On Wed, Dec 9, 2020 at 5:22 AM Dave Airlie <airlied@xxxxxxxxx> wrote: > > From: Dave Airlie <airlied@xxxxxxxxxx> > > This pulls a large chunk of the pll calculation code out of > intel_display.c to a new file. > > One function makse sense to be an inline, otherwise this > is pretty much a straight copy cover. also all the > remaining hooks for g45 and older end up the same now. > > Fixed one , instead of ; error in chv_find_best_dpll. Maybe split that one out? > Signed-off-by: Dave Airlie <airlied@xxxxxxxxxx> > --- > drivers/gpu/drm/i915/Makefile | 1 + > drivers/gpu/drm/i915/display/intel_clock.c | 1370 ++++++++++++++++ > drivers/gpu/drm/i915/display/intel_display.c | 1392 +---------------- > drivers/gpu/drm/i915/display/intel_display.h | 13 +- > .../drm/i915/display/intel_display_types.h | 5 + > 5 files changed, 1398 insertions(+), 1383 deletions(-) > create mode 100644 drivers/gpu/drm/i915/display/intel_clock.c > > diff --git a/drivers/gpu/drm/i915/Makefile b/drivers/gpu/drm/i915/Makefile > index ffec257702af..8b357c212ae2 100644 > --- a/drivers/gpu/drm/i915/Makefile > +++ b/drivers/gpu/drm/i915/Makefile > @@ -193,6 +193,7 @@ i915-y += \ > display/intel_bios.o \ > display/intel_bw.o \ > display/intel_cdclk.o \ > + display/intel_clock.o \ I'd call this intel_dpll_legacy.c, to be more in line with the new generation stuff which is in intel_dpll_mgr.c which is where all the new code since hsw hangs out (except for chv, that's still derived from the old ones). Aside from the repaint looks reasonable to me. -Daniel > display/intel_color.o \ > display/intel_combo_phy.o \ > display/intel_connector.o \ > diff --git a/drivers/gpu/drm/i915/display/intel_clock.c b/drivers/gpu/drm/i915/display/intel_clock.c > new file mode 100644 > index 000000000000..75819c1da039 > --- /dev/null > +++ b/drivers/gpu/drm/i915/display/intel_clock.c > @@ -0,0 +1,1370 @@ > +// SPDX-License-Identifier: MIT > +/* > + * Copyright © 2020 Intel Corporation > + */ > +#include <linux/kernel.h> > +#include "intel_display_types.h" > +#include "intel_display.h" > +#include "intel_lvds.h" > +#include "intel_panel.h" > + > +static bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) > +{ > + if (dev_priv->params.panel_use_ssc >= 0) > + return dev_priv->params.panel_use_ssc != 0; > + return dev_priv->vbt.lvds_use_ssc > + && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); > +} > + > +struct intel_limit { > + struct { > + int min, max; > + } dot, vco, n, m, m1, m2, p, p1; > + > + struct { > + int dot_limit; > + int p2_slow, p2_fast; > + } p2; > +}; > +static const struct intel_limit intel_limits_i8xx_dac = { > + .dot = { .min = 25000, .max = 350000 }, > + .vco = { .min = 908000, .max = 1512000 }, > + .n = { .min = 2, .max = 16 }, > + .m = { .min = 96, .max = 140 }, > + .m1 = { .min = 18, .max = 26 }, > + .m2 = { .min = 6, .max = 16 }, > + .p = { .min = 4, .max = 128 }, > + .p1 = { .min = 2, .max = 33 }, > + .p2 = { .dot_limit = 165000, > + .p2_slow = 4, .p2_fast = 2 }, > +}; > + > +static const struct intel_limit intel_limits_i8xx_dvo = { > + .dot = { .min = 25000, .max = 350000 }, > + .vco = { .min = 908000, .max = 1512000 }, > + .n = { .min = 2, .max = 16 }, > + .m = { .min = 96, .max = 140 }, > + .m1 = { .min = 18, .max = 26 }, > + .m2 = { .min = 6, .max = 16 }, > + .p = { .min = 4, .max = 128 }, > + .p1 = { .min = 2, .max = 33 }, > + .p2 = { .dot_limit = 165000, > + .p2_slow = 4, .p2_fast = 4 }, > +}; > + > +static const struct intel_limit intel_limits_i8xx_lvds = { > + .dot = { .min = 25000, .max = 350000 }, > + .vco = { .min = 908000, .max = 1512000 }, > + .n = { .min = 2, .max = 16 }, > + .m = { .min = 96, .max = 140 }, > + .m1 = { .min = 18, .max = 26 }, > + .m2 = { .min = 6, .max = 16 }, > + .p = { .min = 4, .max = 128 }, > + .p1 = { .min = 1, .max = 6 }, > + .p2 = { .dot_limit = 165000, > + .p2_slow = 14, .p2_fast = 7 }, > +}; > + > +static const struct intel_limit intel_limits_i9xx_sdvo = { > + .dot = { .min = 20000, .max = 400000 }, > + .vco = { .min = 1400000, .max = 2800000 }, > + .n = { .min = 1, .max = 6 }, > + .m = { .min = 70, .max = 120 }, > + .m1 = { .min = 8, .max = 18 }, > + .m2 = { .min = 3, .max = 7 }, > + .p = { .min = 5, .max = 80 }, > + .p1 = { .min = 1, .max = 8 }, > + .p2 = { .dot_limit = 200000, > + .p2_slow = 10, .p2_fast = 5 }, > +}; > + > +static const struct intel_limit intel_limits_i9xx_lvds = { > + .dot = { .min = 20000, .max = 400000 }, > + .vco = { .min = 1400000, .max = 2800000 }, > + .n = { .min = 1, .max = 6 }, > + .m = { .min = 70, .max = 120 }, > + .m1 = { .min = 8, .max = 18 }, > + .m2 = { .min = 3, .max = 7 }, > + .p = { .min = 7, .max = 98 }, > + .p1 = { .min = 1, .max = 8 }, > + .p2 = { .dot_limit = 112000, > + .p2_slow = 14, .p2_fast = 7 }, > +}; > + > + > +static const struct intel_limit intel_limits_g4x_sdvo = { > + .dot = { .min = 25000, .max = 270000 }, > + .vco = { .min = 1750000, .max = 3500000}, > + .n = { .min = 1, .max = 4 }, > + .m = { .min = 104, .max = 138 }, > + .m1 = { .min = 17, .max = 23 }, > + .m2 = { .min = 5, .max = 11 }, > + .p = { .min = 10, .max = 30 }, > + .p1 = { .min = 1, .max = 3}, > + .p2 = { .dot_limit = 270000, > + .p2_slow = 10, > + .p2_fast = 10 > + }, > +}; > + > +static const struct intel_limit intel_limits_g4x_hdmi = { > + .dot = { .min = 22000, .max = 400000 }, > + .vco = { .min = 1750000, .max = 3500000}, > + .n = { .min = 1, .max = 4 }, > + .m = { .min = 104, .max = 138 }, > + .m1 = { .min = 16, .max = 23 }, > + .m2 = { .min = 5, .max = 11 }, > + .p = { .min = 5, .max = 80 }, > + .p1 = { .min = 1, .max = 8}, > + .p2 = { .dot_limit = 165000, > + .p2_slow = 10, .p2_fast = 5 }, > +}; > + > +static const struct intel_limit intel_limits_g4x_single_channel_lvds = { > + .dot = { .min = 20000, .max = 115000 }, > + .vco = { .min = 1750000, .max = 3500000 }, > + .n = { .min = 1, .max = 3 }, > + .m = { .min = 104, .max = 138 }, > + .m1 = { .min = 17, .max = 23 }, > + .m2 = { .min = 5, .max = 11 }, > + .p = { .min = 28, .max = 112 }, > + .p1 = { .min = 2, .max = 8 }, > + .p2 = { .dot_limit = 0, > + .p2_slow = 14, .p2_fast = 14 > + }, > +}; > + > +static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { > + .dot = { .min = 80000, .max = 224000 }, > + .vco = { .min = 1750000, .max = 3500000 }, > + .n = { .min = 1, .max = 3 }, > + .m = { .min = 104, .max = 138 }, > + .m1 = { .min = 17, .max = 23 }, > + .m2 = { .min = 5, .max = 11 }, > + .p = { .min = 14, .max = 42 }, > + .p1 = { .min = 2, .max = 6 }, > + .p2 = { .dot_limit = 0, > + .p2_slow = 7, .p2_fast = 7 > + }, > +}; > + > +static const struct intel_limit pnv_limits_sdvo = { > + .dot = { .min = 20000, .max = 400000}, > + .vco = { .min = 1700000, .max = 3500000 }, > + /* Pineview's Ncounter is a ring counter */ > + .n = { .min = 3, .max = 6 }, > + .m = { .min = 2, .max = 256 }, > + /* Pineview only has one combined m divider, which we treat as m2. */ > + .m1 = { .min = 0, .max = 0 }, > + .m2 = { .min = 0, .max = 254 }, > + .p = { .min = 5, .max = 80 }, > + .p1 = { .min = 1, .max = 8 }, > + .p2 = { .dot_limit = 200000, > + .p2_slow = 10, .p2_fast = 5 }, > +}; > + > +static const struct intel_limit pnv_limits_lvds = { > + .dot = { .min = 20000, .max = 400000 }, > + .vco = { .min = 1700000, .max = 3500000 }, > + .n = { .min = 3, .max = 6 }, > + .m = { .min = 2, .max = 256 }, > + .m1 = { .min = 0, .max = 0 }, > + .m2 = { .min = 0, .max = 254 }, > + .p = { .min = 7, .max = 112 }, > + .p1 = { .min = 1, .max = 8 }, > + .p2 = { .dot_limit = 112000, > + .p2_slow = 14, .p2_fast = 14 }, > +}; > + > +/* Ironlake / Sandybridge > + * > + * We calculate clock using (register_value + 2) for N/M1/M2, so here > + * the range value for them is (actual_value - 2). > + */ > +static const struct intel_limit ilk_limits_dac = { > + .dot = { .min = 25000, .max = 350000 }, > + .vco = { .min = 1760000, .max = 3510000 }, > + .n = { .min = 1, .max = 5 }, > + .m = { .min = 79, .max = 127 }, > + .m1 = { .min = 12, .max = 22 }, > + .m2 = { .min = 5, .max = 9 }, > + .p = { .min = 5, .max = 80 }, > + .p1 = { .min = 1, .max = 8 }, > + .p2 = { .dot_limit = 225000, > + .p2_slow = 10, .p2_fast = 5 }, > +}; > + > +static const struct intel_limit ilk_limits_single_lvds = { > + .dot = { .min = 25000, .max = 350000 }, > + .vco = { .min = 1760000, .max = 3510000 }, > + .n = { .min = 1, .max = 3 }, > + .m = { .min = 79, .max = 118 }, > + .m1 = { .min = 12, .max = 22 }, > + .m2 = { .min = 5, .max = 9 }, > + .p = { .min = 28, .max = 112 }, > + .p1 = { .min = 2, .max = 8 }, > + .p2 = { .dot_limit = 225000, > + .p2_slow = 14, .p2_fast = 14 }, > +}; > + > +static const struct intel_limit ilk_limits_dual_lvds = { > + .dot = { .min = 25000, .max = 350000 }, > + .vco = { .min = 1760000, .max = 3510000 }, > + .n = { .min = 1, .max = 3 }, > + .m = { .min = 79, .max = 127 }, > + .m1 = { .min = 12, .max = 22 }, > + .m2 = { .min = 5, .max = 9 }, > + .p = { .min = 14, .max = 56 }, > + .p1 = { .min = 2, .max = 8 }, > + .p2 = { .dot_limit = 225000, > + .p2_slow = 7, .p2_fast = 7 }, > +}; > + > +/* LVDS 100mhz refclk limits. */ > +static const struct intel_limit ilk_limits_single_lvds_100m = { > + .dot = { .min = 25000, .max = 350000 }, > + .vco = { .min = 1760000, .max = 3510000 }, > + .n = { .min = 1, .max = 2 }, > + .m = { .min = 79, .max = 126 }, > + .m1 = { .min = 12, .max = 22 }, > + .m2 = { .min = 5, .max = 9 }, > + .p = { .min = 28, .max = 112 }, > + .p1 = { .min = 2, .max = 8 }, > + .p2 = { .dot_limit = 225000, > + .p2_slow = 14, .p2_fast = 14 }, > +}; > + > +static const struct intel_limit ilk_limits_dual_lvds_100m = { > + .dot = { .min = 25000, .max = 350000 }, > + .vco = { .min = 1760000, .max = 3510000 }, > + .n = { .min = 1, .max = 3 }, > + .m = { .min = 79, .max = 126 }, > + .m1 = { .min = 12, .max = 22 }, > + .m2 = { .min = 5, .max = 9 }, > + .p = { .min = 14, .max = 42 }, > + .p1 = { .min = 2, .max = 6 }, > + .p2 = { .dot_limit = 225000, > + .p2_slow = 7, .p2_fast = 7 }, > +}; > + > +static const struct intel_limit intel_limits_vlv = { > + /* > + * These are the data rate limits (measured in fast clocks) > + * since those are the strictest limits we have. The fast > + * clock and actual rate limits are more relaxed, so checking > + * them would make no difference. > + */ > + .dot = { .min = 25000 * 5, .max = 270000 * 5 }, > + .vco = { .min = 4000000, .max = 6000000 }, > + .n = { .min = 1, .max = 7 }, > + .m1 = { .min = 2, .max = 3 }, > + .m2 = { .min = 11, .max = 156 }, > + .p1 = { .min = 2, .max = 3 }, > + .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ > +}; > + > +static const struct intel_limit intel_limits_chv = { > + /* > + * These are the data rate limits (measured in fast clocks) > + * since those are the strictest limits we have. The fast > + * clock and actual rate limits are more relaxed, so checking > + * them would make no difference. > + */ > + .dot = { .min = 25000 * 5, .max = 540000 * 5}, > + .vco = { .min = 4800000, .max = 6480000 }, > + .n = { .min = 1, .max = 1 }, > + .m1 = { .min = 2, .max = 2 }, > + .m2 = { .min = 24 << 22, .max = 175 << 22 }, > + .p1 = { .min = 2, .max = 4 }, > + .p2 = { .p2_slow = 1, .p2_fast = 14 }, > +}; > + > +static const struct intel_limit intel_limits_bxt = { > + /* FIXME: find real dot limits */ > + .dot = { .min = 0, .max = INT_MAX }, > + .vco = { .min = 4800000, .max = 6700000 }, > + .n = { .min = 1, .max = 1 }, > + .m1 = { .min = 2, .max = 2 }, > + /* FIXME: find real m2 limits */ > + .m2 = { .min = 2 << 22, .max = 255 << 22 }, > + .p1 = { .min = 2, .max = 4 }, > + .p2 = { .p2_slow = 1, .p2_fast = 20 }, > +}; > + > +/* > + * Platform specific helpers to calculate the port PLL loopback- (clock.m), > + * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast > + * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. > + * The helpers' return value is the rate of the clock that is fed to the > + * display engine's pipe which can be the above fast dot clock rate or a > + * divided-down version of it. > + */ > +/* m1 is reserved as 0 in Pineview, n is a ring counter */ > +int pnv_calc_dpll_params(int refclk, struct dpll *clock) > +{ > + clock->m = clock->m2 + 2; > + clock->p = clock->p1 * clock->p2; > + if (WARN_ON(clock->n == 0 || clock->p == 0)) > + return 0; > + clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); > + clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); > + > + return clock->dot; > +} > + > +static u32 i9xx_dpll_compute_m(struct dpll *dpll) > +{ > + return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); > +} > + > +int i9xx_calc_dpll_params(int refclk, struct dpll *clock) > +{ > + clock->m = i9xx_dpll_compute_m(clock); > + clock->p = clock->p1 * clock->p2; > + if (WARN_ON(clock->n + 2 == 0 || clock->p == 0)) > + return 0; > + clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); > + clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); > + > + return clock->dot; > +} > + > +int vlv_calc_dpll_params(int refclk, struct dpll *clock) > +{ > + clock->m = clock->m1 * clock->m2; > + clock->p = clock->p1 * clock->p2; > + if (WARN_ON(clock->n == 0 || clock->p == 0)) > + return 0; > + clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); > + clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); > + > + return clock->dot / 5; > +} > + > +int chv_calc_dpll_params(int refclk, struct dpll *clock) > +{ > + clock->m = clock->m1 * clock->m2; > + clock->p = clock->p1 * clock->p2; > + if (WARN_ON(clock->n == 0 || clock->p == 0)) > + return 0; > + clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), > + clock->n << 22); > + clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); > + > + return clock->dot / 5; > +} > + > +/* > + * Returns whether the given set of divisors are valid for a given refclk with > + * the given connectors. > + */ > +static bool intel_pll_is_valid(struct drm_i915_private *dev_priv, > + const struct intel_limit *limit, > + const struct dpll *clock) > +{ > + if (clock->n < limit->n.min || limit->n.max < clock->n) > + return false; > + if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) > + return false; > + if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) > + return false; > + if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) > + return false; > + > + if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) && > + !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv)) > + if (clock->m1 <= clock->m2) > + return false; > + > + if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && > + !IS_GEN9_LP(dev_priv)) { > + if (clock->p < limit->p.min || limit->p.max < clock->p) > + return false; > + if (clock->m < limit->m.min || limit->m.max < clock->m) > + return false; > + } > + > + if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) > + return false; > + /* XXX: We may need to be checking "Dot clock" depending on the multiplier, > + * connector, etc., rather than just a single range. > + */ > + if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) > + return false; > + > + return true; > +} > + > +static int > +i9xx_select_p2_div(const struct intel_limit *limit, > + const struct intel_crtc_state *crtc_state, > + int target) > +{ > + struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); > + > + if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { > + /* > + * For LVDS just rely on its current settings for dual-channel. > + * We haven't figured out how to reliably set up different > + * single/dual channel state, if we even can. > + */ > + if (intel_is_dual_link_lvds(dev_priv)) > + return limit->p2.p2_fast; > + else > + return limit->p2.p2_slow; > + } else { > + if (target < limit->p2.dot_limit) > + return limit->p2.p2_slow; > + else > + return limit->p2.p2_fast; > + } > +} > + > +/* > + * Returns a set of divisors for the desired target clock with the given > + * refclk, or FALSE. The returned values represent the clock equation: > + * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. > + * > + * Target and reference clocks are specified in kHz. > + * > + * If match_clock is provided, then best_clock P divider must match the P > + * divider from @match_clock used for LVDS downclocking. > + */ > +static bool > +i9xx_find_best_dpll(const struct intel_limit *limit, > + struct intel_crtc_state *crtc_state, > + int target, int refclk, struct dpll *match_clock, > + struct dpll *best_clock) > +{ > + struct drm_device *dev = crtc_state->uapi.crtc->dev; > + struct dpll clock; > + int err = target; > + > + memset(best_clock, 0, sizeof(*best_clock)); > + > + clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); > + > + for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; > + clock.m1++) { > + for (clock.m2 = limit->m2.min; > + clock.m2 <= limit->m2.max; clock.m2++) { > + if (clock.m2 >= clock.m1) > + break; > + for (clock.n = limit->n.min; > + clock.n <= limit->n.max; clock.n++) { > + for (clock.p1 = limit->p1.min; > + clock.p1 <= limit->p1.max; clock.p1++) { > + int this_err; > + > + i9xx_calc_dpll_params(refclk, &clock); > + if (!intel_pll_is_valid(to_i915(dev), > + limit, > + &clock)) > + continue; > + if (match_clock && > + clock.p != match_clock->p) > + continue; > + > + this_err = abs(clock.dot - target); > + if (this_err < err) { > + *best_clock = clock; > + err = this_err; > + } > + } > + } > + } > + } > + > + return (err != target); > +} > + > +/* > + * Returns a set of divisors for the desired target clock with the given > + * refclk, or FALSE. The returned values represent the clock equation: > + * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. > + * > + * Target and reference clocks are specified in kHz. > + * > + * If match_clock is provided, then best_clock P divider must match the P > + * divider from @match_clock used for LVDS downclocking. > + */ > +static bool > +pnv_find_best_dpll(const struct intel_limit *limit, > + struct intel_crtc_state *crtc_state, > + int target, int refclk, struct dpll *match_clock, > + struct dpll *best_clock) > +{ > + struct drm_device *dev = crtc_state->uapi.crtc->dev; > + struct dpll clock; > + int err = target; > + > + memset(best_clock, 0, sizeof(*best_clock)); > + > + clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); > + > + for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; > + clock.m1++) { > + for (clock.m2 = limit->m2.min; > + clock.m2 <= limit->m2.max; clock.m2++) { > + for (clock.n = limit->n.min; > + clock.n <= limit->n.max; clock.n++) { > + for (clock.p1 = limit->p1.min; > + clock.p1 <= limit->p1.max; clock.p1++) { > + int this_err; > + > + pnv_calc_dpll_params(refclk, &clock); > + if (!intel_pll_is_valid(to_i915(dev), > + limit, > + &clock)) > + continue; > + if (match_clock && > + clock.p != match_clock->p) > + continue; > + > + this_err = abs(clock.dot - target); > + if (this_err < err) { > + *best_clock = clock; > + err = this_err; > + } > + } > + } > + } > + } > + > + return (err != target); > +} > + > +/* > + * Returns a set of divisors for the desired target clock with the given > + * refclk, or FALSE. The returned values represent the clock equation: > + * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. > + * > + * Target and reference clocks are specified in kHz. > + * > + * If match_clock is provided, then best_clock P divider must match the P > + * divider from @match_clock used for LVDS downclocking. > + */ > +static bool > +g4x_find_best_dpll(const struct intel_limit *limit, > + struct intel_crtc_state *crtc_state, > + int target, int refclk, struct dpll *match_clock, > + struct dpll *best_clock) > +{ > + struct drm_device *dev = crtc_state->uapi.crtc->dev; > + struct dpll clock; > + int max_n; > + bool found = false; > + /* approximately equals target * 0.00585 */ > + int err_most = (target >> 8) + (target >> 9); > + > + memset(best_clock, 0, sizeof(*best_clock)); > + > + clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); > + > + max_n = limit->n.max; > + /* based on hardware requirement, prefer smaller n to precision */ > + for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { > + /* based on hardware requirement, prefere larger m1,m2 */ > + for (clock.m1 = limit->m1.max; > + clock.m1 >= limit->m1.min; clock.m1--) { > + for (clock.m2 = limit->m2.max; > + clock.m2 >= limit->m2.min; clock.m2--) { > + for (clock.p1 = limit->p1.max; > + clock.p1 >= limit->p1.min; clock.p1--) { > + int this_err; > + > + i9xx_calc_dpll_params(refclk, &clock); > + if (!intel_pll_is_valid(to_i915(dev), > + limit, > + &clock)) > + continue; > + > + this_err = abs(clock.dot - target); > + if (this_err < err_most) { > + *best_clock = clock; > + err_most = this_err; > + max_n = clock.n; > + found = true; > + } > + } > + } > + } > + } > + return found; > +} > + > +/* > + * Check if the calculated PLL configuration is more optimal compared to the > + * best configuration and error found so far. Return the calculated error. > + */ > +static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, > + const struct dpll *calculated_clock, > + const struct dpll *best_clock, > + unsigned int best_error_ppm, > + unsigned int *error_ppm) > +{ > + /* > + * For CHV ignore the error and consider only the P value. > + * Prefer a bigger P value based on HW requirements. > + */ > + if (IS_CHERRYVIEW(to_i915(dev))) { > + *error_ppm = 0; > + > + return calculated_clock->p > best_clock->p; > + } > + > + if (drm_WARN_ON_ONCE(dev, !target_freq)) > + return false; > + > + *error_ppm = div_u64(1000000ULL * > + abs(target_freq - calculated_clock->dot), > + target_freq); > + /* > + * Prefer a better P value over a better (smaller) error if the error > + * is small. Ensure this preference for future configurations too by > + * setting the error to 0. > + */ > + if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { > + *error_ppm = 0; > + > + return true; > + } > + > + return *error_ppm + 10 < best_error_ppm; > +} > + > +/* > + * Returns a set of divisors for the desired target clock with the given > + * refclk, or FALSE. The returned values represent the clock equation: > + * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. > + */ > +static bool > +vlv_find_best_dpll(const struct intel_limit *limit, > + struct intel_crtc_state *crtc_state, > + int target, int refclk, struct dpll *match_clock, > + struct dpll *best_clock) > +{ > + struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); > + struct drm_device *dev = crtc->base.dev; > + struct dpll clock; > + unsigned int bestppm = 1000000; > + /* min update 19.2 MHz */ > + int max_n = min(limit->n.max, refclk / 19200); > + bool found = false; > + > + target *= 5; /* fast clock */ > + > + memset(best_clock, 0, sizeof(*best_clock)); > + > + /* based on hardware requirement, prefer smaller n to precision */ > + for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { > + for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { > + for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; > + clock.p2 -= clock.p2 > 10 ? 2 : 1) { > + clock.p = clock.p1 * clock.p2; > + /* based on hardware requirement, prefer bigger m1,m2 values */ > + for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { > + unsigned int ppm; > + > + clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, > + refclk * clock.m1); > + > + vlv_calc_dpll_params(refclk, &clock); > + > + if (!intel_pll_is_valid(to_i915(dev), > + limit, > + &clock)) > + continue; > + > + if (!vlv_PLL_is_optimal(dev, target, > + &clock, > + best_clock, > + bestppm, &ppm)) > + continue; > + > + *best_clock = clock; > + bestppm = ppm; > + found = true; > + } > + } > + } > + } > + > + return found; > +} > + > +/* > + * Returns a set of divisors for the desired target clock with the given > + * refclk, or FALSE. The returned values represent the clock equation: > + * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. > + */ > +static bool > +chv_find_best_dpll(const struct intel_limit *limit, > + struct intel_crtc_state *crtc_state, > + int target, int refclk, struct dpll *match_clock, > + struct dpll *best_clock) > +{ > + struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); > + struct drm_device *dev = crtc->base.dev; > + unsigned int best_error_ppm; > + struct dpll clock; > + u64 m2; > + int found = false; > + > + memset(best_clock, 0, sizeof(*best_clock)); > + best_error_ppm = 1000000; > + > + /* > + * Based on hardware doc, the n always set to 1, and m1 always > + * set to 2. If requires to support 200Mhz refclk, we need to > + * revisit this because n may not 1 anymore. > + */ > + clock.n = 1; > + clock.m1 = 2; > + target *= 5; /* fast clock */ > + > + for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { > + for (clock.p2 = limit->p2.p2_fast; > + clock.p2 >= limit->p2.p2_slow; > + clock.p2 -= clock.p2 > 10 ? 2 : 1) { > + unsigned int error_ppm; > + > + clock.p = clock.p1 * clock.p2; > + > + m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22, > + refclk * clock.m1); > + > + if (m2 > INT_MAX/clock.m1) > + continue; > + > + clock.m2 = m2; > + > + chv_calc_dpll_params(refclk, &clock); > + > + if (!intel_pll_is_valid(to_i915(dev), limit, &clock)) > + continue; > + > + if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, > + best_error_ppm, &error_ppm)) > + continue; > + > + *best_clock = clock; > + best_error_ppm = error_ppm; > + found = true; > + } > + } > + > + return found; > +} > + > +bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, > + struct dpll *best_clock) > +{ > + int refclk = 100000; > + const struct intel_limit *limit = &intel_limits_bxt; > + > + return chv_find_best_dpll(limit, crtc_state, > + crtc_state->port_clock, refclk, > + NULL, best_clock); > +} > + > +static u32 pnv_dpll_compute_fp(struct dpll *dpll) > +{ > + return (1 << dpll->n) << 16 | dpll->m2; > +} > + > +static void i9xx_update_pll_dividers(struct intel_crtc *crtc, > + struct intel_crtc_state *crtc_state, > + struct dpll *reduced_clock) > +{ > + struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); > + u32 fp, fp2 = 0; > + > + if (IS_PINEVIEW(dev_priv)) { > + fp = pnv_dpll_compute_fp(&crtc_state->dpll); > + if (reduced_clock) > + fp2 = pnv_dpll_compute_fp(reduced_clock); > + } else { > + fp = i9xx_dpll_compute_fp(&crtc_state->dpll); > + if (reduced_clock) > + fp2 = i9xx_dpll_compute_fp(reduced_clock); > + } > + > + crtc_state->dpll_hw_state.fp0 = fp; > + > + if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && > + reduced_clock) { > + crtc_state->dpll_hw_state.fp1 = fp2; > + } else { > + crtc_state->dpll_hw_state.fp1 = fp; > + } > +} > + > +static void i9xx_compute_dpll(struct intel_crtc *crtc, > + struct intel_crtc_state *crtc_state, > + struct dpll *reduced_clock) > +{ > + struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); > + u32 dpll; > + struct dpll *clock = &crtc_state->dpll; > + > + i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); > + > + dpll = DPLL_VGA_MODE_DIS; > + > + if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) > + dpll |= DPLLB_MODE_LVDS; > + else > + dpll |= DPLLB_MODE_DAC_SERIAL; > + > + if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || > + IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { > + dpll |= (crtc_state->pixel_multiplier - 1) > + << SDVO_MULTIPLIER_SHIFT_HIRES; > + } > + > + if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || > + intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) > + dpll |= DPLL_SDVO_HIGH_SPEED; > + > + if (intel_crtc_has_dp_encoder(crtc_state)) > + dpll |= DPLL_SDVO_HIGH_SPEED; > + > + /* compute bitmask from p1 value */ > + if (IS_PINEVIEW(dev_priv)) > + dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; > + else { > + dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; > + if (IS_G4X(dev_priv) && reduced_clock) > + dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; > + } > + switch (clock->p2) { > + case 5: > + dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; > + break; > + case 7: > + dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; > + break; > + case 10: > + dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; > + break; > + case 14: > + dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; > + break; > + } > + if (INTEL_GEN(dev_priv) >= 4) > + dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); > + > + if (crtc_state->sdvo_tv_clock) > + dpll |= PLL_REF_INPUT_TVCLKINBC; > + else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && > + intel_panel_use_ssc(dev_priv)) > + dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; > + else > + dpll |= PLL_REF_INPUT_DREFCLK; > + > + dpll |= DPLL_VCO_ENABLE; > + crtc_state->dpll_hw_state.dpll = dpll; > + > + if (INTEL_GEN(dev_priv) >= 4) { > + u32 dpll_md = (crtc_state->pixel_multiplier - 1) > + << DPLL_MD_UDI_MULTIPLIER_SHIFT; > + crtc_state->dpll_hw_state.dpll_md = dpll_md; > + } > +} > + > +static void i8xx_compute_dpll(struct intel_crtc *crtc, > + struct intel_crtc_state *crtc_state, > + struct dpll *reduced_clock) > +{ > + struct drm_device *dev = crtc->base.dev; > + struct drm_i915_private *dev_priv = to_i915(dev); > + u32 dpll; > + struct dpll *clock = &crtc_state->dpll; > + > + i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); > + > + dpll = DPLL_VGA_MODE_DIS; > + > + if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { > + dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; > + } else { > + if (clock->p1 == 2) > + dpll |= PLL_P1_DIVIDE_BY_TWO; > + else > + dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; > + if (clock->p2 == 4) > + dpll |= PLL_P2_DIVIDE_BY_4; > + } > + > + /* > + * Bspec: > + * "[Almador Errata}: For the correct operation of the muxed DVO pins > + * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data, > + * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock > + * Enable) must be set to “1” in both the DPLL A Control Register > + * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)." > + * > + * For simplicity We simply keep both bits always enabled in > + * both DPLLS. The spec says we should disable the DVO 2X clock > + * when not needed, but this seems to work fine in practice. > + */ > + if (IS_I830(dev_priv) || > + intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) > + dpll |= DPLL_DVO_2X_MODE; > + > + if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && > + intel_panel_use_ssc(dev_priv)) > + dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; > + else > + dpll |= PLL_REF_INPUT_DREFCLK; > + > + dpll |= DPLL_VCO_ENABLE; > + crtc_state->dpll_hw_state.dpll = dpll; > +} > + > +static int hsw_crtc_compute_clock(struct intel_crtc *crtc, > + struct intel_crtc_state *crtc_state) > +{ > + struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); > + struct intel_atomic_state *state = > + to_intel_atomic_state(crtc_state->uapi.state); > + > + if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) || > + INTEL_GEN(dev_priv) >= 11) { > + struct intel_encoder *encoder = > + intel_get_crtc_new_encoder(state, crtc_state); > + > + if (!intel_reserve_shared_dplls(state, crtc, encoder)) { > + drm_dbg_kms(&dev_priv->drm, > + "failed to find PLL for pipe %c\n", > + pipe_name(crtc->pipe)); > + return -EINVAL; > + } > + } > + > + return 0; > +} > + > +static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor) > +{ > + return i9xx_dpll_compute_m(dpll) < factor * dpll->n; > +} > + > + > +static void ilk_compute_dpll(struct intel_crtc *crtc, > + struct intel_crtc_state *crtc_state, > + struct dpll *reduced_clock) > +{ > + struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); > + u32 dpll, fp, fp2; > + int factor; > + > + /* Enable autotuning of the PLL clock (if permissible) */ > + factor = 21; > + if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { > + if ((intel_panel_use_ssc(dev_priv) && > + dev_priv->vbt.lvds_ssc_freq == 100000) || > + (HAS_PCH_IBX(dev_priv) && > + intel_is_dual_link_lvds(dev_priv))) > + factor = 25; > + } else if (crtc_state->sdvo_tv_clock) { > + factor = 20; > + } > + > + fp = i9xx_dpll_compute_fp(&crtc_state->dpll); > + > + if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor)) > + fp |= FP_CB_TUNE; > + > + if (reduced_clock) { > + fp2 = i9xx_dpll_compute_fp(reduced_clock); > + > + if (reduced_clock->m < factor * reduced_clock->n) > + fp2 |= FP_CB_TUNE; > + } else { > + fp2 = fp; > + } > + > + dpll = 0; > + > + if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) > + dpll |= DPLLB_MODE_LVDS; > + else > + dpll |= DPLLB_MODE_DAC_SERIAL; > + > + dpll |= (crtc_state->pixel_multiplier - 1) > + << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; > + > + if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || > + intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) > + dpll |= DPLL_SDVO_HIGH_SPEED; > + > + if (intel_crtc_has_dp_encoder(crtc_state)) > + dpll |= DPLL_SDVO_HIGH_SPEED; > + > + /* > + * The high speed IO clock is only really required for > + * SDVO/HDMI/DP, but we also enable it for CRT to make it > + * possible to share the DPLL between CRT and HDMI. Enabling > + * the clock needlessly does no real harm, except use up a > + * bit of power potentially. > + * > + * We'll limit this to IVB with 3 pipes, since it has only two > + * DPLLs and so DPLL sharing is the only way to get three pipes > + * driving PCH ports at the same time. On SNB we could do this, > + * and potentially avoid enabling the second DPLL, but it's not > + * clear if it''s a win or loss power wise. No point in doing > + * this on ILK at all since it has a fixed DPLL<->pipe mapping. > + */ > + if (INTEL_NUM_PIPES(dev_priv) == 3 && > + intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) > + dpll |= DPLL_SDVO_HIGH_SPEED; > + > + /* compute bitmask from p1 value */ > + dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; > + /* also FPA1 */ > + dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; > + > + switch (crtc_state->dpll.p2) { > + case 5: > + dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; > + break; > + case 7: > + dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; > + break; > + case 10: > + dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; > + break; > + case 14: > + dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; > + break; > + } > + > + if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && > + intel_panel_use_ssc(dev_priv)) > + dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; > + else > + dpll |= PLL_REF_INPUT_DREFCLK; > + > + dpll |= DPLL_VCO_ENABLE; > + > + crtc_state->dpll_hw_state.dpll = dpll; > + crtc_state->dpll_hw_state.fp0 = fp; > + crtc_state->dpll_hw_state.fp1 = fp2; > +} > + > +static int ilk_crtc_compute_clock(struct intel_crtc *crtc, > + struct intel_crtc_state *crtc_state) > +{ > + struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); > + struct intel_atomic_state *state = > + to_intel_atomic_state(crtc_state->uapi.state); > + const struct intel_limit *limit; > + int refclk = 120000; > + > + memset(&crtc_state->dpll_hw_state, 0, > + sizeof(crtc_state->dpll_hw_state)); > + > + /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ > + if (!crtc_state->has_pch_encoder) > + return 0; > + > + if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { > + if (intel_panel_use_ssc(dev_priv)) { > + drm_dbg_kms(&dev_priv->drm, > + "using SSC reference clock of %d kHz\n", > + dev_priv->vbt.lvds_ssc_freq); > + refclk = dev_priv->vbt.lvds_ssc_freq; > + } > + > + if (intel_is_dual_link_lvds(dev_priv)) { > + if (refclk == 100000) > + limit = &ilk_limits_dual_lvds_100m; > + else > + limit = &ilk_limits_dual_lvds; > + } else { > + if (refclk == 100000) > + limit = &ilk_limits_single_lvds_100m; > + else > + limit = &ilk_limits_single_lvds; > + } > + } else { > + limit = &ilk_limits_dac; > + } > + > + if (!crtc_state->clock_set && > + !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, > + refclk, NULL, &crtc_state->dpll)) { > + drm_err(&dev_priv->drm, > + "Couldn't find PLL settings for mode!\n"); > + return -EINVAL; > + } > + > + ilk_compute_dpll(crtc, crtc_state, NULL); > + > + if (!intel_reserve_shared_dplls(state, crtc, NULL)) { > + drm_dbg_kms(&dev_priv->drm, > + "failed to find PLL for pipe %c\n", > + pipe_name(crtc->pipe)); > + return -EINVAL; > + } > + > + return 0; > +} > + > +void vlv_compute_dpll(struct intel_crtc *crtc, > + struct intel_crtc_state *pipe_config) > +{ > + pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV | > + DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; > + if (crtc->pipe != PIPE_A) > + pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; > + > + /* DPLL not used with DSI, but still need the rest set up */ > + if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) > + pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE | > + DPLL_EXT_BUFFER_ENABLE_VLV; > + > + pipe_config->dpll_hw_state.dpll_md = > + (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; > +} > + > +void chv_compute_dpll(struct intel_crtc *crtc, > + struct intel_crtc_state *pipe_config) > +{ > + pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV | > + DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; > + if (crtc->pipe != PIPE_A) > + pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; > + > + /* DPLL not used with DSI, but still need the rest set up */ > + if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) > + pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE; > + > + pipe_config->dpll_hw_state.dpll_md = > + (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; > +} > + > +static int chv_crtc_compute_clock(struct intel_crtc *crtc, > + struct intel_crtc_state *crtc_state) > +{ > + int refclk = 100000; > + const struct intel_limit *limit = &intel_limits_chv; > + struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); > + > + memset(&crtc_state->dpll_hw_state, 0, > + sizeof(crtc_state->dpll_hw_state)); > + > + if (!crtc_state->clock_set && > + !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, > + refclk, NULL, &crtc_state->dpll)) { > + drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n"); > + return -EINVAL; > + } > + > + chv_compute_dpll(crtc, crtc_state); > + > + return 0; > +} > + > +static int vlv_crtc_compute_clock(struct intel_crtc *crtc, > + struct intel_crtc_state *crtc_state) > +{ > + int refclk = 100000; > + const struct intel_limit *limit = &intel_limits_vlv; > + struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); > + > + memset(&crtc_state->dpll_hw_state, 0, > + sizeof(crtc_state->dpll_hw_state)); > + > + if (!crtc_state->clock_set && > + !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, > + refclk, NULL, &crtc_state->dpll)) { > + drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n"); > + return -EINVAL; > + } > + > + vlv_compute_dpll(crtc, crtc_state); > + > + return 0; > +} > + > +static int g4x_crtc_compute_clock(struct intel_crtc *crtc, > + struct intel_crtc_state *crtc_state) > +{ > + struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); > + const struct intel_limit *limit; > + int refclk = 96000; > + > + memset(&crtc_state->dpll_hw_state, 0, > + sizeof(crtc_state->dpll_hw_state)); > + > + if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { > + if (intel_panel_use_ssc(dev_priv)) { > + refclk = dev_priv->vbt.lvds_ssc_freq; > + drm_dbg_kms(&dev_priv->drm, > + "using SSC reference clock of %d kHz\n", > + refclk); > + } > + > + if (intel_is_dual_link_lvds(dev_priv)) > + limit = &intel_limits_g4x_dual_channel_lvds; > + else > + limit = &intel_limits_g4x_single_channel_lvds; > + } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || > + intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { > + limit = &intel_limits_g4x_hdmi; > + } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { > + limit = &intel_limits_g4x_sdvo; > + } else { > + /* The option is for other outputs */ > + limit = &intel_limits_i9xx_sdvo; > + } > + > + if (!crtc_state->clock_set && > + !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, > + refclk, NULL, &crtc_state->dpll)) { > + drm_err(&dev_priv->drm, > + "Couldn't find PLL settings for mode!\n"); > + return -EINVAL; > + } > + > + i9xx_compute_dpll(crtc, crtc_state, NULL); > + > + return 0; > +} > + > +static int pnv_crtc_compute_clock(struct intel_crtc *crtc, > + struct intel_crtc_state *crtc_state) > +{ > + struct drm_device *dev = crtc->base.dev; > + struct drm_i915_private *dev_priv = to_i915(dev); > + const struct intel_limit *limit; > + int refclk = 96000; > + > + memset(&crtc_state->dpll_hw_state, 0, > + sizeof(crtc_state->dpll_hw_state)); > + > + if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { > + if (intel_panel_use_ssc(dev_priv)) { > + refclk = dev_priv->vbt.lvds_ssc_freq; > + drm_dbg_kms(&dev_priv->drm, > + "using SSC reference clock of %d kHz\n", > + refclk); > + } > + > + limit = &pnv_limits_lvds; > + } else { > + limit = &pnv_limits_sdvo; > + } > + > + if (!crtc_state->clock_set && > + !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, > + refclk, NULL, &crtc_state->dpll)) { > + drm_err(&dev_priv->drm, > + "Couldn't find PLL settings for mode!\n"); > + return -EINVAL; > + } > + > + i9xx_compute_dpll(crtc, crtc_state, NULL); > + > + return 0; > +} > + > +static int i9xx_crtc_compute_clock(struct intel_crtc *crtc, > + struct intel_crtc_state *crtc_state) > +{ > + struct drm_device *dev = crtc->base.dev; > + struct drm_i915_private *dev_priv = to_i915(dev); > + const struct intel_limit *limit; > + int refclk = 96000; > + > + memset(&crtc_state->dpll_hw_state, 0, > + sizeof(crtc_state->dpll_hw_state)); > + > + if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { > + if (intel_panel_use_ssc(dev_priv)) { > + refclk = dev_priv->vbt.lvds_ssc_freq; > + drm_dbg_kms(&dev_priv->drm, > + "using SSC reference clock of %d kHz\n", > + refclk); > + } > + > + limit = &intel_limits_i9xx_lvds; > + } else { > + limit = &intel_limits_i9xx_sdvo; > + } > + > + if (!crtc_state->clock_set && > + !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, > + refclk, NULL, &crtc_state->dpll)) { > + drm_err(&dev_priv->drm, > + "Couldn't find PLL settings for mode!\n"); > + return -EINVAL; > + } > + > + i9xx_compute_dpll(crtc, crtc_state, NULL); > + > + return 0; > +} > + > +static int i8xx_crtc_compute_clock(struct intel_crtc *crtc, > + struct intel_crtc_state *crtc_state) > +{ > + struct drm_device *dev = crtc->base.dev; > + struct drm_i915_private *dev_priv = to_i915(dev); > + const struct intel_limit *limit; > + int refclk = 48000; > + > + memset(&crtc_state->dpll_hw_state, 0, > + sizeof(crtc_state->dpll_hw_state)); > + > + if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { > + if (intel_panel_use_ssc(dev_priv)) { > + refclk = dev_priv->vbt.lvds_ssc_freq; > + drm_dbg_kms(&dev_priv->drm, > + "using SSC reference clock of %d kHz\n", > + refclk); > + } > + > + limit = &intel_limits_i8xx_lvds; > + } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { > + limit = &intel_limits_i8xx_dvo; > + } else { > + limit = &intel_limits_i8xx_dac; > + } > + > + if (!crtc_state->clock_set && > + !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, > + refclk, NULL, &crtc_state->dpll)) { > + drm_err(&dev_priv->drm, > + "Couldn't find PLL settings for mode!\n"); > + return -EINVAL; > + } > + > + i8xx_compute_dpll(crtc, crtc_state, NULL); > + > + return 0; > +} > + > +void > +intel_init_clock_hook(struct drm_i915_private *dev_priv) > +{ > + if (INTEL_GEN(dev_priv) >= 9 || HAS_DDI(dev_priv)) > + dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock; > + else if (HAS_PCH_SPLIT(dev_priv)) > + dev_priv->display.crtc_compute_clock = ilk_crtc_compute_clock; > + else if (IS_CHERRYVIEW(dev_priv)) > + dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock; > + else if (IS_VALLEYVIEW(dev_priv)) > + dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock; > + else if (IS_G4X(dev_priv)) > + dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock; > + else if (IS_PINEVIEW(dev_priv)) > + dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock; > + else if (!IS_GEN(dev_priv, 2)) > + dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock; > + else > + dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock; > +} > diff --git a/drivers/gpu/drm/i915/display/intel_display.c b/drivers/gpu/drm/i915/display/intel_display.c > index c6f30e4ec51e..788b1def61ee 100644 > --- a/drivers/gpu/drm/i915/display/intel_display.c > +++ b/drivers/gpu/drm/i915/display/intel_display.c > @@ -113,17 +113,6 @@ static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state); > static void intel_modeset_setup_hw_state(struct drm_device *dev, > struct drm_modeset_acquire_ctx *ctx); > > -struct intel_limit { > - struct { > - int min, max; > - } dot, vco, n, m, m1, m2, p, p1; > - > - struct { > - int dot_limit; > - int p2_slow, p2_fast; > - } p2; > -}; > - > /* returns HPLL frequency in kHz */ > int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) > { > @@ -191,271 +180,6 @@ static u32 intel_fdi_link_freq(struct drm_i915_private *dev_priv, > return dev_priv->fdi_pll_freq; > } > > -static const struct intel_limit intel_limits_i8xx_dac = { > - .dot = { .min = 25000, .max = 350000 }, > - .vco = { .min = 908000, .max = 1512000 }, > - .n = { .min = 2, .max = 16 }, > - .m = { .min = 96, .max = 140 }, > - .m1 = { .min = 18, .max = 26 }, > - .m2 = { .min = 6, .max = 16 }, > - .p = { .min = 4, .max = 128 }, > - .p1 = { .min = 2, .max = 33 }, > - .p2 = { .dot_limit = 165000, > - .p2_slow = 4, .p2_fast = 2 }, > -}; > - > -static const struct intel_limit intel_limits_i8xx_dvo = { > - .dot = { .min = 25000, .max = 350000 }, > - .vco = { .min = 908000, .max = 1512000 }, > - .n = { .min = 2, .max = 16 }, > - .m = { .min = 96, .max = 140 }, > - .m1 = { .min = 18, .max = 26 }, > - .m2 = { .min = 6, .max = 16 }, > - .p = { .min = 4, .max = 128 }, > - .p1 = { .min = 2, .max = 33 }, > - .p2 = { .dot_limit = 165000, > - .p2_slow = 4, .p2_fast = 4 }, > -}; > - > -static const struct intel_limit intel_limits_i8xx_lvds = { > - .dot = { .min = 25000, .max = 350000 }, > - .vco = { .min = 908000, .max = 1512000 }, > - .n = { .min = 2, .max = 16 }, > - .m = { .min = 96, .max = 140 }, > - .m1 = { .min = 18, .max = 26 }, > - .m2 = { .min = 6, .max = 16 }, > - .p = { .min = 4, .max = 128 }, > - .p1 = { .min = 1, .max = 6 }, > - .p2 = { .dot_limit = 165000, > - .p2_slow = 14, .p2_fast = 7 }, > -}; > - > -static const struct intel_limit intel_limits_i9xx_sdvo = { > - .dot = { .min = 20000, .max = 400000 }, > - .vco = { .min = 1400000, .max = 2800000 }, > - .n = { .min = 1, .max = 6 }, > - .m = { .min = 70, .max = 120 }, > - .m1 = { .min = 8, .max = 18 }, > - .m2 = { .min = 3, .max = 7 }, > - .p = { .min = 5, .max = 80 }, > - .p1 = { .min = 1, .max = 8 }, > - .p2 = { .dot_limit = 200000, > - .p2_slow = 10, .p2_fast = 5 }, > -}; > - > -static const struct intel_limit intel_limits_i9xx_lvds = { > - .dot = { .min = 20000, .max = 400000 }, > - .vco = { .min = 1400000, .max = 2800000 }, > - .n = { .min = 1, .max = 6 }, > - .m = { .min = 70, .max = 120 }, > - .m1 = { .min = 8, .max = 18 }, > - .m2 = { .min = 3, .max = 7 }, > - .p = { .min = 7, .max = 98 }, > - .p1 = { .min = 1, .max = 8 }, > - .p2 = { .dot_limit = 112000, > - .p2_slow = 14, .p2_fast = 7 }, > -}; > - > - > -static const struct intel_limit intel_limits_g4x_sdvo = { > - .dot = { .min = 25000, .max = 270000 }, > - .vco = { .min = 1750000, .max = 3500000}, > - .n = { .min = 1, .max = 4 }, > - .m = { .min = 104, .max = 138 }, > - .m1 = { .min = 17, .max = 23 }, > - .m2 = { .min = 5, .max = 11 }, > - .p = { .min = 10, .max = 30 }, > - .p1 = { .min = 1, .max = 3}, > - .p2 = { .dot_limit = 270000, > - .p2_slow = 10, > - .p2_fast = 10 > - }, > -}; > - > -static const struct intel_limit intel_limits_g4x_hdmi = { > - .dot = { .min = 22000, .max = 400000 }, > - .vco = { .min = 1750000, .max = 3500000}, > - .n = { .min = 1, .max = 4 }, > - .m = { .min = 104, .max = 138 }, > - .m1 = { .min = 16, .max = 23 }, > - .m2 = { .min = 5, .max = 11 }, > - .p = { .min = 5, .max = 80 }, > - .p1 = { .min = 1, .max = 8}, > - .p2 = { .dot_limit = 165000, > - .p2_slow = 10, .p2_fast = 5 }, > -}; > - > -static const struct intel_limit intel_limits_g4x_single_channel_lvds = { > - .dot = { .min = 20000, .max = 115000 }, > - .vco = { .min = 1750000, .max = 3500000 }, > - .n = { .min = 1, .max = 3 }, > - .m = { .min = 104, .max = 138 }, > - .m1 = { .min = 17, .max = 23 }, > - .m2 = { .min = 5, .max = 11 }, > - .p = { .min = 28, .max = 112 }, > - .p1 = { .min = 2, .max = 8 }, > - .p2 = { .dot_limit = 0, > - .p2_slow = 14, .p2_fast = 14 > - }, > -}; > - > -static const struct intel_limit intel_limits_g4x_dual_channel_lvds = { > - .dot = { .min = 80000, .max = 224000 }, > - .vco = { .min = 1750000, .max = 3500000 }, > - .n = { .min = 1, .max = 3 }, > - .m = { .min = 104, .max = 138 }, > - .m1 = { .min = 17, .max = 23 }, > - .m2 = { .min = 5, .max = 11 }, > - .p = { .min = 14, .max = 42 }, > - .p1 = { .min = 2, .max = 6 }, > - .p2 = { .dot_limit = 0, > - .p2_slow = 7, .p2_fast = 7 > - }, > -}; > - > -static const struct intel_limit pnv_limits_sdvo = { > - .dot = { .min = 20000, .max = 400000}, > - .vco = { .min = 1700000, .max = 3500000 }, > - /* Pineview's Ncounter is a ring counter */ > - .n = { .min = 3, .max = 6 }, > - .m = { .min = 2, .max = 256 }, > - /* Pineview only has one combined m divider, which we treat as m2. */ > - .m1 = { .min = 0, .max = 0 }, > - .m2 = { .min = 0, .max = 254 }, > - .p = { .min = 5, .max = 80 }, > - .p1 = { .min = 1, .max = 8 }, > - .p2 = { .dot_limit = 200000, > - .p2_slow = 10, .p2_fast = 5 }, > -}; > - > -static const struct intel_limit pnv_limits_lvds = { > - .dot = { .min = 20000, .max = 400000 }, > - .vco = { .min = 1700000, .max = 3500000 }, > - .n = { .min = 3, .max = 6 }, > - .m = { .min = 2, .max = 256 }, > - .m1 = { .min = 0, .max = 0 }, > - .m2 = { .min = 0, .max = 254 }, > - .p = { .min = 7, .max = 112 }, > - .p1 = { .min = 1, .max = 8 }, > - .p2 = { .dot_limit = 112000, > - .p2_slow = 14, .p2_fast = 14 }, > -}; > - > -/* Ironlake / Sandybridge > - * > - * We calculate clock using (register_value + 2) for N/M1/M2, so here > - * the range value for them is (actual_value - 2). > - */ > -static const struct intel_limit ilk_limits_dac = { > - .dot = { .min = 25000, .max = 350000 }, > - .vco = { .min = 1760000, .max = 3510000 }, > - .n = { .min = 1, .max = 5 }, > - .m = { .min = 79, .max = 127 }, > - .m1 = { .min = 12, .max = 22 }, > - .m2 = { .min = 5, .max = 9 }, > - .p = { .min = 5, .max = 80 }, > - .p1 = { .min = 1, .max = 8 }, > - .p2 = { .dot_limit = 225000, > - .p2_slow = 10, .p2_fast = 5 }, > -}; > - > -static const struct intel_limit ilk_limits_single_lvds = { > - .dot = { .min = 25000, .max = 350000 }, > - .vco = { .min = 1760000, .max = 3510000 }, > - .n = { .min = 1, .max = 3 }, > - .m = { .min = 79, .max = 118 }, > - .m1 = { .min = 12, .max = 22 }, > - .m2 = { .min = 5, .max = 9 }, > - .p = { .min = 28, .max = 112 }, > - .p1 = { .min = 2, .max = 8 }, > - .p2 = { .dot_limit = 225000, > - .p2_slow = 14, .p2_fast = 14 }, > -}; > - > -static const struct intel_limit ilk_limits_dual_lvds = { > - .dot = { .min = 25000, .max = 350000 }, > - .vco = { .min = 1760000, .max = 3510000 }, > - .n = { .min = 1, .max = 3 }, > - .m = { .min = 79, .max = 127 }, > - .m1 = { .min = 12, .max = 22 }, > - .m2 = { .min = 5, .max = 9 }, > - .p = { .min = 14, .max = 56 }, > - .p1 = { .min = 2, .max = 8 }, > - .p2 = { .dot_limit = 225000, > - .p2_slow = 7, .p2_fast = 7 }, > -}; > - > -/* LVDS 100mhz refclk limits. */ > -static const struct intel_limit ilk_limits_single_lvds_100m = { > - .dot = { .min = 25000, .max = 350000 }, > - .vco = { .min = 1760000, .max = 3510000 }, > - .n = { .min = 1, .max = 2 }, > - .m = { .min = 79, .max = 126 }, > - .m1 = { .min = 12, .max = 22 }, > - .m2 = { .min = 5, .max = 9 }, > - .p = { .min = 28, .max = 112 }, > - .p1 = { .min = 2, .max = 8 }, > - .p2 = { .dot_limit = 225000, > - .p2_slow = 14, .p2_fast = 14 }, > -}; > - > -static const struct intel_limit ilk_limits_dual_lvds_100m = { > - .dot = { .min = 25000, .max = 350000 }, > - .vco = { .min = 1760000, .max = 3510000 }, > - .n = { .min = 1, .max = 3 }, > - .m = { .min = 79, .max = 126 }, > - .m1 = { .min = 12, .max = 22 }, > - .m2 = { .min = 5, .max = 9 }, > - .p = { .min = 14, .max = 42 }, > - .p1 = { .min = 2, .max = 6 }, > - .p2 = { .dot_limit = 225000, > - .p2_slow = 7, .p2_fast = 7 }, > -}; > - > -static const struct intel_limit intel_limits_vlv = { > - /* > - * These are the data rate limits (measured in fast clocks) > - * since those are the strictest limits we have. The fast > - * clock and actual rate limits are more relaxed, so checking > - * them would make no difference. > - */ > - .dot = { .min = 25000 * 5, .max = 270000 * 5 }, > - .vco = { .min = 4000000, .max = 6000000 }, > - .n = { .min = 1, .max = 7 }, > - .m1 = { .min = 2, .max = 3 }, > - .m2 = { .min = 11, .max = 156 }, > - .p1 = { .min = 2, .max = 3 }, > - .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ > -}; > - > -static const struct intel_limit intel_limits_chv = { > - /* > - * These are the data rate limits (measured in fast clocks) > - * since those are the strictest limits we have. The fast > - * clock and actual rate limits are more relaxed, so checking > - * them would make no difference. > - */ > - .dot = { .min = 25000 * 5, .max = 540000 * 5}, > - .vco = { .min = 4800000, .max = 6480000 }, > - .n = { .min = 1, .max = 1 }, > - .m1 = { .min = 2, .max = 2 }, > - .m2 = { .min = 24 << 22, .max = 175 << 22 }, > - .p1 = { .min = 2, .max = 4 }, > - .p2 = { .p2_slow = 1, .p2_fast = 14 }, > -}; > - > -static const struct intel_limit intel_limits_bxt = { > - /* FIXME: find real dot limits */ > - .dot = { .min = 0, .max = INT_MAX }, > - .vco = { .min = 4800000, .max = 6700000 }, > - .n = { .min = 1, .max = 1 }, > - .m1 = { .min = 2, .max = 2 }, > - /* FIXME: find real m2 limits */ > - .m2 = { .min = 2 << 22, .max = 255 << 22 }, > - .p1 = { .min = 2, .max = 4 }, > - .p2 = { .p2_slow = 1, .p2_fast = 20 }, > -}; > - > /* WA Display #0827: Gen9:all */ > static void > skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) > @@ -506,482 +230,6 @@ is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) > is_trans_port_sync_slave(crtc_state); > } > > -/* > - * Platform specific helpers to calculate the port PLL loopback- (clock.m), > - * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast > - * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic. > - * The helpers' return value is the rate of the clock that is fed to the > - * display engine's pipe which can be the above fast dot clock rate or a > - * divided-down version of it. > - */ > -/* m1 is reserved as 0 in Pineview, n is a ring counter */ > -static int pnv_calc_dpll_params(int refclk, struct dpll *clock) > -{ > - clock->m = clock->m2 + 2; > - clock->p = clock->p1 * clock->p2; > - if (WARN_ON(clock->n == 0 || clock->p == 0)) > - return 0; > - clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); > - clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); > - > - return clock->dot; > -} > - > -static u32 i9xx_dpll_compute_m(struct dpll *dpll) > -{ > - return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); > -} > - > -static int i9xx_calc_dpll_params(int refclk, struct dpll *clock) > -{ > - clock->m = i9xx_dpll_compute_m(clock); > - clock->p = clock->p1 * clock->p2; > - if (WARN_ON(clock->n + 2 == 0 || clock->p == 0)) > - return 0; > - clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); > - clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); > - > - return clock->dot; > -} > - > -static int vlv_calc_dpll_params(int refclk, struct dpll *clock) > -{ > - clock->m = clock->m1 * clock->m2; > - clock->p = clock->p1 * clock->p2; > - if (WARN_ON(clock->n == 0 || clock->p == 0)) > - return 0; > - clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); > - clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); > - > - return clock->dot / 5; > -} > - > -int chv_calc_dpll_params(int refclk, struct dpll *clock) > -{ > - clock->m = clock->m1 * clock->m2; > - clock->p = clock->p1 * clock->p2; > - if (WARN_ON(clock->n == 0 || clock->p == 0)) > - return 0; > - clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m), > - clock->n << 22); > - clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); > - > - return clock->dot / 5; > -} > - > -/* > - * Returns whether the given set of divisors are valid for a given refclk with > - * the given connectors. > - */ > -static bool intel_pll_is_valid(struct drm_i915_private *dev_priv, > - const struct intel_limit *limit, > - const struct dpll *clock) > -{ > - if (clock->n < limit->n.min || limit->n.max < clock->n) > - return false; > - if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) > - return false; > - if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) > - return false; > - if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) > - return false; > - > - if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) && > - !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv)) > - if (clock->m1 <= clock->m2) > - return false; > - > - if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && > - !IS_GEN9_LP(dev_priv)) { > - if (clock->p < limit->p.min || limit->p.max < clock->p) > - return false; > - if (clock->m < limit->m.min || limit->m.max < clock->m) > - return false; > - } > - > - if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) > - return false; > - /* XXX: We may need to be checking "Dot clock" depending on the multiplier, > - * connector, etc., rather than just a single range. > - */ > - if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) > - return false; > - > - return true; > -} > - > -static int > -i9xx_select_p2_div(const struct intel_limit *limit, > - const struct intel_crtc_state *crtc_state, > - int target) > -{ > - struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); > - > - if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { > - /* > - * For LVDS just rely on its current settings for dual-channel. > - * We haven't figured out how to reliably set up different > - * single/dual channel state, if we even can. > - */ > - if (intel_is_dual_link_lvds(dev_priv)) > - return limit->p2.p2_fast; > - else > - return limit->p2.p2_slow; > - } else { > - if (target < limit->p2.dot_limit) > - return limit->p2.p2_slow; > - else > - return limit->p2.p2_fast; > - } > -} > - > -/* > - * Returns a set of divisors for the desired target clock with the given > - * refclk, or FALSE. The returned values represent the clock equation: > - * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. > - * > - * Target and reference clocks are specified in kHz. > - * > - * If match_clock is provided, then best_clock P divider must match the P > - * divider from @match_clock used for LVDS downclocking. > - */ > -static bool > -i9xx_find_best_dpll(const struct intel_limit *limit, > - struct intel_crtc_state *crtc_state, > - int target, int refclk, struct dpll *match_clock, > - struct dpll *best_clock) > -{ > - struct drm_device *dev = crtc_state->uapi.crtc->dev; > - struct dpll clock; > - int err = target; > - > - memset(best_clock, 0, sizeof(*best_clock)); > - > - clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); > - > - for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; > - clock.m1++) { > - for (clock.m2 = limit->m2.min; > - clock.m2 <= limit->m2.max; clock.m2++) { > - if (clock.m2 >= clock.m1) > - break; > - for (clock.n = limit->n.min; > - clock.n <= limit->n.max; clock.n++) { > - for (clock.p1 = limit->p1.min; > - clock.p1 <= limit->p1.max; clock.p1++) { > - int this_err; > - > - i9xx_calc_dpll_params(refclk, &clock); > - if (!intel_pll_is_valid(to_i915(dev), > - limit, > - &clock)) > - continue; > - if (match_clock && > - clock.p != match_clock->p) > - continue; > - > - this_err = abs(clock.dot - target); > - if (this_err < err) { > - *best_clock = clock; > - err = this_err; > - } > - } > - } > - } > - } > - > - return (err != target); > -} > - > -/* > - * Returns a set of divisors for the desired target clock with the given > - * refclk, or FALSE. The returned values represent the clock equation: > - * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. > - * > - * Target and reference clocks are specified in kHz. > - * > - * If match_clock is provided, then best_clock P divider must match the P > - * divider from @match_clock used for LVDS downclocking. > - */ > -static bool > -pnv_find_best_dpll(const struct intel_limit *limit, > - struct intel_crtc_state *crtc_state, > - int target, int refclk, struct dpll *match_clock, > - struct dpll *best_clock) > -{ > - struct drm_device *dev = crtc_state->uapi.crtc->dev; > - struct dpll clock; > - int err = target; > - > - memset(best_clock, 0, sizeof(*best_clock)); > - > - clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); > - > - for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; > - clock.m1++) { > - for (clock.m2 = limit->m2.min; > - clock.m2 <= limit->m2.max; clock.m2++) { > - for (clock.n = limit->n.min; > - clock.n <= limit->n.max; clock.n++) { > - for (clock.p1 = limit->p1.min; > - clock.p1 <= limit->p1.max; clock.p1++) { > - int this_err; > - > - pnv_calc_dpll_params(refclk, &clock); > - if (!intel_pll_is_valid(to_i915(dev), > - limit, > - &clock)) > - continue; > - if (match_clock && > - clock.p != match_clock->p) > - continue; > - > - this_err = abs(clock.dot - target); > - if (this_err < err) { > - *best_clock = clock; > - err = this_err; > - } > - } > - } > - } > - } > - > - return (err != target); > -} > - > -/* > - * Returns a set of divisors for the desired target clock with the given > - * refclk, or FALSE. The returned values represent the clock equation: > - * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. > - * > - * Target and reference clocks are specified in kHz. > - * > - * If match_clock is provided, then best_clock P divider must match the P > - * divider from @match_clock used for LVDS downclocking. > - */ > -static bool > -g4x_find_best_dpll(const struct intel_limit *limit, > - struct intel_crtc_state *crtc_state, > - int target, int refclk, struct dpll *match_clock, > - struct dpll *best_clock) > -{ > - struct drm_device *dev = crtc_state->uapi.crtc->dev; > - struct dpll clock; > - int max_n; > - bool found = false; > - /* approximately equals target * 0.00585 */ > - int err_most = (target >> 8) + (target >> 9); > - > - memset(best_clock, 0, sizeof(*best_clock)); > - > - clock.p2 = i9xx_select_p2_div(limit, crtc_state, target); > - > - max_n = limit->n.max; > - /* based on hardware requirement, prefer smaller n to precision */ > - for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { > - /* based on hardware requirement, prefere larger m1,m2 */ > - for (clock.m1 = limit->m1.max; > - clock.m1 >= limit->m1.min; clock.m1--) { > - for (clock.m2 = limit->m2.max; > - clock.m2 >= limit->m2.min; clock.m2--) { > - for (clock.p1 = limit->p1.max; > - clock.p1 >= limit->p1.min; clock.p1--) { > - int this_err; > - > - i9xx_calc_dpll_params(refclk, &clock); > - if (!intel_pll_is_valid(to_i915(dev), > - limit, > - &clock)) > - continue; > - > - this_err = abs(clock.dot - target); > - if (this_err < err_most) { > - *best_clock = clock; > - err_most = this_err; > - max_n = clock.n; > - found = true; > - } > - } > - } > - } > - } > - return found; > -} > - > -/* > - * Check if the calculated PLL configuration is more optimal compared to the > - * best configuration and error found so far. Return the calculated error. > - */ > -static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq, > - const struct dpll *calculated_clock, > - const struct dpll *best_clock, > - unsigned int best_error_ppm, > - unsigned int *error_ppm) > -{ > - /* > - * For CHV ignore the error and consider only the P value. > - * Prefer a bigger P value based on HW requirements. > - */ > - if (IS_CHERRYVIEW(to_i915(dev))) { > - *error_ppm = 0; > - > - return calculated_clock->p > best_clock->p; > - } > - > - if (drm_WARN_ON_ONCE(dev, !target_freq)) > - return false; > - > - *error_ppm = div_u64(1000000ULL * > - abs(target_freq - calculated_clock->dot), > - target_freq); > - /* > - * Prefer a better P value over a better (smaller) error if the error > - * is small. Ensure this preference for future configurations too by > - * setting the error to 0. > - */ > - if (*error_ppm < 100 && calculated_clock->p > best_clock->p) { > - *error_ppm = 0; > - > - return true; > - } > - > - return *error_ppm + 10 < best_error_ppm; > -} > - > -/* > - * Returns a set of divisors for the desired target clock with the given > - * refclk, or FALSE. The returned values represent the clock equation: > - * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. > - */ > -static bool > -vlv_find_best_dpll(const struct intel_limit *limit, > - struct intel_crtc_state *crtc_state, > - int target, int refclk, struct dpll *match_clock, > - struct dpll *best_clock) > -{ > - struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); > - struct drm_device *dev = crtc->base.dev; > - struct dpll clock; > - unsigned int bestppm = 1000000; > - /* min update 19.2 MHz */ > - int max_n = min(limit->n.max, refclk / 19200); > - bool found = false; > - > - target *= 5; /* fast clock */ > - > - memset(best_clock, 0, sizeof(*best_clock)); > - > - /* based on hardware requirement, prefer smaller n to precision */ > - for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { > - for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { > - for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; > - clock.p2 -= clock.p2 > 10 ? 2 : 1) { > - clock.p = clock.p1 * clock.p2; > - /* based on hardware requirement, prefer bigger m1,m2 values */ > - for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { > - unsigned int ppm; > - > - clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, > - refclk * clock.m1); > - > - vlv_calc_dpll_params(refclk, &clock); > - > - if (!intel_pll_is_valid(to_i915(dev), > - limit, > - &clock)) > - continue; > - > - if (!vlv_PLL_is_optimal(dev, target, > - &clock, > - best_clock, > - bestppm, &ppm)) > - continue; > - > - *best_clock = clock; > - bestppm = ppm; > - found = true; > - } > - } > - } > - } > - > - return found; > -} > - > -/* > - * Returns a set of divisors for the desired target clock with the given > - * refclk, or FALSE. The returned values represent the clock equation: > - * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. > - */ > -static bool > -chv_find_best_dpll(const struct intel_limit *limit, > - struct intel_crtc_state *crtc_state, > - int target, int refclk, struct dpll *match_clock, > - struct dpll *best_clock) > -{ > - struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); > - struct drm_device *dev = crtc->base.dev; > - unsigned int best_error_ppm; > - struct dpll clock; > - u64 m2; > - int found = false; > - > - memset(best_clock, 0, sizeof(*best_clock)); > - best_error_ppm = 1000000; > - > - /* > - * Based on hardware doc, the n always set to 1, and m1 always > - * set to 2. If requires to support 200Mhz refclk, we need to > - * revisit this because n may not 1 anymore. > - */ > - clock.n = 1, clock.m1 = 2; > - target *= 5; /* fast clock */ > - > - for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { > - for (clock.p2 = limit->p2.p2_fast; > - clock.p2 >= limit->p2.p2_slow; > - clock.p2 -= clock.p2 > 10 ? 2 : 1) { > - unsigned int error_ppm; > - > - clock.p = clock.p1 * clock.p2; > - > - m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22, > - refclk * clock.m1); > - > - if (m2 > INT_MAX/clock.m1) > - continue; > - > - clock.m2 = m2; > - > - chv_calc_dpll_params(refclk, &clock); > - > - if (!intel_pll_is_valid(to_i915(dev), limit, &clock)) > - continue; > - > - if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock, > - best_error_ppm, &error_ppm)) > - continue; > - > - *best_clock = clock; > - best_error_ppm = error_ppm; > - found = true; > - } > - } > - > - return found; > -} > - > -bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, > - struct dpll *best_clock) > -{ > - int refclk = 100000; > - const struct intel_limit *limit = &intel_limits_bxt; > - > - return chv_find_best_dpll(limit, crtc_state, > - crtc_state->port_clock, refclk, > - NULL, best_clock); > -} > - > static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, > enum pipe pipe) > { > @@ -5284,7 +4532,7 @@ static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_st > * Finds the encoder associated with the given CRTC. This can only be > * used when we know that the CRTC isn't feeding multiple encoders! > */ > -static struct intel_encoder * > +struct intel_encoder * > intel_get_crtc_new_encoder(const struct intel_atomic_state *state, > const struct intel_crtc_state *crtc_state) > { > @@ -7960,43 +7208,6 @@ static bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) > && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); > } > > -static u32 pnv_dpll_compute_fp(struct dpll *dpll) > -{ > - return (1 << dpll->n) << 16 | dpll->m2; > -} > - > -static u32 i9xx_dpll_compute_fp(struct dpll *dpll) > -{ > - return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; > -} > - > -static void i9xx_update_pll_dividers(struct intel_crtc *crtc, > - struct intel_crtc_state *crtc_state, > - struct dpll *reduced_clock) > -{ > - struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); > - u32 fp, fp2 = 0; > - > - if (IS_PINEVIEW(dev_priv)) { > - fp = pnv_dpll_compute_fp(&crtc_state->dpll); > - if (reduced_clock) > - fp2 = pnv_dpll_compute_fp(reduced_clock); > - } else { > - fp = i9xx_dpll_compute_fp(&crtc_state->dpll); > - if (reduced_clock) > - fp2 = i9xx_dpll_compute_fp(reduced_clock); > - } > - > - crtc_state->dpll_hw_state.fp0 = fp; > - > - if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && > - reduced_clock) { > - crtc_state->dpll_hw_state.fp1 = fp2; > - } else { > - crtc_state->dpll_hw_state.fp1 = fp; > - } > -} > - > static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe > pipe) > { > @@ -8121,39 +7332,6 @@ void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_s > intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2); > } > > -static void vlv_compute_dpll(struct intel_crtc *crtc, > - struct intel_crtc_state *pipe_config) > -{ > - pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV | > - DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; > - if (crtc->pipe != PIPE_A) > - pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; > - > - /* DPLL not used with DSI, but still need the rest set up */ > - if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) > - pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE | > - DPLL_EXT_BUFFER_ENABLE_VLV; > - > - pipe_config->dpll_hw_state.dpll_md = > - (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; > -} > - > -static void chv_compute_dpll(struct intel_crtc *crtc, > - struct intel_crtc_state *pipe_config) > -{ > - pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV | > - DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS; > - if (crtc->pipe != PIPE_A) > - pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; > - > - /* DPLL not used with DSI, but still need the rest set up */ > - if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI)) > - pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE; > - > - pipe_config->dpll_hw_state.dpll_md = > - (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; > -} > - > static void vlv_prepare_pll(struct intel_crtc *crtc, > const struct intel_crtc_state *pipe_config) > { > @@ -8413,128 +7591,7 @@ void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe) > vlv_disable_pll(dev_priv, pipe); > } > > -static void i9xx_compute_dpll(struct intel_crtc *crtc, > - struct intel_crtc_state *crtc_state, > - struct dpll *reduced_clock) > -{ > - struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); > - u32 dpll; > - struct dpll *clock = &crtc_state->dpll; > - > - i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); > - > - dpll = DPLL_VGA_MODE_DIS; > - > - if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) > - dpll |= DPLLB_MODE_LVDS; > - else > - dpll |= DPLLB_MODE_DAC_SERIAL; > - > - if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || > - IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { > - dpll |= (crtc_state->pixel_multiplier - 1) > - << SDVO_MULTIPLIER_SHIFT_HIRES; > - } > - > - if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || > - intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) > - dpll |= DPLL_SDVO_HIGH_SPEED; > - > - if (intel_crtc_has_dp_encoder(crtc_state)) > - dpll |= DPLL_SDVO_HIGH_SPEED; > - > - /* compute bitmask from p1 value */ > - if (IS_PINEVIEW(dev_priv)) > - dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; > - else { > - dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; > - if (IS_G4X(dev_priv) && reduced_clock) > - dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; > - } > - switch (clock->p2) { > - case 5: > - dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; > - break; > - case 7: > - dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; > - break; > - case 10: > - dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; > - break; > - case 14: > - dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; > - break; > - } > - if (INTEL_GEN(dev_priv) >= 4) > - dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); > - > - if (crtc_state->sdvo_tv_clock) > - dpll |= PLL_REF_INPUT_TVCLKINBC; > - else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && > - intel_panel_use_ssc(dev_priv)) > - dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; > - else > - dpll |= PLL_REF_INPUT_DREFCLK; > - > - dpll |= DPLL_VCO_ENABLE; > - crtc_state->dpll_hw_state.dpll = dpll; > - > - if (INTEL_GEN(dev_priv) >= 4) { > - u32 dpll_md = (crtc_state->pixel_multiplier - 1) > - << DPLL_MD_UDI_MULTIPLIER_SHIFT; > - crtc_state->dpll_hw_state.dpll_md = dpll_md; > - } > -} > - > -static void i8xx_compute_dpll(struct intel_crtc *crtc, > - struct intel_crtc_state *crtc_state, > - struct dpll *reduced_clock) > -{ > - struct drm_device *dev = crtc->base.dev; > - struct drm_i915_private *dev_priv = to_i915(dev); > - u32 dpll; > - struct dpll *clock = &crtc_state->dpll; > - > - i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock); > - > - dpll = DPLL_VGA_MODE_DIS; > - > - if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { > - dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; > - } else { > - if (clock->p1 == 2) > - dpll |= PLL_P1_DIVIDE_BY_TWO; > - else > - dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; > - if (clock->p2 == 4) > - dpll |= PLL_P2_DIVIDE_BY_4; > - } > - > - /* > - * Bspec: > - * "[Almador Errata}: For the correct operation of the muxed DVO pins > - * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data, > - * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock > - * Enable) must be set to “1” in both the DPLL A Control Register > - * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)." > - * > - * For simplicity We simply keep both bits always enabled in > - * both DPLLS. The spec says we should disable the DVO 2X clock > - * when not needed, but this seems to work fine in practice. > - */ > - if (IS_I830(dev_priv) || > - intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) > - dpll |= DPLL_DVO_2X_MODE; > - > - if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && > - intel_panel_use_ssc(dev_priv)) > - dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; > - else > - dpll |= PLL_REF_INPUT_DREFCLK; > > - dpll |= DPLL_VCO_ENABLE; > - crtc_state->dpll_hw_state.dpll = dpll; > -} > > static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state) > { > @@ -8740,207 +7797,6 @@ static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) > intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe)); > } > > -static int i8xx_crtc_compute_clock(struct intel_crtc *crtc, > - struct intel_crtc_state *crtc_state) > -{ > - struct drm_device *dev = crtc->base.dev; > - struct drm_i915_private *dev_priv = to_i915(dev); > - const struct intel_limit *limit; > - int refclk = 48000; > - > - memset(&crtc_state->dpll_hw_state, 0, > - sizeof(crtc_state->dpll_hw_state)); > - > - if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { > - if (intel_panel_use_ssc(dev_priv)) { > - refclk = dev_priv->vbt.lvds_ssc_freq; > - drm_dbg_kms(&dev_priv->drm, > - "using SSC reference clock of %d kHz\n", > - refclk); > - } > - > - limit = &intel_limits_i8xx_lvds; > - } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) { > - limit = &intel_limits_i8xx_dvo; > - } else { > - limit = &intel_limits_i8xx_dac; > - } > - > - if (!crtc_state->clock_set && > - !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, > - refclk, NULL, &crtc_state->dpll)) { > - drm_err(&dev_priv->drm, > - "Couldn't find PLL settings for mode!\n"); > - return -EINVAL; > - } > - > - i8xx_compute_dpll(crtc, crtc_state, NULL); > - > - return 0; > -} > - > -static int g4x_crtc_compute_clock(struct intel_crtc *crtc, > - struct intel_crtc_state *crtc_state) > -{ > - struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); > - const struct intel_limit *limit; > - int refclk = 96000; > - > - memset(&crtc_state->dpll_hw_state, 0, > - sizeof(crtc_state->dpll_hw_state)); > - > - if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { > - if (intel_panel_use_ssc(dev_priv)) { > - refclk = dev_priv->vbt.lvds_ssc_freq; > - drm_dbg_kms(&dev_priv->drm, > - "using SSC reference clock of %d kHz\n", > - refclk); > - } > - > - if (intel_is_dual_link_lvds(dev_priv)) > - limit = &intel_limits_g4x_dual_channel_lvds; > - else > - limit = &intel_limits_g4x_single_channel_lvds; > - } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) || > - intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) { > - limit = &intel_limits_g4x_hdmi; > - } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) { > - limit = &intel_limits_g4x_sdvo; > - } else { > - /* The option is for other outputs */ > - limit = &intel_limits_i9xx_sdvo; > - } > - > - if (!crtc_state->clock_set && > - !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, > - refclk, NULL, &crtc_state->dpll)) { > - drm_err(&dev_priv->drm, > - "Couldn't find PLL settings for mode!\n"); > - return -EINVAL; > - } > - > - i9xx_compute_dpll(crtc, crtc_state, NULL); > - > - return 0; > -} > - > -static int pnv_crtc_compute_clock(struct intel_crtc *crtc, > - struct intel_crtc_state *crtc_state) > -{ > - struct drm_device *dev = crtc->base.dev; > - struct drm_i915_private *dev_priv = to_i915(dev); > - const struct intel_limit *limit; > - int refclk = 96000; > - > - memset(&crtc_state->dpll_hw_state, 0, > - sizeof(crtc_state->dpll_hw_state)); > - > - if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { > - if (intel_panel_use_ssc(dev_priv)) { > - refclk = dev_priv->vbt.lvds_ssc_freq; > - drm_dbg_kms(&dev_priv->drm, > - "using SSC reference clock of %d kHz\n", > - refclk); > - } > - > - limit = &pnv_limits_lvds; > - } else { > - limit = &pnv_limits_sdvo; > - } > - > - if (!crtc_state->clock_set && > - !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, > - refclk, NULL, &crtc_state->dpll)) { > - drm_err(&dev_priv->drm, > - "Couldn't find PLL settings for mode!\n"); > - return -EINVAL; > - } > - > - i9xx_compute_dpll(crtc, crtc_state, NULL); > - > - return 0; > -} > - > -static int i9xx_crtc_compute_clock(struct intel_crtc *crtc, > - struct intel_crtc_state *crtc_state) > -{ > - struct drm_device *dev = crtc->base.dev; > - struct drm_i915_private *dev_priv = to_i915(dev); > - const struct intel_limit *limit; > - int refclk = 96000; > - > - memset(&crtc_state->dpll_hw_state, 0, > - sizeof(crtc_state->dpll_hw_state)); > - > - if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { > - if (intel_panel_use_ssc(dev_priv)) { > - refclk = dev_priv->vbt.lvds_ssc_freq; > - drm_dbg_kms(&dev_priv->drm, > - "using SSC reference clock of %d kHz\n", > - refclk); > - } > - > - limit = &intel_limits_i9xx_lvds; > - } else { > - limit = &intel_limits_i9xx_sdvo; > - } > - > - if (!crtc_state->clock_set && > - !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock, > - refclk, NULL, &crtc_state->dpll)) { > - drm_err(&dev_priv->drm, > - "Couldn't find PLL settings for mode!\n"); > - return -EINVAL; > - } > - > - i9xx_compute_dpll(crtc, crtc_state, NULL); > - > - return 0; > -} > - > -static int chv_crtc_compute_clock(struct intel_crtc *crtc, > - struct intel_crtc_state *crtc_state) > -{ > - int refclk = 100000; > - const struct intel_limit *limit = &intel_limits_chv; > - struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); > - > - memset(&crtc_state->dpll_hw_state, 0, > - sizeof(crtc_state->dpll_hw_state)); > - > - if (!crtc_state->clock_set && > - !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, > - refclk, NULL, &crtc_state->dpll)) { > - drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n"); > - return -EINVAL; > - } > - > - chv_compute_dpll(crtc, crtc_state); > - > - return 0; > -} > - > -static int vlv_crtc_compute_clock(struct intel_crtc *crtc, > - struct intel_crtc_state *crtc_state) > -{ > - int refclk = 100000; > - const struct intel_limit *limit = &intel_limits_vlv; > - struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); > - > - memset(&crtc_state->dpll_hw_state, 0, > - sizeof(crtc_state->dpll_hw_state)); > - > - if (!crtc_state->clock_set && > - !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock, > - refclk, NULL, &crtc_state->dpll)) { > - drm_err(&i915->drm, "Couldn't find PLL settings for mode!\n"); > - return -EINVAL; > - } > - > - vlv_compute_dpll(crtc, crtc_state); > - > - return 0; > -} > > static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) > { > @@ -9951,172 +8807,6 @@ int ilk_get_lanes_required(int target_clock, int link_bw, int bpp) > return DIV_ROUND_UP(bps, link_bw * 8); > } > > -static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor) > -{ > - return i9xx_dpll_compute_m(dpll) < factor * dpll->n; > -} > - > -static void ilk_compute_dpll(struct intel_crtc *crtc, > - struct intel_crtc_state *crtc_state, > - struct dpll *reduced_clock) > -{ > - struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); > - u32 dpll, fp, fp2; > - int factor; > - > - /* Enable autotuning of the PLL clock (if permissible) */ > - factor = 21; > - if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { > - if ((intel_panel_use_ssc(dev_priv) && > - dev_priv->vbt.lvds_ssc_freq == 100000) || > - (HAS_PCH_IBX(dev_priv) && > - intel_is_dual_link_lvds(dev_priv))) > - factor = 25; > - } else if (crtc_state->sdvo_tv_clock) { > - factor = 20; > - } > - > - fp = i9xx_dpll_compute_fp(&crtc_state->dpll); > - > - if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor)) > - fp |= FP_CB_TUNE; > - > - if (reduced_clock) { > - fp2 = i9xx_dpll_compute_fp(reduced_clock); > - > - if (reduced_clock->m < factor * reduced_clock->n) > - fp2 |= FP_CB_TUNE; > - } else { > - fp2 = fp; > - } > - > - dpll = 0; > - > - if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) > - dpll |= DPLLB_MODE_LVDS; > - else > - dpll |= DPLLB_MODE_DAC_SERIAL; > - > - dpll |= (crtc_state->pixel_multiplier - 1) > - << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; > - > - if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) || > - intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) > - dpll |= DPLL_SDVO_HIGH_SPEED; > - > - if (intel_crtc_has_dp_encoder(crtc_state)) > - dpll |= DPLL_SDVO_HIGH_SPEED; > - > - /* > - * The high speed IO clock is only really required for > - * SDVO/HDMI/DP, but we also enable it for CRT to make it > - * possible to share the DPLL between CRT and HDMI. Enabling > - * the clock needlessly does no real harm, except use up a > - * bit of power potentially. > - * > - * We'll limit this to IVB with 3 pipes, since it has only two > - * DPLLs and so DPLL sharing is the only way to get three pipes > - * driving PCH ports at the same time. On SNB we could do this, > - * and potentially avoid enabling the second DPLL, but it's not > - * clear if it''s a win or loss power wise. No point in doing > - * this on ILK at all since it has a fixed DPLL<->pipe mapping. > - */ > - if (INTEL_NUM_PIPES(dev_priv) == 3 && > - intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) > - dpll |= DPLL_SDVO_HIGH_SPEED; > - > - /* compute bitmask from p1 value */ > - dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; > - /* also FPA1 */ > - dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; > - > - switch (crtc_state->dpll.p2) { > - case 5: > - dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; > - break; > - case 7: > - dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; > - break; > - case 10: > - dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; > - break; > - case 14: > - dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; > - break; > - } > - > - if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && > - intel_panel_use_ssc(dev_priv)) > - dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; > - else > - dpll |= PLL_REF_INPUT_DREFCLK; > - > - dpll |= DPLL_VCO_ENABLE; > - > - crtc_state->dpll_hw_state.dpll = dpll; > - crtc_state->dpll_hw_state.fp0 = fp; > - crtc_state->dpll_hw_state.fp1 = fp2; > -} > - > -static int ilk_crtc_compute_clock(struct intel_crtc *crtc, > - struct intel_crtc_state *crtc_state) > -{ > - struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); > - struct intel_atomic_state *state = > - to_intel_atomic_state(crtc_state->uapi.state); > - const struct intel_limit *limit; > - int refclk = 120000; > - > - memset(&crtc_state->dpll_hw_state, 0, > - sizeof(crtc_state->dpll_hw_state)); > - > - /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ > - if (!crtc_state->has_pch_encoder) > - return 0; > - > - if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) { > - if (intel_panel_use_ssc(dev_priv)) { > - drm_dbg_kms(&dev_priv->drm, > - "using SSC reference clock of %d kHz\n", > - dev_priv->vbt.lvds_ssc_freq); > - refclk = dev_priv->vbt.lvds_ssc_freq; > - } > - > - if (intel_is_dual_link_lvds(dev_priv)) { > - if (refclk == 100000) > - limit = &ilk_limits_dual_lvds_100m; > - else > - limit = &ilk_limits_dual_lvds; > - } else { > - if (refclk == 100000) > - limit = &ilk_limits_single_lvds_100m; > - else > - limit = &ilk_limits_single_lvds; > - } > - } else { > - limit = &ilk_limits_dac; > - } > - > - if (!crtc_state->clock_set && > - !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock, > - refclk, NULL, &crtc_state->dpll)) { > - drm_err(&dev_priv->drm, > - "Couldn't find PLL settings for mode!\n"); > - return -EINVAL; > - } > - > - ilk_compute_dpll(crtc, crtc_state, NULL); > - > - if (!intel_reserve_shared_dplls(state, crtc, NULL)) { > - drm_dbg_kms(&dev_priv->drm, > - "failed to find PLL for pipe %c\n", > - pipe_name(crtc->pipe)); > - return -EINVAL; > - } > - > - return 0; > -} > - > static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, > struct intel_link_m_n *m_n) > { > @@ -10529,29 +9219,6 @@ static bool ilk_get_pipe_config(struct intel_crtc *crtc, > return ret; > } > > -static int hsw_crtc_compute_clock(struct intel_crtc *crtc, > - struct intel_crtc_state *crtc_state) > -{ > - struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); > - struct intel_atomic_state *state = > - to_intel_atomic_state(crtc_state->uapi.state); > - > - if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) || > - INTEL_GEN(dev_priv) >= 11) { > - struct intel_encoder *encoder = > - intel_get_crtc_new_encoder(state, crtc_state); > - > - if (!intel_reserve_shared_dplls(state, crtc, encoder)) { > - drm_dbg_kms(&dev_priv->drm, > - "failed to find PLL for pipe %c\n", > - pipe_name(crtc->pipe)); > - return -EINVAL; > - } > - } > - > - return 0; > -} > - > static void dg1_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, > struct intel_crtc_state *pipe_config) > { > @@ -16486,69 +15153,27 @@ void intel_init_display_hooks(struct drm_i915_private *dev_priv) > { > intel_init_cdclk_hooks(dev_priv); > > + intel_init_clock_hook(dev_priv); > + > if (INTEL_GEN(dev_priv) >= 9) { > dev_priv->display.get_pipe_config = hsw_get_pipe_config; > - dev_priv->display.get_initial_plane_config = > - skl_get_initial_plane_config; > - dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock; > dev_priv->display.crtc_enable = hsw_crtc_enable; > dev_priv->display.crtc_disable = hsw_crtc_disable; > } else if (HAS_DDI(dev_priv)) { > dev_priv->display.get_pipe_config = hsw_get_pipe_config; > - dev_priv->display.get_initial_plane_config = > - i9xx_get_initial_plane_config; > - dev_priv->display.crtc_compute_clock = > - hsw_crtc_compute_clock; > dev_priv->display.crtc_enable = hsw_crtc_enable; > dev_priv->display.crtc_disable = hsw_crtc_disable; > } else if (HAS_PCH_SPLIT(dev_priv)) { > dev_priv->display.get_pipe_config = ilk_get_pipe_config; > - dev_priv->display.get_initial_plane_config = > - i9xx_get_initial_plane_config; > - dev_priv->display.crtc_compute_clock = > - ilk_crtc_compute_clock; > dev_priv->display.crtc_enable = ilk_crtc_enable; > dev_priv->display.crtc_disable = ilk_crtc_disable; > - } else if (IS_CHERRYVIEW(dev_priv)) { > - dev_priv->display.get_pipe_config = i9xx_get_pipe_config; > - dev_priv->display.get_initial_plane_config = > - i9xx_get_initial_plane_config; > - dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock; > - dev_priv->display.crtc_enable = valleyview_crtc_enable; > - dev_priv->display.crtc_disable = i9xx_crtc_disable; > - } else if (IS_VALLEYVIEW(dev_priv)) { > + } else if (IS_CHERRYVIEW(dev_priv) || > + IS_VALLEYVIEW(dev_priv)) { > dev_priv->display.get_pipe_config = i9xx_get_pipe_config; > - dev_priv->display.get_initial_plane_config = > - i9xx_get_initial_plane_config; > - dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock; > dev_priv->display.crtc_enable = valleyview_crtc_enable; > dev_priv->display.crtc_disable = i9xx_crtc_disable; > - } else if (IS_G4X(dev_priv)) { > - dev_priv->display.get_pipe_config = i9xx_get_pipe_config; > - dev_priv->display.get_initial_plane_config = > - i9xx_get_initial_plane_config; > - dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock; > - dev_priv->display.crtc_enable = i9xx_crtc_enable; > - dev_priv->display.crtc_disable = i9xx_crtc_disable; > - } else if (IS_PINEVIEW(dev_priv)) { > - dev_priv->display.get_pipe_config = i9xx_get_pipe_config; > - dev_priv->display.get_initial_plane_config = > - i9xx_get_initial_plane_config; > - dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock; > - dev_priv->display.crtc_enable = i9xx_crtc_enable; > - dev_priv->display.crtc_disable = i9xx_crtc_disable; > - } else if (!IS_GEN(dev_priv, 2)) { > - dev_priv->display.get_pipe_config = i9xx_get_pipe_config; > - dev_priv->display.get_initial_plane_config = > - i9xx_get_initial_plane_config; > - dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock; > - dev_priv->display.crtc_enable = i9xx_crtc_enable; > - dev_priv->display.crtc_disable = i9xx_crtc_disable; > } else { > dev_priv->display.get_pipe_config = i9xx_get_pipe_config; > - dev_priv->display.get_initial_plane_config = > - i9xx_get_initial_plane_config; > - dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock; > dev_priv->display.crtc_enable = i9xx_crtc_enable; > dev_priv->display.crtc_disable = i9xx_crtc_disable; > } > @@ -16562,10 +15187,13 @@ void intel_init_display_hooks(struct drm_i915_private *dev_priv) > dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; > } > > - if (INTEL_GEN(dev_priv) >= 9) > + if (INTEL_GEN(dev_priv) >= 9) { > dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables; > - else > + dev_priv->display.get_initial_plane_config = skl_get_initial_plane_config; > + } else { > dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables; > + dev_priv->display.get_initial_plane_config = i9xx_get_initial_plane_config; > + } > > } > > diff --git a/drivers/gpu/drm/i915/display/intel_display.h b/drivers/gpu/drm/i915/display/intel_display.h > index 0eba91d18e96..f1e36cca86c1 100644 > --- a/drivers/gpu/drm/i915/display/intel_display.h > +++ b/drivers/gpu/drm/i915/display/intel_display.h > @@ -653,7 +653,9 @@ u32 intel_plane_compute_aligned_offset(int *x, int *y, > int color_plane); > int intel_plane_pin_fb(struct intel_plane_state *plane_state); > void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state); > - > +struct intel_encoder * > +intel_get_crtc_new_encoder(const struct intel_atomic_state *state, > + const struct intel_crtc_state *crtc_state); > /* cursor */ > struct intel_plane * > intel_cursor_plane_create(struct drm_i915_private *dev_priv, > @@ -665,6 +667,15 @@ int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe); > struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc); > void intel_crtc_state_reset(struct intel_crtc_state *crtc_state, > struct intel_crtc *crtc); > +/* clock */ > +void intel_init_clock_hook(struct drm_i915_private *dev_priv); > +int vlv_calc_dpll_params(int refclk, struct dpll *clock); > +int pnv_calc_dpll_params(int refclk, struct dpll *clock); > +int i9xx_calc_dpll_params(int refclk, struct dpll *clock); > +void vlv_compute_dpll(struct intel_crtc *crtc, > + struct intel_crtc_state *pipe_config); > +void chv_compute_dpll(struct intel_crtc *crtc, > + struct intel_crtc_state *pipe_config); > > /* modesetting */ > void intel_modeset_init_hw(struct drm_i915_private *i915); > diff --git a/drivers/gpu/drm/i915/display/intel_display_types.h b/drivers/gpu/drm/i915/display/intel_display_types.h > index 5bc5bfbc4551..823083b231bc 100644 > --- a/drivers/gpu/drm/i915/display/intel_display_types.h > +++ b/drivers/gpu/drm/i915/display/intel_display_types.h > @@ -1799,4 +1799,9 @@ static inline u32 intel_plane_ggtt_offset(const struct intel_plane_state *state) > return i915_ggtt_offset(state->vma); > } > > +static inline u32 i9xx_dpll_compute_fp(struct dpll *dpll) > +{ > + return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; > +} > + > #endif /* __INTEL_DISPLAY_TYPES_H__ */ > -- > 2.27.0 > > _______________________________________________ > Intel-gfx mailing list > Intel-gfx@xxxxxxxxxxxxxxxxxxxxx > https://lists.freedesktop.org/mailman/listinfo/intel-gfx -- Daniel Vetter Software Engineer, Intel Corporation http://blog.ffwll.ch _______________________________________________ Intel-gfx mailing list Intel-gfx@xxxxxxxxxxxxxxxxxxxxx https://lists.freedesktop.org/mailman/listinfo/intel-gfx