I'm in the process of reading the code, and got some questions/comments. -Chema On Fri, Jun 27, 2014 at 5:06 PM, Alexei Starovoitov <ast@xxxxxxxxxxxx> wrote: > Safety of eBPF programs is statically determined by the verifier, which detects: > - loops > - out of range jumps > - unreachable instructions > - invalid instructions > - uninitialized register access > - uninitialized stack access > - misaligned stack access > - out of range stack access > - invalid calling convention > > It checks that > - R1-R5 registers statisfy function prototype > - program terminates > - BPF_LD_ABS|IND instructions are only used in socket filters > > It is configured with: > > - bool (*is_valid_access)(int off, int size, enum bpf_access_type type); > that provides information to the verifer which fields of 'ctx' > are accessible (remember 'ctx' is the first argument to eBPF program) > > - const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); > reports argument types of kernel helper functions that eBPF program > may call, so that verifier can checks that R1-R5 types match prototype > > More details in Documentation/networking/filter.txt > > Signed-off-by: Alexei Starovoitov <ast@xxxxxxxxxxxx> > --- > Documentation/networking/filter.txt | 233 ++++++ > include/linux/bpf.h | 48 ++ > include/uapi/linux/bpf.h | 1 + > kernel/bpf/Makefile | 2 +- > kernel/bpf/syscall.c | 2 +- > kernel/bpf/verifier.c | 1431 +++++++++++++++++++++++++++++++++++ > 6 files changed, 1715 insertions(+), 2 deletions(-) > create mode 100644 kernel/bpf/verifier.c > > diff --git a/Documentation/networking/filter.txt b/Documentation/networking/filter.txt > index e14e486f69cd..05fee8fcedf1 100644 > --- a/Documentation/networking/filter.txt > +++ b/Documentation/networking/filter.txt > @@ -995,6 +995,108 @@ BPF_XADD | BPF_DW | BPF_STX: lock xadd *(u64 *)(dst_reg + off16) += src_reg > Where size is one of: BPF_B or BPF_H or BPF_W or BPF_DW. Note that 1 and > 2 byte atomic increments are not supported. > > +eBPF verifier > +------------- > +The safety of the eBPF program is determined in two steps. > + > +First step does DAG check to disallow loops and other CFG validation. > +In particular it will detect programs that have unreachable instructions. > +(though classic BPF checker allows them) > + > +Second step starts from the first insn and descends all possible paths. > +It simulates execution of every insn and observes the state change of > +registers and stack. > + > +At the start of the program the register R1 contains a pointer to context > +and has type PTR_TO_CTX. > +If verifier sees an insn that does R2=R1, then R2 has now type > +PTR_TO_CTX as well and can be used on the right hand side of expression. > +If R1=PTR_TO_CTX and insn is R2=R1+R1, then R2=INVALID_PTR, > +since addition of two valid pointers makes invalid pointer. > + > +If register was never written to, it's not readable: > + bpf_mov R0 = R2 > + bpf_exit > +will be rejected, since R2 is unreadable at the start of the program. > + > +After kernel function call, R1-R5 are reset to unreadable and > +R0 has a return type of the function. > + > +Since R6-R9 are callee saved, their state is preserved across the call. > + bpf_mov R6 = 1 > + bpf_call foo > + bpf_mov R0 = R6 > + bpf_exit > +is a correct program. If there was R1 instead of R6, it would have > +been rejected. > + > +Classic BPF register X is mapped to eBPF register R7 inside sk_convert_filter(), > +so that its state is preserved across calls. > + > +load/store instructions are allowed only with registers of valid types, which > +are PTR_TO_CTX, PTR_TO_MAP, PTR_TO_STACK. They are bounds and alignment checked. > +For example: > + bpf_mov R1 = 1 > + bpf_mov R2 = 2 > + bpf_xadd *(u32 *)(R1 + 3) += R2 > + bpf_exit > +will be rejected, since R1 doesn't have a valid pointer type at the time of > +execution of instruction bpf_xadd. > + > +At the start R1 contains pointer to ctx and R1 type is PTR_TO_CTX. > +ctx is generic. verifier is configured to known what context is for particular > +class of bpf programs. For example, context == skb (for socket filters) and > +ctx == seccomp_data for seccomp filters. > +A callback is used to customize verifier to restrict eBPF program access to only > +certain fields within ctx structure with specified size and alignment. > + > +For example, the following insn: > + bpf_ld R0 = *(u32 *)(R6 + 8) > +intends to load a word from address R6 + 8 and store it into R0 > +If R6=PTR_TO_CTX, via is_valid_access() callback the verifier will know > +that offset 8 of size 4 bytes can be accessed for reading, otherwise > +the verifier will reject the program. > +If R6=PTR_TO_STACK, then access should be aligned and be within > +stack bounds, which are [-MAX_BPF_STACK, 0). In this example offset is 8, > +so it will fail verification, since it's out of bounds. > + > +The verifier will allow eBPF program to read data from stack only after > +it wrote into it. > +Classic BPF verifier does similar check with M[0-15] memory slots. > +For example: > + bpf_ld R0 = *(u32 *)(R10 - 4) > + bpf_exit > +is invalid program. > +Though R10 is correct read-only register and has type PTR_TO_STACK > +and R10 - 4 is within stack bounds, there were no stores into that location. > + > +Pointer register spill/fill is tracked as well, since four (R6-R9) > +callee saved registers may not be enough for some programs. > + > +Allowed function calls are customized with bpf_verifier_ops->get_func_proto() > +For example, skb_get_nlattr() function has the following definition: > + struct bpf_func_proto proto = {RET_INTEGER, PTR_TO_CTX}; > +and eBPF verifier will check that this function is always called with first > +argument being 'ctx'. In other words R1 must have type PTR_TO_CTX > +at the time of bpf_call insn. > +After the call register R0 will be set to readable state, so that > +program can access it. > + > +Function calls is a main mechanism to extend functionality of eBPF programs. > +Socket filters may let programs to call one set of functions, whereas tracing > +filters may allow completely different set. > + > +If a function made accessible to eBPF program, it needs to be thought through > +from security point of view. The verifier will guarantee that the function is > +called with valid arguments. > + > +seccomp vs socket filters have different security restrictions for classic BPF. > +Seccomp solves this by two stage verifier: classic BPF verifier is followed > +by seccomp verifier. In case of eBPF one configurable verifier is shared for > +all use cases. > + > +See details of eBPF verifier in kernel/bpf/verifier.c > + > eBPF maps > --------- > 'maps' is a generic storage of different types for sharing data between kernel > @@ -1064,6 +1166,137 @@ size. It will not let programs pass junk values as 'key' and 'value' to > bpf_map_*_elem() functions, so these functions (implemented in C inside kernel) > can safely access the pointers in all cases. > > +Understanding eBPF verifier messages > +------------------------------------ > + > +The following are few examples of invalid eBPF programs and verifier error > +messages as seen in the log: > + > +Program with unreachable instructions: > +static struct sock_filter_int prog[] = { > + BPF_EXIT_INSN(), > + BPF_EXIT_INSN(), > +}; > +Error: > + unreachable insn 1 > + > +Program that reads uninitialized register: > + BPF_ALU64_REG(BPF_MOV, BPF_REG_0, BPF_REG_2), > + BPF_EXIT_INSN(), > +Error: > + 0: (bf) r0 = r2 > + R2 !read_ok > + > +Program that doesn't initialize R0 before exiting: > + BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_1), > + BPF_EXIT_INSN(), > +Error: > + 0: (bf) r2 = r1 > + 1: (95) exit > + R0 !read_ok > + > +Program that accesses stack out of bounds: > + BPF_ST_MEM(BPF_DW, BPF_REG_10, 8, 0), > + BPF_EXIT_INSN(), > +Error: > + 0: (7a) *(u64 *)(r10 +8) = 0 > + invalid stack off=8 size=8 > + > +Program that doesn't initialize stack before passing its address into function: > + BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_10), > + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), > + BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1), > + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), > + BPF_EXIT_INSN(), > +Error: > + 0: (bf) r2 = r10 > + 1: (07) r2 += -8 > + 2: (b7) r1 = 1 > + 3: (85) call 1 > + invalid indirect read from stack off -8+0 size 8 > + > +Program that uses invalid map_id=2 while calling to map_lookup_elem() function: > + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), > + BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_10), > + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), > + BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 2), > + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), > + BPF_EXIT_INSN(), > +Error: > + 0: (7a) *(u64 *)(r10 -8) = 0 > + 1: (bf) r2 = r10 > + 2: (07) r2 += -8 > + 3: (b7) r1 = 2 > + 4: (85) call 1 > + invalid access to map_id=2 > + > +Program that doesn't check return value of map_lookup_elem() before accessing > +map element: > + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), > + BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_10), > + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), > + BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1), > + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), > + BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), > + BPF_EXIT_INSN(), > +Error: > + 0: (7a) *(u64 *)(r10 -8) = 0 > + 1: (bf) r2 = r10 > + 2: (07) r2 += -8 > + 3: (b7) r1 = 1 > + 4: (85) call 1 > + 5: (7a) *(u64 *)(r0 +0) = 0 > + R0 invalid mem access 'map_value_or_null' > + > +Program that correctly checks map_lookup_elem() returned value for NULL, but > +accesses the memory with incorrect alignment: > + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), > + BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_10), > + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), > + BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1), > + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), > + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1), > + BPF_ST_MEM(BPF_DW, BPF_REG_0, 4, 0), > + BPF_EXIT_INSN(), > +Error: > + 0: (7a) *(u64 *)(r10 -8) = 0 > + 1: (bf) r2 = r10 > + 2: (07) r2 += -8 > + 3: (b7) r1 = 1 > + 4: (85) call 1 > + 5: (15) if r0 == 0x0 goto pc+1 > + R0=map_value1 R10=fp > + 6: (7a) *(u64 *)(r0 +4) = 0 > + misaligned access off 4 size 8 > + > +Program that correctly checks map_lookup_elem() returned value for NULL and > +accesses memory with correct alignment in one side of 'if' branch, but fails > +to do so in the other side of 'if' branch: > + BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0), > + BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_10), > + BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8), > + BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1), > + BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), > + BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2), > + BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0), > + BPF_EXIT_INSN(), > + BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 1), > + BPF_EXIT_INSN(), > +Error: > + 0: (7a) *(u64 *)(r10 -8) = 0 > + 1: (bf) r2 = r10 > + 2: (07) r2 += -8 > + 3: (b7) r1 = 1 > + 4: (85) call 1 > + 5: (15) if r0 == 0x0 goto pc+2 > + R0=map_value1 R10=fp > + 6: (7a) *(u64 *)(r0 +0) = 0 > + 7: (95) exit > + > + from 5 to 8: R0=imm0 R10=fp > + 8: (7a) *(u64 *)(r0 +0) = 1 > + R0 invalid mem access 'imm' > + > Testing > ------- > > diff --git a/include/linux/bpf.h b/include/linux/bpf.h > index 7bfcad87018e..67fd49eac904 100644 > --- a/include/linux/bpf.h > +++ b/include/linux/bpf.h > @@ -47,17 +47,63 @@ struct bpf_map_type_list { > void bpf_register_map_type(struct bpf_map_type_list *tl); > struct bpf_map *bpf_map_get(u32 map_id); > > +/* types of values: > + * - stored in an eBPF register > + * - passed into helper functions as an argument > + * - returned from helper functions > + */ > +enum bpf_reg_type { > + INVALID_PTR, /* reg doesn't contain a valid pointer */ > + PTR_TO_CTX, /* reg points to bpf_context */ > + PTR_TO_MAP, /* reg points to map element value */ > + PTR_TO_MAP_CONDITIONAL, /* points to map element value or NULL */ > + PTR_TO_STACK, /* reg == frame_pointer */ > + PTR_TO_STACK_IMM, /* reg == frame_pointer + imm */ > + PTR_TO_STACK_IMM_MAP_KEY, /* pointer to stack used as map key */ > + PTR_TO_STACK_IMM_MAP_VALUE, /* pointer to stack used as map elem */ > + RET_INTEGER, /* function returns integer */ > + RET_VOID, /* function returns void */ > + CONST_ARG, /* function expects integer constant argument */ > + CONST_ARG_MAP_ID, /* int const argument that is used as map_id */ > + /* int const argument indicating number of bytes accessed from stack > + * previous function argument must be ptr_to_stack_imm > + */ > + CONST_ARG_STACK_IMM_SIZE, > +}; > + > /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs > * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL > * instructions after verifying > */ > struct bpf_func_proto { > s32 func_off; > + enum bpf_reg_type ret_type; > + enum bpf_reg_type arg1_type; > + enum bpf_reg_type arg2_type; > + enum bpf_reg_type arg3_type; > + enum bpf_reg_type arg4_type; > + enum bpf_reg_type arg5_type; > +}; > + > +/* bpf_context is intentionally undefined structure. Pointer to bpf_context is > + * the first argument to eBPF programs. > + * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' > + */ > +struct bpf_context; > + > +enum bpf_access_type { > + BPF_READ = 1, > + BPF_WRITE = 2 > }; > > struct bpf_verifier_ops { > /* return eBPF function prototype for verification */ > const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id); > + > + /* return true if 'size' wide access at offset 'off' within bpf_context > + * with 'type' (read or write) is allowed > + */ > + bool (*is_valid_access)(int off, int size, enum bpf_access_type type); > }; > > struct bpf_prog_type_list { > @@ -78,5 +124,7 @@ struct bpf_prog_info { > > void free_bpf_prog_info(struct bpf_prog_info *info); > struct sk_filter *bpf_prog_get(u32 prog_id); > +/* verify correctness of eBPF program */ > +int bpf_check(struct sk_filter *fp); > > #endif /* _LINUX_BPF_H */ > diff --git a/include/uapi/linux/bpf.h b/include/uapi/linux/bpf.h > index ed067e245099..597a35cc101d 100644 > --- a/include/uapi/linux/bpf.h > +++ b/include/uapi/linux/bpf.h > @@ -381,6 +381,7 @@ enum bpf_prog_attributes { > > enum bpf_prog_type { > BPF_PROG_TYPE_UNSPEC, > + BPF_PROG_TYPE_SOCKET_FILTER, > }; > > /* integer value in 'imm' field of BPF_CALL instruction selects which helper > diff --git a/kernel/bpf/Makefile b/kernel/bpf/Makefile > index 558e12712ebc..95a9035e0f29 100644 > --- a/kernel/bpf/Makefile > +++ b/kernel/bpf/Makefile > @@ -1 +1 @@ > -obj-y := core.o syscall.o hashtab.o > +obj-y := core.o syscall.o hashtab.o verifier.o > diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c > index 836809b1bc4e..48d8f43da151 100644 > --- a/kernel/bpf/syscall.c > +++ b/kernel/bpf/syscall.c > @@ -554,7 +554,7 @@ static int bpf_prog_load(int prog_id, enum bpf_prog_type type, > mutex_lock(&bpf_map_lock); > > /* run eBPF verifier */ > - /* err = bpf_check(prog); */ > + err = bpf_check(prog); > > if (err == 0 && prog->info->used_maps) { > /* program passed verifier and it's using some maps, > diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c > new file mode 100644 > index 000000000000..470fce48b3b0 > --- /dev/null > +++ b/kernel/bpf/verifier.c > @@ -0,0 +1,1431 @@ > +/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com > + * > + * This program is free software; you can redistribute it and/or > + * modify it under the terms of version 2 of the GNU General Public > + * License as published by the Free Software Foundation. > + * > + * This program is distributed in the hope that it will be useful, but > + * WITHOUT ANY WARRANTY; without even the implied warranty of > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > + * General Public License for more details. > + */ > +#include <linux/kernel.h> > +#include <linux/types.h> > +#include <linux/slab.h> > +#include <linux/bpf.h> > +#include <linux/filter.h> > +#include <linux/capability.h> > + > +/* bpf_check() is a static code analyzer that walks the BPF program > + * instruction by instruction and updates register/stack state. > + * All paths of conditional branches are analyzed until 'ret' insn. > + * > + * At the first pass depth-first-search verifies that the BPF program is a DAG. > + * It rejects the following programs: > + * - larger than BPF_MAXINSNS insns > + * - if loop is present (detected via back-edge) > + * - unreachable insns exist (shouldn't be a forest. program = one function) This seems to me an unnecessary style restriction on user code. > + * - ret insn is not a last insn > + * - out of bounds or malformed jumps > + * The second pass is all possible path descent from the 1st insn. > + * Conditional branch target insns keep a link list of verifier states. > + * If the state already visited, this path can be pruned. > + * If it wasn't a DAG, such state prunning would be incorrect, since it would > + * skip cycles. Since it's analyzing all pathes through the program, > + * the length of the analysis is limited to 32k insn, which may be hit even > + * if insn_cnt < 4K, but there are too many branches that change stack/regs. > + * Number of 'branches to be analyzed' is limited to 1k > + * > + * All registers are 64-bit (even on 32-bit arch) > + * R0 - return register > + * R1-R5 argument passing registers > + * R6-R9 callee saved registers > + * R10 - frame pointer read-only > + * > + * At the start of BPF program the register R1 contains a pointer to bpf_context > + * and has type PTR_TO_CTX. > + * > + * R10 has type PTR_TO_STACK. The sequence 'mov Rd, R10; add Rd, imm' changes > + * Rd state to PTR_TO_STACK_IMM and immediate constant is saved for further > + * stack bounds checking > + * > + * registers used to pass pointers to function calls are verified against > + * function prototypes > + * > + * Example: before the call to bpf_map_lookup_elem(), > + * R1 must contain integer constant and R2 PTR_TO_STACK_IMM_MAP_KEY > + * Integer constant in R1 is a map_id. The verifier checks that map_id is valid > + * and corresponding map->key_size fetched to check that > + * [R3, R3 + map_info->key_size) are within stack limits and all that stack > + * memory was initiliazed earlier by BPF program. > + * After bpf_table_lookup() call insn, R0 is set to PTR_TO_MAP_CONDITIONAL > + * R1-R5 are cleared and no longer readable (but still writeable). > + * > + * bpf_table_lookup() function returns ether pointer to map value or NULL > + * which is type PTR_TO_MAP_CONDITIONAL. Once it passes through !=0 insn > + * the register holding that pointer in the true branch changes state to > + * PTR_TO_MAP and the same register changes state to INVALID_PTR in the false > + * branch. See check_cond_jmp_op() > + * > + * load/store alignment is checked > + * Ex: BPF_STX|BPF_W [Rd + 3] = Rs is rejected, because it's misaligned > + * > + * load/store to stack bounds checked and register spill is tracked > + * Ex: BPF_STX|BPF_B [R10 + 0] = Rs is rejected, because it's out of bounds > + * > + * load/store to map bounds checked and map_id provides map size > + * Ex: BPF_STX|BPF_H [Rd + 8] = Rs is ok, if Rd is PTR_TO_MAP and > + * 8 + sizeof(u16) <= map_info->value_size > + * > + * load/store to bpf_context checked against known fields > + */ > +#define _(OP) ({ int ret = OP; if (ret < 0) return ret; }) +1 to removing the _ macro. If you want to avoid the 3 lines (is there anything in the style guide against "if ((err=OP) < 0) ..." ?), at least use some meaningful macro name (DO_AND_CHECK, or something like that). > + > +struct reg_state { > + enum bpf_reg_type ptr; > + int imm; > + bool read_ok; > +}; > + > +enum bpf_stack_slot_type { > + STACK_INVALID, /* nothing was stored in this stack slot */ > + STACK_SPILL, /* 1st byte of register spilled into stack */ > + STACK_SPILL_PART, /* other 7 bytes of register spill */ > + STACK_MISC /* BPF program wrote some data into this slot */ > +}; > + > +struct bpf_stack_slot { > + enum bpf_stack_slot_type type; > + enum bpf_reg_type ptr; > + int imm; > +}; > + > +/* state of the program: > + * type of all registers and stack info > + */ > +struct verifier_state { > + struct reg_state regs[MAX_BPF_REG]; > + struct bpf_stack_slot stack[MAX_BPF_STACK]; > +}; > + > +/* linked list of verifier states used to prune search */ > +struct verifier_state_list { > + struct verifier_state state; > + struct verifier_state_list *next; > +}; > + > +/* verifier_state + insn_idx are pushed to stack when branch is encountered */ > +struct verifier_stack_elem { > + /* verifer state is 'st' > + * before processing instruction 'insn_idx' > + * and after processing instruction 'prev_insn_idx' > + */ > + struct verifier_state st; > + int insn_idx; > + int prev_insn_idx; > + struct verifier_stack_elem *next; > +}; > + > +#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ > + > +/* single container for all structs > + * one verifier_env per bpf_check() call > + */ > +struct verifier_env { > + struct sk_filter *prog; /* eBPF program being verified */ > + struct verifier_stack_elem *head; /* stack of verifier states to be processed */ > + int stack_size; /* number of states to be processed */ > + struct verifier_state cur_state; /* current verifier state */ > + struct verifier_state_list **branch_landing; /* search prunning optimization */ > + u32 used_maps[MAX_USED_MAPS]; /* array of map_id's used by eBPF program */ > + u32 used_map_cnt; /* number of used maps */ > +}; > + > +/* verbose verifier prints what it's seeing > + * bpf_check() is called under map lock, so no race to access this global var > + */ > +static bool verbose_on; > + > +/* when verifier rejects eBPF program, it does a second path with verbose on > + * to dump the verification trace to the log, so the user can figure out what's > + * wrong with the program > + */ > +static int verbose(const char *fmt, ...) > +{ > + va_list args; > + int ret; > + > + if (!verbose_on) > + return 0; > + > + va_start(args, fmt); > + ret = vprintk(fmt, args); > + va_end(args); > + return ret; > +} > + > +/* string representation of 'enum bpf_reg_type' */ > +static const char * const reg_type_str[] = { > + [INVALID_PTR] = "inv", > + [PTR_TO_CTX] = "ctx", > + [PTR_TO_MAP] = "map_value", > + [PTR_TO_MAP_CONDITIONAL] = "map_value_or_null", > + [PTR_TO_STACK] = "fp", > + [PTR_TO_STACK_IMM] = "fp", > + [PTR_TO_STACK_IMM_MAP_KEY] = "fp_key", > + [PTR_TO_STACK_IMM_MAP_VALUE] = "fp_value", > + [RET_INTEGER] = "ret_int", > + [RET_VOID] = "ret_void", > + [CONST_ARG] = "imm", > + [CONST_ARG_MAP_ID] = "map_id", > + [CONST_ARG_STACK_IMM_SIZE] = "imm_size", > +}; > + > +static void pr_cont_verifier_state(struct verifier_env *env) > +{ > + enum bpf_reg_type ptr; > + int i; > + > + for (i = 0; i < MAX_BPF_REG; i++) { > + if (!env->cur_state.regs[i].read_ok) > + continue; > + ptr = env->cur_state.regs[i].ptr; > + pr_cont(" R%d=%s", i, reg_type_str[ptr]); > + if (ptr == CONST_ARG || > + ptr == PTR_TO_STACK_IMM || > + ptr == PTR_TO_MAP_CONDITIONAL || > + ptr == PTR_TO_MAP) > + pr_cont("%d", env->cur_state.regs[i].imm); > + } > + for (i = 0; i < MAX_BPF_STACK; i++) { > + if (env->cur_state.stack[i].type == STACK_SPILL) > + pr_cont(" fp%d=%s", -MAX_BPF_STACK + i, > + reg_type_str[env->cur_state.stack[i].ptr]); > + } > + pr_cont("\n"); > +} > + > +static const char *const bpf_class_string[] = { > + "ld", "ldx", "st", "stx", "alu", "jmp", "BUG", "alu64" > +}; > + > +static const char *const bpf_alu_string[] = { > + "+=", "-=", "*=", "/=", "|=", "&=", "<<=", ">>=", "neg", > + "%=", "^=", "=", "s>>=", "endian", "BUG", "BUG" > +}; > + > +static const char *const bpf_ldst_string[] = { > + "u32", "u16", "u8", "u64" > +}; > + > +static const char *const bpf_jmp_string[] = { > + "jmp", "==", ">", ">=", "&", "!=", "s>", "s>=", "call", "exit" > +}; > + > +static void pr_cont_bpf_insn(struct sock_filter_int *insn) > +{ > + u8 class = BPF_CLASS(insn->code); > + > + if (class == BPF_ALU || class == BPF_ALU64) { > + if (BPF_SRC(insn->code) == BPF_X) > + pr_cont("(%02x) %sr%d %s %sr%d\n", > + insn->code, class == BPF_ALU ? "(u32) " : "", > + insn->dst_reg, > + bpf_alu_string[BPF_OP(insn->code) >> 4], > + class == BPF_ALU ? "(u32) " : "", > + insn->src_reg); > + else > + pr_cont("(%02x) %sr%d %s %s%d\n", > + insn->code, class == BPF_ALU ? "(u32) " : "", > + insn->dst_reg, > + bpf_alu_string[BPF_OP(insn->code) >> 4], > + class == BPF_ALU ? "(u32) " : "", > + insn->imm); > + } else if (class == BPF_STX) { > + if (BPF_MODE(insn->code) == BPF_MEM) > + pr_cont("(%02x) *(%s *)(r%d %+d) = r%d\n", > + insn->code, > + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], > + insn->dst_reg, > + insn->off, insn->src_reg); > + else if (BPF_MODE(insn->code) == BPF_XADD) > + pr_cont("(%02x) lock *(%s *)(r%d %+d) += r%d\n", > + insn->code, > + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], > + insn->dst_reg, insn->off, > + insn->src_reg); > + else > + pr_cont("BUG_%02x\n", insn->code); > + } else if (class == BPF_ST) { > + if (BPF_MODE(insn->code) != BPF_MEM) { > + pr_cont("BUG_st_%02x\n", insn->code); > + return; > + } > + pr_cont("(%02x) *(%s *)(r%d %+d) = %d\n", > + insn->code, > + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], > + insn->dst_reg, > + insn->off, insn->imm); > + } else if (class == BPF_LDX) { > + if (BPF_MODE(insn->code) != BPF_MEM) { > + pr_cont("BUG_ldx_%02x\n", insn->code); > + return; > + } > + pr_cont("(%02x) r%d = *(%s *)(r%d %+d)\n", > + insn->code, insn->dst_reg, > + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], > + insn->src_reg, insn->off); Can you please add: + } else if (class == BPF_LD) { + if (BPF_MODE(insn->code) == BPF_ABS) { + pr_cont("(%02x) r0 = *(%s *)skb[%d]\n", + insn->code, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->imm); + } else if (BPF_MODE(insn->code) == BPF_IND) { + pr_cont("(%02x) r0 = *(%s *)skb[r%d + %d]\n", + insn->code, + bpf_ldst_string[BPF_SIZE(insn->code) >> 3], + insn->src_reg, insn->imm); + } else { + pr_cont("BUG_ld_%02x\n", insn->code); + return; + } Note that I'm hardcoding r0 (instead of using %d for insn->dst_reg) because that's how ebpf writes the instructions. > + } else if (class == BPF_JMP) { > + u8 opcode = BPF_OP(insn->code); > + > + if (opcode == BPF_CALL) { > + pr_cont("(%02x) call %d\n", insn->code, insn->imm); > + } else if (insn->code == (BPF_JMP | BPF_JA)) { > + pr_cont("(%02x) goto pc%+d\n", > + insn->code, insn->off); > + } else if (insn->code == (BPF_JMP | BPF_EXIT)) { > + pr_cont("(%02x) exit\n", insn->code); > + } else if (BPF_SRC(insn->code) == BPF_X) { > + pr_cont("(%02x) if r%d %s r%d goto pc%+d\n", > + insn->code, insn->dst_reg, > + bpf_jmp_string[BPF_OP(insn->code) >> 4], > + insn->src_reg, insn->off); > + } else { > + pr_cont("(%02x) if r%d %s 0x%x goto pc%+d\n", > + insn->code, insn->dst_reg, > + bpf_jmp_string[BPF_OP(insn->code) >> 4], > + insn->imm, insn->off); > + } > + } else { > + pr_cont("(%02x) %s\n", insn->code, bpf_class_string[class]); > + } > +} > + > +static int pop_stack(struct verifier_env *env, int *prev_insn_idx) > +{ > + struct verifier_stack_elem *elem; > + int insn_idx; > + > + if (env->head == NULL) > + return -1; > + > + memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state)); > + insn_idx = env->head->insn_idx; > + if (prev_insn_idx) > + *prev_insn_idx = env->head->prev_insn_idx; > + elem = env->head->next; > + kfree(env->head); > + env->head = elem; > + env->stack_size--; > + return insn_idx; > +} > + > +static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx, > + int prev_insn_idx) > +{ > + struct verifier_stack_elem *elem; > + > + elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL); > + if (!elem) > + goto err; > + > + memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state)); > + elem->insn_idx = insn_idx; > + elem->prev_insn_idx = prev_insn_idx; > + elem->next = env->head; > + env->head = elem; > + env->stack_size++; > + if (env->stack_size > 1024) { > + verbose("BPF program is too complex\n"); > + goto err; > + } > + return &elem->st; > +err: > + /* pop all elements and return */ > + while (pop_stack(env, NULL) >= 0); > + return NULL; > +} > + > +#define CALLER_SAVED_REGS 6 > +static const int caller_saved[CALLER_SAVED_REGS] = { > + BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 > +}; > + > +static void init_reg_state(struct reg_state *regs) > +{ > + struct reg_state *reg; > + int i; > + > + for (i = 0; i < MAX_BPF_REG; i++) { > + regs[i].ptr = INVALID_PTR; > + regs[i].read_ok = false; > + regs[i].imm = 0xbadbad; > + } > + reg = regs + BPF_REG_FP; Any reason you switching from the array syntax to the pointer one? I find "reg = regs[BPF_REG_FP];" more readable (and the one you chose in the loop). > + reg->ptr = PTR_TO_STACK; > + reg->read_ok = true; > + > + reg = regs + BPF_REG_1; /* 1st arg to a function */ > + reg->ptr = PTR_TO_CTX; Wait, doesn't this depend on doing "BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1)" (the bpf-to-ebpf prologue), which is only enforced on filters converted from bpf? In fact, shouldn't this set regs[BPF_REG_CTX] instead of regs[BPF_REG_1] ? > + reg->read_ok = true; > +} > + > +static void mark_reg_no_ptr(struct reg_state *regs, int regno) > +{ > + regs[regno].ptr = INVALID_PTR; > + regs[regno].imm = 0xbadbad; > + regs[regno].read_ok = true; > +} > + > +static int check_reg_arg(struct reg_state *regs, int regno, bool is_src) > +{ > + if (is_src) { > + if (!regs[regno].read_ok) { > + verbose("R%d !read_ok\n", regno); > + return -EACCES; > + } > + } else { > + if (regno == BPF_REG_FP) > + /* frame pointer is read only */ > + return -EACCES; > + mark_reg_no_ptr(regs, regno); > + } > + return 0; > +} > + > +static int bpf_size_to_bytes(int bpf_size) > +{ > + if (bpf_size == BPF_W) > + return 4; > + else if (bpf_size == BPF_H) > + return 2; > + else if (bpf_size == BPF_B) > + return 1; > + else if (bpf_size == BPF_DW) > + return 8; > + else > + return -EACCES; > +} > + > +static int check_stack_write(struct verifier_state *state, int off, int size, > + int value_regno) > +{ > + struct bpf_stack_slot *slot; > + int i; > + > + if (value_regno >= 0 && > + (state->regs[value_regno].ptr == PTR_TO_MAP || > + state->regs[value_regno].ptr == PTR_TO_STACK_IMM || > + state->regs[value_regno].ptr == PTR_TO_CTX)) { > + > + /* register containing pointer is being spilled into stack */ > + if (size != 8) { > + verbose("invalid size of register spill\n"); > + return -EACCES; > + } > + > + slot = &state->stack[MAX_BPF_STACK + off]; > + slot->type = STACK_SPILL; > + /* save register state */ > + slot->ptr = state->regs[value_regno].ptr; > + slot->imm = state->regs[value_regno].imm; > + for (i = 1; i < 8; i++) { > + slot = &state->stack[MAX_BPF_STACK + off + i]; > + slot->type = STACK_SPILL_PART; > + slot->ptr = 0; > + slot->imm = 0; > + } > + } else { > + > + /* regular write of data into stack */ > + for (i = 0; i < size; i++) { > + slot = &state->stack[MAX_BPF_STACK + off + i]; > + slot->type = STACK_MISC; > + slot->ptr = 0; > + slot->imm = 0; > + } > + } > + return 0; > +} > + > +static int check_stack_read(struct verifier_state *state, int off, int size, > + int value_regno) > +{ > + int i; > + struct bpf_stack_slot *slot; > + > + slot = &state->stack[MAX_BPF_STACK + off]; > + > + if (slot->type == STACK_SPILL) { > + if (size != 8) { > + verbose("invalid size of register spill\n"); > + return -EACCES; > + } > + for (i = 1; i < 8; i++) { > + if (state->stack[MAX_BPF_STACK + off + i].type != > + STACK_SPILL_PART) { > + verbose("corrupted spill memory\n"); > + return -EACCES; > + } > + } > + > + /* restore register state from stack */ > + state->regs[value_regno].ptr = slot->ptr; > + state->regs[value_regno].imm = slot->imm; > + state->regs[value_regno].read_ok = true; > + return 0; > + } else { > + for (i = 0; i < size; i++) { > + if (state->stack[MAX_BPF_STACK + off + i].type != > + STACK_MISC) { > + verbose("invalid read from stack off %d+%d size %d\n", > + off, i, size); > + return -EACCES; > + } > + } > + /* have read misc data from the stack */ > + mark_reg_no_ptr(state->regs, value_regno); > + return 0; > + } > +} > + > +static int remember_map_id(struct verifier_env *env, u32 map_id) > +{ > + int i; > + > + /* check whether we recorded this map_id already */ > + for (i = 0; i < env->used_map_cnt; i++) > + if (env->used_maps[i] == map_id) > + return 0; > + > + if (env->used_map_cnt >= MAX_USED_MAPS) > + return -E2BIG; > + > + /* remember this map_id */ > + env->used_maps[env->used_map_cnt++] = map_id; > + return 0; > +} > + > +static int get_map_info(struct verifier_env *env, u32 map_id, > + struct bpf_map **map) > +{ > + /* if BPF program contains bpf_table_lookup(map_id, key) > + * the incorrect map_id will be caught here > + */ > + *map = bpf_map_get(map_id); > + if (!*map) { > + verbose("invalid access to map_id=%d\n", map_id); > + return -EACCES; > + } > + > + _(remember_map_id(env, map_id)); > + > + return 0; > +} > + > +/* check read/write into map element returned by bpf_table_lookup() */ > +static int check_table_access(struct verifier_env *env, int regno, int off, > + int size) > +{ > + struct bpf_map *map; > + int map_id = env->cur_state.regs[regno].imm; > + > + _(get_map_info(env, map_id, &map)); > + > + if (off < 0 || off + size > map->value_size) { > + verbose("invalid access to map_id=%d leaf_size=%d off=%d size=%d\n", > + map_id, map->value_size, off, size); > + return -EACCES; > + } > + return 0; > +} > + > +/* check access to 'struct bpf_context' fields */ > +static int check_ctx_access(struct verifier_env *env, int off, int size, > + enum bpf_access_type t) > +{ > + if (env->prog->info->ops->is_valid_access && > + env->prog->info->ops->is_valid_access(off, size, t)) > + return 0; > + > + verbose("invalid bpf_context access off=%d size=%d\n", off, size); > + return -EACCES; > +} > + > +static int check_mem_access(struct verifier_env *env, int regno, int off, > + int bpf_size, enum bpf_access_type t, > + int value_regno) > +{ > + struct verifier_state *state = &env->cur_state; > + int size; > + > + _(size = bpf_size_to_bytes(bpf_size)); > + > + if (off % size != 0) { > + verbose("misaligned access off %d size %d\n", off, size); > + return -EACCES; > + } > + > + if (state->regs[regno].ptr == PTR_TO_MAP) { > + _(check_table_access(env, regno, off, size)); > + if (t == BPF_READ) > + mark_reg_no_ptr(state->regs, value_regno); > + } else if (state->regs[regno].ptr == PTR_TO_CTX) { > + _(check_ctx_access(env, off, size, t)); > + if (t == BPF_READ) > + mark_reg_no_ptr(state->regs, value_regno); > + } else if (state->regs[regno].ptr == PTR_TO_STACK) { > + if (off >= 0 || off < -MAX_BPF_STACK) { > + verbose("invalid stack off=%d size=%d\n", off, size); > + return -EACCES; > + } > + if (t == BPF_WRITE) > + _(check_stack_write(state, off, size, value_regno)); > + else > + _(check_stack_read(state, off, size, value_regno)); > + } else { > + verbose("R%d invalid mem access '%s'\n", > + regno, reg_type_str[state->regs[regno].ptr]); > + return -EACCES; > + } > + return 0; > +} > + > +/* when register 'regno' is passed into function that will read 'access_size' > + * bytes from that pointer, make sure that it's within stack boundary > + * and all elements of stack are initialized > + */ > +static int check_stack_boundary(struct verifier_env *env, > + int regno, int access_size) > +{ > + struct verifier_state *state = &env->cur_state; > + struct reg_state *regs = state->regs; > + int off, i; > + > + if (regs[regno].ptr != PTR_TO_STACK_IMM) > + return -EACCES; > + > + off = regs[regno].imm; > + if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || > + access_size <= 0) { > + verbose("invalid stack ptr R%d off=%d access_size=%d\n", > + regno, off, access_size); > + return -EACCES; > + } > + > + for (i = 0; i < access_size; i++) { > + if (state->stack[MAX_BPF_STACK + off + i].type != STACK_MISC) { > + verbose("invalid indirect read from stack off %d+%d size %d\n", > + off, i, access_size); > + return -EACCES; > + } > + } > + return 0; > +} > + > +static int check_func_arg(struct verifier_env *env, int regno, > + enum bpf_reg_type arg_type, int *map_id, > + struct bpf_map **mapp) > +{ > + struct reg_state *reg = env->cur_state.regs + regno; > + enum bpf_reg_type expected_type; > + > + if (arg_type == INVALID_PTR) > + return 0; > + > + if (!reg->read_ok) { > + verbose("R%d !read_ok\n", regno); > + return -EACCES; > + } > + > + if (arg_type == PTR_TO_STACK_IMM_MAP_KEY || > + arg_type == PTR_TO_STACK_IMM_MAP_VALUE) > + expected_type = PTR_TO_STACK_IMM; > + else if (arg_type == CONST_ARG_MAP_ID || > + arg_type == CONST_ARG_STACK_IMM_SIZE) > + expected_type = CONST_ARG; > + else > + expected_type = arg_type; > + > + if (reg->ptr != expected_type) { > + verbose("R%d type=%s expected=%s\n", regno, > + reg_type_str[reg->ptr], reg_type_str[expected_type]); > + return -EACCES; > + } > + > + if (arg_type == CONST_ARG_MAP_ID) { > + /* bpf_map_xxx(map_id) call: check that map_id is valid */ > + *map_id = reg->imm; > + _(get_map_info(env, reg->imm, mapp)); > + } else if (arg_type == PTR_TO_STACK_IMM_MAP_KEY) { > + /* > + * bpf_map_xxx(..., map_id, ..., key) call: > + * check that [key, key + map->key_size) are within > + * stack limits and initialized > + */ > + if (!*mapp) { > + /* > + * in function declaration map_id must come before > + * table_key or table_elem, so that it's verified > + * and known before we have to check table_key here > + */ > + verbose("invalid map_id to access map->key\n"); > + return -EACCES; > + } > + _(check_stack_boundary(env, regno, (*mapp)->key_size)); > + } else if (arg_type == PTR_TO_STACK_IMM_MAP_VALUE) { > + /* > + * bpf_map_xxx(..., map_id, ..., value) call: > + * check [value, value + map->value_size) validity > + */ > + if (!*mapp) { > + verbose("invalid map_id to access map->elem\n"); > + return -EACCES; > + } > + _(check_stack_boundary(env, regno, (*mapp)->value_size)); > + } else if (arg_type == CONST_ARG_STACK_IMM_SIZE) { > + /* > + * bpf_xxx(..., buf, len) call will access 'len' bytes > + * from stack pointer 'buf'. Check it > + * note: regno == len, regno - 1 == buf > + */ > + _(check_stack_boundary(env, regno - 1, reg->imm)); > + } > + > + return 0; > +} > + > +static int check_call(struct verifier_env *env, int func_id) > +{ > + struct verifier_state *state = &env->cur_state; > + const struct bpf_func_proto *fn = NULL; > + struct reg_state *regs = state->regs; > + struct bpf_map *map = NULL; > + struct reg_state *reg; > + int map_id = -1; > + int i; > + > + /* find function prototype */ > + if (func_id <= 0 || func_id >= __BPF_FUNC_MAX_ID) { > + verbose("invalid func %d\n", func_id); > + return -EINVAL; > + } > + > + if (env->prog->info->ops->get_func_proto) > + fn = env->prog->info->ops->get_func_proto(func_id); > + > + if (!fn || (fn->ret_type != RET_INTEGER && > + fn->ret_type != PTR_TO_MAP_CONDITIONAL && > + fn->ret_type != RET_VOID)) { > + verbose("unknown func %d\n", func_id); > + return -EINVAL; > + } > + > + /* check args */ > + _(check_func_arg(env, BPF_REG_1, fn->arg1_type, &map_id, &map)); > + _(check_func_arg(env, BPF_REG_2, fn->arg2_type, &map_id, &map)); > + _(check_func_arg(env, BPF_REG_3, fn->arg3_type, &map_id, &map)); > + _(check_func_arg(env, BPF_REG_4, fn->arg4_type, &map_id, &map)); > + > + /* reset caller saved regs */ > + for (i = 0; i < CALLER_SAVED_REGS; i++) { > + reg = regs + caller_saved[i]; > + reg->read_ok = false; > + reg->ptr = INVALID_PTR; > + reg->imm = 0xbadbad; > + } > + > + /* update return register */ > + reg = regs + BPF_REG_0; > + if (fn->ret_type == RET_INTEGER) { > + reg->read_ok = true; > + reg->ptr = INVALID_PTR; > + } else if (fn->ret_type != RET_VOID) { > + reg->read_ok = true; > + reg->ptr = fn->ret_type; > + if (fn->ret_type == PTR_TO_MAP_CONDITIONAL) > + /* > + * remember map_id, so that check_table_access() > + * can check 'value_size' boundary of memory access > + * to map element returned from bpf_table_lookup() > + */ > + reg->imm = map_id; > + } > + return 0; > +} > + > +/* check validity of 32-bit and 64-bit arithmetic operations */ > +static int check_alu_op(struct reg_state *regs, struct sock_filter_int *insn) > +{ > + u8 opcode = BPF_OP(insn->code); > + > + if (opcode == BPF_END || opcode == BPF_NEG) { > + if (BPF_SRC(insn->code) != BPF_X) > + return -EINVAL; > + /* check src operand */ > + _(check_reg_arg(regs, insn->dst_reg, 1)); > + > + /* check dest operand */ > + _(check_reg_arg(regs, insn->dst_reg, 0)); > + > + } else if (opcode == BPF_MOV) { > + > + if (BPF_SRC(insn->code) == BPF_X) > + /* check src operand */ > + _(check_reg_arg(regs, insn->src_reg, 1)); > + > + /* check dest operand */ > + _(check_reg_arg(regs, insn->dst_reg, 0)); > + > + if (BPF_SRC(insn->code) == BPF_X) { > + if (BPF_CLASS(insn->code) == BPF_ALU64) { > + /* case: R1 = R2 > + * copy register state to dest reg > + */ > + regs[insn->dst_reg].ptr = regs[insn->src_reg].ptr; > + regs[insn->dst_reg].imm = regs[insn->src_reg].imm; > + } else { > + regs[insn->dst_reg].ptr = INVALID_PTR; > + regs[insn->dst_reg].imm = 0; > + } > + } else { > + /* case: R = imm > + * remember the value we stored into this reg > + */ > + regs[insn->dst_reg].ptr = CONST_ARG; > + regs[insn->dst_reg].imm = insn->imm; > + } > + > + } else { /* all other ALU ops: and, sub, xor, add, ... */ > + > + int stack_relative = 0; > + > + if (BPF_SRC(insn->code) == BPF_X) > + /* check src1 operand */ > + _(check_reg_arg(regs, insn->src_reg, 1)); > + > + /* check src2 operand */ > + _(check_reg_arg(regs, insn->dst_reg, 1)); > + > + if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 && > + regs[insn->dst_reg].ptr == PTR_TO_STACK && > + BPF_SRC(insn->code) == BPF_K) > + stack_relative = 1; > + > + /* check dest operand */ > + _(check_reg_arg(regs, insn->dst_reg, 0)); > + > + if (stack_relative) { > + regs[insn->dst_reg].ptr = PTR_TO_STACK_IMM; > + regs[insn->dst_reg].imm = insn->imm; > + } > + } > + > + return 0; > +} > + > +static int check_cond_jmp_op(struct verifier_env *env, > + struct sock_filter_int *insn, int *insn_idx) > +{ > + struct reg_state *regs = env->cur_state.regs; > + struct verifier_state *other_branch; > + u8 opcode = BPF_OP(insn->code); > + > + if (BPF_SRC(insn->code) == BPF_X) > + /* check src1 operand */ > + _(check_reg_arg(regs, insn->src_reg, 1)); > + > + /* check src2 operand */ > + _(check_reg_arg(regs, insn->dst_reg, 1)); > + > + /* detect if R == 0 where R was initialized to zero earlier */ > + if (BPF_SRC(insn->code) == BPF_K && > + (opcode == BPF_JEQ || opcode == BPF_JNE) && > + regs[insn->dst_reg].ptr == CONST_ARG && > + regs[insn->dst_reg].imm == insn->imm) { > + if (opcode == BPF_JEQ) { > + /* if (imm == imm) goto pc+off; > + * only follow the goto, ignore fall-through > + */ > + *insn_idx += insn->off; > + return 0; > + } else { > + /* if (imm != imm) goto pc+off; > + * only follow fall-through branch, since > + * that's where the program will go > + */ > + return 0; > + } > + } > + > + other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); > + if (!other_branch) > + return -EFAULT; > + > + /* detect if R == 0 where R is returned value from table_lookup() */ > + if (BPF_SRC(insn->code) == BPF_K && > + insn->imm == 0 && (opcode == BPF_JEQ || > + opcode == BPF_JNE) && > + regs[insn->dst_reg].ptr == PTR_TO_MAP_CONDITIONAL) { > + if (opcode == BPF_JEQ) { > + /* next fallthrough insn can access memory via > + * this register > + */ > + regs[insn->dst_reg].ptr = PTR_TO_MAP; > + /* branch targer cannot access it, since reg == 0 */ > + other_branch->regs[insn->dst_reg].ptr = CONST_ARG; > + other_branch->regs[insn->dst_reg].imm = 0; > + } else { > + other_branch->regs[insn->dst_reg].ptr = PTR_TO_MAP; > + regs[insn->dst_reg].ptr = CONST_ARG; > + regs[insn->dst_reg].imm = 0; > + } > + } else if (BPF_SRC(insn->code) == BPF_K && > + (opcode == BPF_JEQ || opcode == BPF_JNE)) { > + > + if (opcode == BPF_JEQ) { > + /* detect if (R == imm) goto > + * and in the target state recognize that R = imm > + */ > + other_branch->regs[insn->dst_reg].ptr = CONST_ARG; > + other_branch->regs[insn->dst_reg].imm = insn->imm; > + } else { > + /* detect if (R != imm) goto > + * and in the fall-through state recognize that R = imm > + */ > + regs[insn->dst_reg].ptr = CONST_ARG; > + regs[insn->dst_reg].imm = insn->imm; > + } > + } > + if (verbose_on) > + pr_cont_verifier_state(env); > + return 0; > +} > + > +/* verify safety of LD_ABS|LD_IND instructions: > + * - they can only appear in the programs where ctx == skb > + * - since they are wrappers of function calls, they scratch R1-R5 registers, > + * preserve R6-R9, and store return value into R0 > + * > + * Implicit input: > + * ctx == skb == R6 == CTX > + * > + * Explicit input: > + * SRC == any register > + * IMM == 32-bit immediate > + * > + * Output: > + * R0 - 8/16/32-bit skb data converted to cpu endianness > + */ > + > +static int check_ld_abs(struct verifier_env *env, struct sock_filter_int *insn) > +{ > + struct reg_state *regs = env->cur_state.regs; > + u8 mode = BPF_MODE(insn->code); > + struct reg_state *reg; > + int i; > + > + if (mode != BPF_ABS && mode != BPF_IND) > + return -EINVAL; > + > + if (env->prog->info->prog_type != BPF_PROG_TYPE_SOCKET_FILTER) { > + verbose("BPF_LD_ABS|IND instructions are only allowed in socket filters\n"); > + return -EINVAL; > + } > + > + /* check whether implicit source operand (register R6) is readable */ > + _(check_reg_arg(regs, BPF_REG_6, 1)); > + > + if (regs[BPF_REG_6].ptr != PTR_TO_CTX) { > + verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); > + return -EINVAL; > + } > + > + if (mode == BPF_IND) > + /* check explicit source operand */ > + _(check_reg_arg(regs, insn->src_reg, 1)); > + > + /* reset caller saved regs to unreadable */ > + for (i = 0; i < CALLER_SAVED_REGS; i++) { > + reg = regs + caller_saved[i]; > + reg->read_ok = false; > + reg->ptr = INVALID_PTR; > + reg->imm = 0xbadbad; > + } > + > + /* mark destination R0 register as readable, since it contains > + * the value fetched from the packet > + */ > + regs[BPF_REG_0].read_ok = true; > + return 0; > +} > + > +/* non-recursive DFS pseudo code > + * 1 procedure DFS-iterative(G,v): > + * 2 label v as discovered > + * 3 let S be a stack > + * 4 S.push(v) > + * 5 while S is not empty > + * 6 t <- S.pop() > + * 7 if t is what we're looking for: > + * 8 return t > + * 9 for all edges e in G.adjacentEdges(t) do > + * 10 if edge e is already labelled > + * 11 continue with the next edge > + * 12 w <- G.adjacentVertex(t,e) > + * 13 if vertex w is not discovered and not explored > + * 14 label e as tree-edge > + * 15 label w as discovered > + * 16 S.push(w) > + * 17 continue at 5 > + * 18 else if vertex w is discovered > + * 19 label e as back-edge > + * 20 else > + * 21 // vertex w is explored > + * 22 label e as forward- or cross-edge > + * 23 label t as explored > + * 24 S.pop() > + * > + * convention: > + * 1 - discovered > + * 2 - discovered and 1st branch labelled > + * 3 - discovered and 1st and 2nd branch labelled > + * 4 - explored > + */ > + > +#define STATE_END ((struct verifier_state_list *)-1) > + > +#define PUSH_INT(I) \ > + do { \ > + if (cur_stack >= insn_cnt) { \ > + ret = -E2BIG; \ > + goto free_st; \ > + } \ > + stack[cur_stack++] = I; \ > + } while (0) > + > +#define PEAK_INT() \ > + ({ \ > + int _ret; \ > + if (cur_stack == 0) \ > + _ret = -1; \ > + else \ > + _ret = stack[cur_stack - 1]; \ > + _ret; \ > + }) > + > +#define POP_INT() \ > + ({ \ > + int _ret; \ > + if (cur_stack == 0) \ > + _ret = -1; \ > + else \ > + _ret = stack[--cur_stack]; \ > + _ret; \ > + }) > + > +#define PUSH_INSN(T, W, E) \ > + do { \ > + int w = W; \ > + if (E == 1 && st[T] >= 2) \ > + break; \ > + if (E == 2 && st[T] >= 3) \ > + break; \ > + if (w >= insn_cnt) { \ > + ret = -EACCES; \ > + goto free_st; \ > + } \ > + if (E == 2) \ > + /* mark branch target for state pruning */ \ > + env->branch_landing[w] = STATE_END; \ > + if (st[w] == 0) { \ > + /* tree-edge */ \ > + st[T] = 1 + E; \ > + st[w] = 1; /* discovered */ \ > + PUSH_INT(w); \ > + goto peak_stack; \ > + } else if (st[w] == 1 || st[w] == 2 || st[w] == 3) { \ > + verbose("back-edge from insn %d to %d\n", t, w); \ > + ret = -EINVAL; \ > + goto free_st; \ > + } else if (st[w] == 4) { \ > + /* forward- or cross-edge */ \ > + st[T] = 1 + E; \ > + } else { \ > + verbose("insn state internal bug\n"); \ > + ret = -EFAULT; \ > + goto free_st; \ > + } \ > + } while (0) > + > +/* non-recursive depth-first-search to detect loops in BPF program > + * loop == back-edge in directed graph > + */ > +static int check_cfg(struct verifier_env *env) > +{ > + struct sock_filter_int *insns = env->prog->insnsi; > + int insn_cnt = env->prog->len; > + int cur_stack = 0; > + int *stack; > + int ret = 0; > + int *st; > + int i, t; > + > + if (insns[insn_cnt - 1].code != (BPF_JMP | BPF_EXIT)) { > + verbose("last insn is not a 'ret'\n"); > + return -EINVAL; > + } > + > + st = kzalloc(sizeof(int) * insn_cnt, GFP_KERNEL); > + if (!st) > + return -ENOMEM; > + > + stack = kzalloc(sizeof(int) * insn_cnt, GFP_KERNEL); > + if (!stack) { > + kfree(st); > + return -ENOMEM; > + } > + > + st[0] = 1; /* mark 1st insn as discovered */ > + PUSH_INT(0); > + > +peak_stack: > + while ((t = PEAK_INT()) != -1) { > + if (insns[t].code == (BPF_JMP | BPF_EXIT)) > + goto mark_explored; > + > + if (BPF_CLASS(insns[t].code) == BPF_JMP) { > + u8 opcode = BPF_OP(insns[t].code); > + > + if (opcode == BPF_CALL) { > + PUSH_INSN(t, t + 1, 1); > + } else if (opcode == BPF_JA) { > + if (BPF_SRC(insns[t].code) != BPF_X) { > + ret = -EINVAL; > + goto free_st; > + } > + PUSH_INSN(t, t + insns[t].off + 1, 1); > + } else { > + PUSH_INSN(t, t + 1, 1); > + PUSH_INSN(t, t + insns[t].off + 1, 2); > + } > + /* tell verifier to check for equivalent verifier states > + * after every call and jump > + */ > + env->branch_landing[t + 1] = STATE_END; > + } else { > + PUSH_INSN(t, t + 1, 1); > + } > + > +mark_explored: > + st[t] = 4; /* explored */ > + if (POP_INT() == -1) { > + verbose("pop_int internal bug\n"); > + ret = -EFAULT; > + goto free_st; > + } > + } > + > + > + for (i = 0; i < insn_cnt; i++) { > + if (st[i] != 4) { > + verbose("unreachable insn %d\n", i); > + ret = -EINVAL; > + goto free_st; > + } > + } > + > +free_st: > + kfree(st); > + kfree(stack); > + return ret; > +} > + > +/* compare two verifier states > + * > + * all states stored in state_list are known to be valid, since > + * verifier reached 'bpf_exit' instruction through them > + * > + * this function is called when verifier exploring different branches of > + * execution popped from the state stack. If it sees an old state that has > + * more strict register state and more strict stack state then this execution > + * branch doesn't need to be explored further, since verifier already > + * concluded that more strict state leads to valid finish. > + * > + * Therefore two states are equivalent if register state is more conservative > + * and explored stack state is more conservative than the current one. > + * Example: > + * explored current > + * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) > + * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) > + * > + * In other words if current stack state (one being explored) has more > + * valid slots than old one that already passed validation, it means > + * the verifier can stop exploring and conclude that current state is valid too > + * > + * Similarly with registers. If explored state has register type as invalid > + * whereas register type in current state is meaningful, it means that > + * the current state will reach 'bpf_exit' instruction safely > + */ > +static bool states_equal(struct verifier_state *old, struct verifier_state *cur) > +{ > + int i; > + > + for (i = 0; i < MAX_BPF_REG; i++) { > + if (memcmp(&old->regs[i], &cur->regs[i], > + sizeof(old->regs[0])) != 0) { > + if (!old->regs[i].read_ok) > + continue; > + if (old->regs[i].ptr == INVALID_PTR) > + continue; > + return false; > + } > + } > + > + for (i = 0; i < MAX_BPF_STACK; i++) { > + if (memcmp(&old->stack[i], &cur->stack[i], > + sizeof(old->stack[0])) != 0) { > + if (old->stack[i].type == STACK_INVALID) > + continue; > + return false; > + } > + } > + return true; > +} > + > +static int is_state_visited(struct verifier_env *env, int insn_idx) > +{ > + struct verifier_state_list *new_sl; > + struct verifier_state_list *sl; > + > + sl = env->branch_landing[insn_idx]; > + if (!sl) > + /* no branch jump to this insn, ignore it */ > + return 0; > + > + while (sl != STATE_END) { > + if (states_equal(&sl->state, &env->cur_state)) > + /* reached equivalent register/stack state, > + * prune the search > + */ > + return 1; > + sl = sl->next; > + } > + new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_KERNEL); > + > + if (!new_sl) > + /* ignore ENOMEM, it doesn't affect correctness */ > + return 0; > + > + /* add new state to the head of linked list */ > + memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state)); > + new_sl->next = env->branch_landing[insn_idx]; > + env->branch_landing[insn_idx] = new_sl; > + return 0; > +} > + > +static int do_check(struct verifier_env *env) > +{ > + struct verifier_state *state = &env->cur_state; > + struct sock_filter_int *insns = env->prog->insnsi; > + struct reg_state *regs = state->regs; > + int insn_cnt = env->prog->len; > + int insn_idx, prev_insn_idx = 0; > + int insn_processed = 0; > + bool do_print_state = false; > + > + init_reg_state(regs); > + insn_idx = 0; > + for (;;) { > + struct sock_filter_int *insn; > + u8 class; > + > + if (insn_idx >= insn_cnt) { > + verbose("invalid insn idx %d insn_cnt %d\n", > + insn_idx, insn_cnt); > + return -EFAULT; > + } > + > + insn = &insns[insn_idx]; > + class = BPF_CLASS(insn->code); > + > + if (++insn_processed > 32768) { > + verbose("BPF program is too large. Proccessed %d insn\n", > + insn_processed); > + return -E2BIG; > + } > + > + if (is_state_visited(env, insn_idx)) { > + if (verbose_on) { > + if (do_print_state) > + pr_cont("\nfrom %d to %d: safe\n", > + prev_insn_idx, insn_idx); > + else > + pr_cont("%d: safe\n", insn_idx); > + } > + goto process_bpf_exit; > + } > + > + if (verbose_on && do_print_state) { > + pr_cont("\nfrom %d to %d:", prev_insn_idx, insn_idx); > + pr_cont_verifier_state(env); > + do_print_state = false; > + } > + > + if (verbose_on) { > + pr_cont("%d: ", insn_idx); > + pr_cont_bpf_insn(insn); > + } > + > + if (class == BPF_ALU || class == BPF_ALU64) { > + _(check_alu_op(regs, insn)); > + > + } else if (class == BPF_LDX) { > + if (BPF_MODE(insn->code) != BPF_MEM) > + return -EINVAL; > + > + /* check src operand */ > + _(check_reg_arg(regs, insn->src_reg, 1)); > + > + _(check_mem_access(env, insn->src_reg, insn->off, > + BPF_SIZE(insn->code), BPF_READ, > + insn->dst_reg)); > + > + /* dest reg state will be updated by mem_access */ > + > + } else if (class == BPF_STX) { > + /* check src1 operand */ > + _(check_reg_arg(regs, insn->src_reg, 1)); > + /* check src2 operand */ > + _(check_reg_arg(regs, insn->dst_reg, 1)); > + _(check_mem_access(env, insn->dst_reg, insn->off, > + BPF_SIZE(insn->code), BPF_WRITE, > + insn->src_reg)); > + > + } else if (class == BPF_ST) { > + if (BPF_MODE(insn->code) != BPF_MEM) > + return -EINVAL; > + /* check src operand */ > + _(check_reg_arg(regs, insn->dst_reg, 1)); > + _(check_mem_access(env, insn->dst_reg, insn->off, > + BPF_SIZE(insn->code), BPF_WRITE, > + -1)); > + > + } else if (class == BPF_JMP) { > + u8 opcode = BPF_OP(insn->code); > + > + if (opcode == BPF_CALL) { > + _(check_call(env, insn->imm)); > + } else if (opcode == BPF_JA) { > + if (BPF_SRC(insn->code) != BPF_X) > + return -EINVAL; > + insn_idx += insn->off + 1; > + continue; > + } else if (opcode == BPF_EXIT) { > + /* eBPF calling convetion is such that R0 is used > + * to return the value from eBPF program. > + * Make sure that it's readable at this time > + * of bpf_exit, which means that program wrote > + * something into it earlier > + */ > + _(check_reg_arg(regs, BPF_REG_0, 1)); > +process_bpf_exit: > + insn_idx = pop_stack(env, &prev_insn_idx); > + if (insn_idx < 0) { > + break; > + } else { > + do_print_state = true; > + continue; > + } > + } else { > + _(check_cond_jmp_op(env, insn, &insn_idx)); > + } > + } else if (class == BPF_LD) { > + _(check_ld_abs(env, insn)); > + } else { > + verbose("unknown insn class %d\n", class); > + return -EINVAL; > + } > + > + insn_idx++; > + } > + > + return 0; > +} > + > +static void free_states(struct verifier_env *env, int insn_cnt) > +{ > + struct verifier_state_list *sl, *sln; > + int i; > + > + for (i = 0; i < insn_cnt; i++) { > + sl = env->branch_landing[i]; > + > + if (sl) > + while (sl != STATE_END) { > + sln = sl->next; > + kfree(sl); > + sl = sln; > + } > + } > + > + kfree(env->branch_landing); > +} > + > +int bpf_check(struct sk_filter *prog) > +{ > + struct verifier_env *env; > + int ret; > + > + if (prog->len <= 0 || prog->len > BPF_MAXINSNS) > + return -E2BIG; > + > + env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL); > + if (!env) > + return -ENOMEM; > + > + verbose_on = false; > +retry: > + env->prog = prog; > + env->branch_landing = kcalloc(prog->len, > + sizeof(struct verifier_state_list *), > + GFP_KERNEL); > + > + if (!env->branch_landing) { > + kfree(env); > + return -ENOMEM; > + } > + > + ret = check_cfg(env); > + if (ret < 0) > + goto free_env; > + > + ret = do_check(env); > + > +free_env: > + while (pop_stack(env, NULL) >= 0); > + free_states(env, prog->len); > + > + if (ret < 0 && !verbose_on && capable(CAP_SYS_ADMIN)) { > + /* verification failed, redo it with verbose on */ > + memset(env, 0, sizeof(struct verifier_env)); > + verbose_on = true; > + goto retry; > + } > + > + if (ret == 0 && env->used_map_cnt) { > + /* if program passed verifier, update used_maps in bpf_prog_info */ > + prog->info->used_maps = kmalloc_array(env->used_map_cnt, > + sizeof(u32), GFP_KERNEL); > + if (!prog->info->used_maps) { > + kfree(env); > + return -ENOMEM; > + } > + memcpy(prog->info->used_maps, env->used_maps, > + sizeof(u32) * env->used_map_cnt); > + prog->info->used_map_cnt = env->used_map_cnt; > + } > + > + kfree(env); > + return ret; > +} > -- > 1.7.9.5 > -- To unsubscribe from this list: send the line "unsubscribe linux-api" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html