Gravity Measurements Help Melt Ice Mysteries March 23, 2007
Just a few years ago, the world's climate scientists predicted that
These new data come from the NASA/German Aerospace Center's Gravity Recovery and Climate Experiment (Grace). Launched in March 2002, the twin Grace satellites circle the globe using gravity to map changes in Earth's mass 500 kilometers (310 miles) below. They are providing a unique way to monitor and understand Earth's great ice sheets and glaciers.
Grace measurements have revealed that in just four years, from 2002 to 2006,
"Before Grace, the change of Greenland's ice sheet was inferred by a combination of more regional radar and altimeter studies pieced together over many years, but Grace can measure changes in the weight of the ice directly and cover the entire ice sheet of Greenland every month," says Michael Watkins, Grace project scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif. However, as anyone who has ever been concerned about his or her weight knows, a number on a scale is just the beginning. In the five years that Grace has been flying, scientists have found ways to make the most of this new set of observations.
"Grace has a big footprint," says Watkins. "We can locate regions of greatest loss, but we can't see individual glaciers." However, Grace's spatial resolution is continually improving. In the most recent studies, he says, Grace has observed large ice losses in the southeast of
While Scientists at NASA's
To confirm just how much of the mass Grace detects in Greenland and
"A long time ago during the last ice age, this region was pushed down by even more snow and ice, and now this mantle wants to come back, or rebound,” explains Erik Ivins, a JPL Earth scientist and Grace science team member.
One way to look at the problem, says Ivins, is to imagine a bathtub filling up with water from a faucet but losing water from holes in the bottom of the tub. At the same time, the bathtub may be changing shape.
Ivins and his colleagues are refining the computer models used to understand and predict post-glacial rebound. It turns out that beneath the ice sheet covering
As Grace celebrates its fifth birthday and begins its extended mission, "were getting the picture into better focus," says Watkins, "and we're going to have a new wave of discoveries. Improving the post-glacial rebound model is going to help, especially in
While Grace provides a new and independent way to study Earth's ice sheets, it will take a combination of different tools, including laser altimeters, radar, and field studies, to sort out more clearly what's happening. "All technologies have different strengths and weaknesses," says Watkins. "Grace is the new piece. It shows us the big picture, while other measurements look at a smaller scale. We need to use them all together."
"We have to pay attention," Velicogna adds. "These ice sheets are changing much faster than we were expecting. Observations are the most powerful tool we have to know what is going on, especially when the changes – and what's causing them – are not obvious."
-end-
|