On Tue, Jan 23, 2018 at 04:04:40PM +0000, Dave Martin wrote: > On Fri, Jan 12, 2018 at 01:07:32PM +0100, Christoffer Dall wrote: > > We are about to defer saving and restoring some groups of system > > registers to vcpu_put and vcpu_load on supported systems. This means > > that we need some infrastructure to access system registes which > > supports either accessing the memory backing of the register or directly > > accessing the system registers, depending on the state of the system > > when we access the register. > > > > We do this by defining a set of read/write accessors for each system > > register, and letting each system register be defined as "immediate" or > > "deferrable". Immediate registers are always saved/restored in the > > world-switch path, but deferrable registers are only saved/restored in > > vcpu_put/vcpu_load when supported and sysregs_loaded_on_cpu will be set > > in that case. > > > > Not that we don't use the deferred mechanism yet in this patch, but only > > introduce infrastructure. This is to improve convenience of review in > > the subsequent patches where it is clear which registers become > > deferred. > > Might this table-driven approach result in a lot of branch mispredicts, > particularly across load/put boundaries? > > If we were to move the whole construct to a header, then it could get > constant-folded at the call site down to the individual reg accessed, > say: > > if (sys_regs_loaded) > read_sysreg_s(TPIDR_EL0); > else > __vcpu_sys_reg(v, TPIDR_EL0); > > Where multiple regs are accessed close to each other, the compiler > may be able to specialise the whole sequence for the loaded and !loaded > cases so that there is only one conditional branch. > That's an interesting thing to consider indeed. I wasn't really sure how to put this in a header file which wouldn't look overly bloated for inclusion elsewhere, so we ended up with this. I don't think the alternative suggestion that I discused with Julien on this patch changes this much, but since you've had a look at this, I'm curious which one of the two (lookup table vs. giant switch) you prefer? > > The individual accessor functions also become unnecessary in this case, > because we wouldn't need to derive function pointers from them any > more. > > I don't know how performance would compare in practice though. I don't know either. But I will say that the whole idea behind put/load is that you do this rarely, and going to userspace from KVM is notriously expensive, also on x86. > > I'm also assuming that all calls to these accessors are const-foldable. > If not, relying on inlining would bloat the generated code a lot. We have places where this is not the cae, access_vm_reg() for example. But if we really, really, wanted to, we could rewrite that to have a function for each register, but that's pretty horrid on its own. Thanks, -Christoffer > > > > > [ Most of this logic was contributed by Marc Zyngier ] > > > > Signed-off-by: Marc Zyngier <marc.zyngier@xxxxxxx> > > Signed-off-by: Christoffer Dall <christoffer.dall@xxxxxxxxxx> > > --- > > arch/arm64/include/asm/kvm_host.h | 8 +- > > arch/arm64/kvm/sys_regs.c | 160 ++++++++++++++++++++++++++++++++++++++ > > 2 files changed, 166 insertions(+), 2 deletions(-) > > > > diff --git a/arch/arm64/include/asm/kvm_host.h b/arch/arm64/include/asm/kvm_host.h > > index 91272c35cc36..4b5ef82f6bdb 100644 > > --- a/arch/arm64/include/asm/kvm_host.h > > +++ b/arch/arm64/include/asm/kvm_host.h > > @@ -281,6 +281,10 @@ struct kvm_vcpu_arch { > > > > /* Detect first run of a vcpu */ > > bool has_run_once; > > + > > + /* True when deferrable sysregs are loaded on the physical CPU, > > + * see kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregs. */ > > + bool sysregs_loaded_on_cpu; > > }; > > > > #define vcpu_gp_regs(v) (&(v)->arch.ctxt.gp_regs) > > @@ -293,8 +297,8 @@ struct kvm_vcpu_arch { > > */ > > #define __vcpu_sys_reg(v,r) ((v)->arch.ctxt.sys_regs[(r)]) > > > > -#define vcpu_read_sys_reg(v,r) __vcpu_sys_reg(v,r) > > -#define vcpu_write_sys_reg(v,r,n) do { __vcpu_sys_reg(v,r) = n; } while (0) > > +u64 vcpu_read_sys_reg(struct kvm_vcpu *vcpu, int reg); > > +void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, int reg, u64 val); > > > > /* > > * CP14 and CP15 live in the same array, as they are backed by the > > diff --git a/arch/arm64/kvm/sys_regs.c b/arch/arm64/kvm/sys_regs.c > > index 96398d53b462..9d353a6a55c9 100644 > > --- a/arch/arm64/kvm/sys_regs.c > > +++ b/arch/arm64/kvm/sys_regs.c > > @@ -35,6 +35,7 @@ > > #include <asm/kvm_coproc.h> > > #include <asm/kvm_emulate.h> > > #include <asm/kvm_host.h> > > +#include <asm/kvm_hyp.h> > > #include <asm/kvm_mmu.h> > > #include <asm/perf_event.h> > > #include <asm/sysreg.h> > > @@ -76,6 +77,165 @@ static bool write_to_read_only(struct kvm_vcpu *vcpu, > > return false; > > } > > > > +struct sys_reg_accessor { > > + u64 (*rdsr)(struct kvm_vcpu *, int); > > + void (*wrsr)(struct kvm_vcpu *, int, u64); > > +}; > > + > > +#define DECLARE_IMMEDIATE_SR(i) \ > > + static u64 __##i##_read(struct kvm_vcpu *vcpu, int r) \ > > + { \ > > + return __vcpu_sys_reg(vcpu, r); \ > > + } \ > > + \ > > + static void __##i##_write(struct kvm_vcpu *vcpu, int r, u64 v) \ > > + { \ > > + __vcpu_sys_reg(vcpu, r) = v; \ > > + } \ > > + > > +#define DECLARE_DEFERRABLE_SR(i, s) \ > > + static u64 __##i##_read(struct kvm_vcpu *vcpu, int r) \ > > + { \ > > + if (vcpu->arch.sysregs_loaded_on_cpu) { \ > > + WARN_ON(kvm_arm_get_running_vcpu() != vcpu); \ > > + return read_sysreg_s((s)); \ > > + } \ > > + return __vcpu_sys_reg(vcpu, r); \ > > + } \ > > + \ > > + static void __##i##_write(struct kvm_vcpu *vcpu, int r, u64 v) \ > > + { \ > > + if (vcpu->arch.sysregs_loaded_on_cpu) { \ > > + WARN_ON(kvm_arm_get_running_vcpu() != vcpu); \ > > + write_sysreg_s(v, (s)); \ > > + } else { \ > > + __vcpu_sys_reg(vcpu, r) = v; \ > > + } \ > > + } \ > > + > > + > > +#define SR_HANDLER_RANGE(i,e) \ > > + [i ... e] = (struct sys_reg_accessor) { \ > > + .rdsr = __##i##_read, \ > > + .wrsr = __##i##_write, \ > > + } > > + > > +#define SR_HANDLER(i) SR_HANDLER_RANGE(i, i) > > + > > +static void bad_sys_reg(int reg) > > +{ > > + WARN_ONCE(1, "Bad system register access %d\n", reg); > > +} > > + > > +static u64 __default_read_sys_reg(struct kvm_vcpu *vcpu, int reg) > > +{ > > + bad_sys_reg(reg); > > + return 0; > > +} > > + > > +static void __default_write_sys_reg(struct kvm_vcpu *vcpu, int reg, u64 val) > > +{ > > + bad_sys_reg(reg); > > +} > > + > > +/* Ordered as in enum vcpu_sysreg */ > > +DECLARE_IMMEDIATE_SR(MPIDR_EL1); > > +DECLARE_IMMEDIATE_SR(CSSELR_EL1); > > +DECLARE_IMMEDIATE_SR(SCTLR_EL1); > > +DECLARE_IMMEDIATE_SR(ACTLR_EL1); > > +DECLARE_IMMEDIATE_SR(CPACR_EL1); > > +DECLARE_IMMEDIATE_SR(TTBR0_EL1); > > +DECLARE_IMMEDIATE_SR(TTBR1_EL1); > > +DECLARE_IMMEDIATE_SR(TCR_EL1); > > +DECLARE_IMMEDIATE_SR(ESR_EL1); > > +DECLARE_IMMEDIATE_SR(AFSR0_EL1); > > +DECLARE_IMMEDIATE_SR(AFSR1_EL1); > > +DECLARE_IMMEDIATE_SR(FAR_EL1); > > +DECLARE_IMMEDIATE_SR(MAIR_EL1); > > +DECLARE_IMMEDIATE_SR(VBAR_EL1); > > +DECLARE_IMMEDIATE_SR(CONTEXTIDR_EL1); > > +DECLARE_IMMEDIATE_SR(TPIDR_EL0); > > +DECLARE_IMMEDIATE_SR(TPIDRRO_EL0); > > +DECLARE_IMMEDIATE_SR(TPIDR_EL1); > > +DECLARE_IMMEDIATE_SR(AMAIR_EL1); > > +DECLARE_IMMEDIATE_SR(CNTKCTL_EL1); > > +DECLARE_IMMEDIATE_SR(PAR_EL1); > > +DECLARE_IMMEDIATE_SR(MDSCR_EL1); > > +DECLARE_IMMEDIATE_SR(MDCCINT_EL1); > > +DECLARE_IMMEDIATE_SR(PMCR_EL0); > > +DECLARE_IMMEDIATE_SR(PMSELR_EL0); > > +DECLARE_IMMEDIATE_SR(PMEVCNTR0_EL0); > > +/* PMEVCNTR30_EL0 */ > > +DECLARE_IMMEDIATE_SR(PMCCNTR_EL0); > > +DECLARE_IMMEDIATE_SR(PMEVTYPER0_EL0); > > +/* PMEVTYPER30_EL0 */ > > +DECLARE_IMMEDIATE_SR(PMCCFILTR_EL0); > > +DECLARE_IMMEDIATE_SR(PMCNTENSET_EL0); > > +DECLARE_IMMEDIATE_SR(PMINTENSET_EL1); > > +DECLARE_IMMEDIATE_SR(PMOVSSET_EL0); > > +DECLARE_IMMEDIATE_SR(PMSWINC_EL0); > > +DECLARE_IMMEDIATE_SR(PMUSERENR_EL0); > > +DECLARE_IMMEDIATE_SR(DACR32_EL2); > > +DECLARE_IMMEDIATE_SR(IFSR32_EL2); > > +DECLARE_IMMEDIATE_SR(FPEXC32_EL2); > > +DECLARE_IMMEDIATE_SR(DBGVCR32_EL2); > > + > > +static const struct sys_reg_accessor sys_reg_accessors[NR_SYS_REGS] = { > > + [0 ... NR_SYS_REGS - 1] = { > > + .rdsr = __default_read_sys_reg, > > + .wrsr = __default_write_sys_reg, > > + }, > > + > > + SR_HANDLER(MPIDR_EL1), > > + SR_HANDLER(CSSELR_EL1), > > + SR_HANDLER(SCTLR_EL1), > > + SR_HANDLER(ACTLR_EL1), > > + SR_HANDLER(CPACR_EL1), > > + SR_HANDLER(TTBR0_EL1), > > + SR_HANDLER(TTBR1_EL1), > > + SR_HANDLER(TCR_EL1), > > + SR_HANDLER(ESR_EL1), > > + SR_HANDLER(AFSR0_EL1), > > + SR_HANDLER(AFSR1_EL1), > > + SR_HANDLER(FAR_EL1), > > + SR_HANDLER(MAIR_EL1), > > + SR_HANDLER(VBAR_EL1), > > + SR_HANDLER(CONTEXTIDR_EL1), > > + SR_HANDLER(TPIDR_EL0), > > + SR_HANDLER(TPIDRRO_EL0), > > + SR_HANDLER(TPIDR_EL1), > > + SR_HANDLER(AMAIR_EL1), > > + SR_HANDLER(CNTKCTL_EL1), > > + SR_HANDLER(PAR_EL1), > > + SR_HANDLER(MDSCR_EL1), > > + SR_HANDLER(MDCCINT_EL1), > > + SR_HANDLER(PMCR_EL0), > > + SR_HANDLER(PMSELR_EL0), > > + SR_HANDLER_RANGE(PMEVCNTR0_EL0, PMEVCNTR30_EL0), > > + SR_HANDLER(PMCCNTR_EL0), > > + SR_HANDLER_RANGE(PMEVTYPER0_EL0, PMEVTYPER30_EL0), > > + SR_HANDLER(PMCCFILTR_EL0), > > + SR_HANDLER(PMCNTENSET_EL0), > > + SR_HANDLER(PMINTENSET_EL1), > > + SR_HANDLER(PMOVSSET_EL0), > > + SR_HANDLER(PMSWINC_EL0), > > + SR_HANDLER(PMUSERENR_EL0), > > + SR_HANDLER(DACR32_EL2), > > + SR_HANDLER(IFSR32_EL2), > > + SR_HANDLER(FPEXC32_EL2), > > + SR_HANDLER(DBGVCR32_EL2), > > +}; > > + > > +u64 vcpu_read_sys_reg(struct kvm_vcpu *vcpu, int reg) > > +{ > > + return sys_reg_accessors[reg].rdsr(vcpu, reg); > > +} > > + > > +void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, int reg, u64 val) > > +{ > > + sys_reg_accessors[reg].wrsr(vcpu, reg, val); > > +} > > + > > /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */ > > static u32 cache_levels; > > > > -- > > 2.14.2 > > > > _______________________________________________ > > kvmarm mailing list > > kvmarm@xxxxxxxxxxxxxxxxxxxxx > > https://lists.cs.columbia.edu/mailman/listinfo/kvmarm _______________________________________________ kvmarm mailing list kvmarm@xxxxxxxxxxxxxxxxxxxxx https://lists.cs.columbia.edu/mailman/listinfo/kvmarm