 1,
> +				.quot_adjust = 0,
> +				.quot_offset_scale = 5,
> +				.quot_offset_adjust = 0,
> +			},
> +		},
> +	},
> +};
> +
> +static const struct acc_desc qcs404_acc_desc = {
> +	.settings = (struct reg_sequence[]){
> +		{ 0xb120, 0x1041040 },
> +		{ 0xb124, 0x41 },
> +		{ 0xb120, 0x0 },
> +		{ 0xb124, 0x0 },
> +		{ 0xb120, 0x0 },
> +		{ 0xb124, 0x0 },
> +	},
> +	.config = (struct reg_sequence[]){
> +		{ 0xb138, 0xff },
> +		{ 0xb130, 0x5555 },
> +	},
> +	.num_regs_per_fuse = 2,
> +};
> +
> +static const struct cpr_acc_desc qcs404_cpr_acc_desc = {
> +	.cpr_desc = &qcs404_cpr_desc,
> +	.acc_desc = &qcs404_acc_desc,
> +};
> +
> +static unsigned int cpr_get_performance(struct generic_pm_domain *genpd,
> +					struct dev_pm_opp *opp)
> +{
> +	return dev_pm_opp_get_level(opp);
> +}
> +
> +static int cpr_power_off(struct generic_pm_domain *domain)
> +{
> +	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
> +
> +	return cpr_disable(drv);
> +}
> +
> +static int cpr_power_on(struct generic_pm_domain *domain)
> +{
> +	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
> +
> +	return cpr_enable(drv);
> +}
> +
> +static int cpr_pd_attach_dev(struct generic_pm_domain *domain,
> +			     struct device *dev)
> +{
> +	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
> +	const struct acc_desc *acc_desc = drv->acc_desc;
> +	int ret;
> +
> +	dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev));
> +
> +	if (drv->cpu_clk)
> +		return 0;
> +
> +	drv->cpu_clk = devm_clk_get(dev, NULL);
> +	if (IS_ERR(drv->cpu_clk)) {
> +		ret = PTR_ERR(drv->cpu_clk);
> +		if (ret != -EPROBE_DEFER)
> +			dev_err(drv->dev, "could not get cpu clk: %d\n", ret);
> +		return ret;
> +	}
> +
> +	dev_dbg(drv->dev, "using cpu clk from: %s\n", dev_name(dev));
> +
> +	/*
> +	 * Everything related to (virtual) corners has to be initialized
> +	 * here, when attaching to the power domain, since it depends on
> +	 * the power domain's OPP table, which isn't available earlier.
> +	 */
> +	drv->num_corners = dev_pm_opp_get_opp_count(&drv->pd.dev);
> +	if (drv->num_corners < 0)
> +		return drv->num_corners;
> +	if (drv->num_corners < 2) {
> +		dev_err(drv->dev, "need at least 2 OPPs to use CPR\n");
> +		return -EINVAL;
> +	}
> +
> +	dev_dbg(drv->dev, "number of OPPs: %d\n", drv->num_corners);
> +
> +	drv->corners = devm_kcalloc(dev, drv->num_corners,
> +				    sizeof(*drv->corners),
> +				    GFP_KERNEL);
> +	if (!drv->corners)
> +		return -ENOMEM;
> +
> +	ret = cpr_corner_init(drv);
> +	if (ret)
> +		return ret;
> +
> +	cpr_set_loop_allowed(drv);
> +
> +	ret = cpr_init_parameters(drv);
> +	if (ret)
> +		return ret;
> +
> +	/* Configure CPR HW but keep it disabled */
> +	ret = cpr_config(drv);
> +	if (ret)
> +		return ret;
> +
> +	ret = cpr_find_initial_corner(drv);
> +	if (ret)
> +		return ret;
> +
> +	if (acc_desc->config)
> +		regmap_multi_reg_write(drv->tcsr, acc_desc->config,
> +				       acc_desc->num_regs_per_fuse);
> +
> +	/* Enable ACC if required */
> +	if (acc_desc->enable_mask)
> +		regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
> +				   acc_desc->enable_mask,
> +				   acc_desc->enable_mask);
> +
> +	return 0;
> +}
> +
> +static int cpr_debug_info_show(struct seq_file *s, void *unused)
> +{
> +	u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps;
> +	u32 step_dn, step_up, error, error_lt0, busy;
> +	struct cpr_drv *drv = s->private;
> +	struct fuse_corner *fuse_corner;
> +	struct corner *corner;
> +
> +	corner = drv->corner;
> +	fuse_corner = corner->fuse_corner;
> +
> +	seq_printf(s, "corner, current_volt = %d uV\n",
> +		       corner->last_uV);
> +
> +	ro_sel = fuse_corner->ring_osc_idx;
> +	gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel));
> +	seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt);
> +
> +	ctl = cpr_read(drv, REG_RBCPR_CTL);
> +	seq_printf(s, "rbcpr_ctl = %#02X\n", ctl);
> +
> +	irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS);
> +	seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status);
> +
> +	reg = cpr_read(drv, REG_RBCPR_RESULT_0);
> +	seq_printf(s, "rbcpr_result_0 = %#02X\n", reg);
> +
> +	step_dn = reg & 0x01;
> +	step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01;
> +	seq_printf(s, "  [step_dn = %u", step_dn);
> +
> +	seq_printf(s, ", step_up = %u", step_up);
> +
> +	error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
> +				& RBCPR_RESULT0_ERROR_STEPS_MASK;
> +	seq_printf(s, ", error_steps = %u", error_steps);
> +
> +	error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK;
> +	seq_printf(s, ", error = %u", error);
> +
> +	error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01;
> +	seq_printf(s, ", error_lt_0 = %u", error_lt0);
> +
> +	busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01;
> +	seq_printf(s, ", busy = %u]\n", busy);
> +
> +	return 0;
> +}
> +DEFINE_SHOW_ATTRIBUTE(cpr_debug_info);
> +
> +static void cpr_debugfs_init(struct cpr_drv *drv)
> +{
> +	drv->debugfs = debugfs_create_dir("qcom_cpr", NULL);
> +
> +	debugfs_create_file("debug_info", 0444, drv->debugfs,
> +			    drv, &cpr_debug_info_fops);
> +}
> +
> +static int cpr_probe(struct platform_device *pdev)
> +{
> +	struct resource *res;
> +	struct device *dev = &pdev->dev;
> +	struct cpr_drv *drv;
> +	int irq, ret;
> +	const struct cpr_acc_desc *data;
> +	struct device_node *np;
> +	u32 cpr_rev = FUSE_REVISION_UNKNOWN;
> +
> +	data = of_device_get_match_data(dev);
> +	if (!data || !data->cpr_desc || !data->acc_desc)
> +		return -EINVAL;
> +
> +	drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
> +	if (!drv)
> +		return -ENOMEM;
> +	drv->dev = dev;
> +	drv->desc = data->cpr_desc;
> +	drv->acc_desc = data->acc_desc;
> +
> +	drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners,
> +					 sizeof(*drv->fuse_corners),
> +					 GFP_KERNEL);
> +	if (!drv->fuse_corners)
> +		return -ENOMEM;
> +
> +	np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
> +	if (!np)
> +		return -ENODEV;
> +
> +	drv->tcsr = syscon_node_to_regmap(np);
> +	of_node_put(np);
> +	if (IS_ERR(drv->tcsr))
> +		return PTR_ERR(drv->tcsr);
> +
> +	mutex_init(&drv->lock);
> +
> +	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> +	drv->base = devm_ioremap_resource(dev, res);
> +	if (IS_ERR(drv->base))
> +		return PTR_ERR(drv->base);
> +
> +	irq = platform_get_irq(pdev, 0);
> +	if (irq < 0)
> +		return -EINVAL;
> +
> +	drv->vdd_apc = devm_regulator_get(dev, "vdd-apc");
> +	if (IS_ERR(drv->vdd_apc))
> +		return PTR_ERR(drv->vdd_apc);
> +
> +	/*
> +	 * Initialize fuse corners, since it simply depends
> +	 * on data in efuses.
> +	 * Everything related to (virtual) corners has to be
> +	 * initialized after attaching to the power domain,
> +	 * since is depends on the OPP table.
> +	 */
> +	ret = cpr_read_efuse(dev, "cpr_fuse_revision", &cpr_rev);
> +	if (ret)
> +		return ret;
> +
> +	drv->cpr_fuses = cpr_get_fuses(drv);
> +	if (IS_ERR(drv->cpr_fuses))
> +		return PTR_ERR(drv->cpr_fuses);
> +
> +	ret = cpr_populate_ring_osc_idx(drv);
> +	if (ret)
> +		return ret;
> +
> +	ret = cpr_fuse_corner_init(drv);
> +	if (ret)
> +		return ret;
> +
> +	ret = devm_request_threaded_irq(dev, irq, NULL,
> +					cpr_irq_handler,
> +					IRQF_ONESHOT | IRQF_TRIGGER_RISING,
> +					"cpr", drv);
> +	if (ret)
> +		return ret;
> +
> +	drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name,
> +					  GFP_KERNEL);
> +	if (!drv->pd.name)
> +		return -EINVAL;
> +
> +	drv->pd.power_off = cpr_power_off;
> +	drv->pd.power_on = cpr_power_on;
> +	drv->pd.set_performance_state = cpr_set_performance;
> +	drv->pd.opp_to_performance_state = cpr_get_performance;
> +	drv->pd.attach_dev = cpr_pd_attach_dev;
> +
> +	ret = pm_genpd_init(&drv->pd, NULL, true);
> +	if (ret)
> +		return ret;
> +
> +	ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd);
> +	if (ret)
> +		return ret;
> +
> +	platform_set_drvdata(pdev, drv);
> +	cpr_debugfs_init(drv);
> +
> +	return 0;
> +}
> +
> +static int cpr_remove(struct platform_device *pdev)
> +{
> +	struct cpr_drv *drv = platform_get_drvdata(pdev);
> +
> +	if (cpr_is_allowed(drv)) {
> +		cpr_ctl_disable(drv);
> +		cpr_irq_set(drv, 0);
> +	}
> +
> +	of_genpd_del_provider(pdev->dev.of_node);
> +	pm_genpd_remove(&drv->pd);
> +
> +	debugfs_remove_recursive(drv->debugfs);
> +
> +	return 0;
> +}
> +
> +static const struct of_device_id cpr_match_table[] = {
> +	{ .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc },
> +	{ }
> +};
> +MODULE_DEVICE_TABLE(of, cpr_match_table);
> +
> +static struct platform_driver cpr_driver = {
> +	.probe		= cpr_probe,
> +	.remove		= cpr_remove,
> +	.driver		= {
> +		.name	= "qcom-cpr",
> +		.of_match_table = cpr_match_table,
> +	},
> +};
> +module_platform_driver(cpr_driver);
> +
> +MODULE_DESCRIPTION("Core Power Reduction (CPR) driver");
> +MODULE_LICENSE("GPL v2");
> -- 
> 2.23.0
> 




[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [Linux for Sparc]     [IETF Annouce]     [Security]     [Bugtraq]     [Linux MIPS]     [ECOS]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux