I did same benchmarks using flops.c (attached) the results are attached
to it seems that
-march=k8 -mtune=k8 -m32 is the fastes but not by much ...
the last one (-m64) is weird (much slower!!) no -OX was used.
/*--------------------- Start flops.c source code ----------------------*/
/*****************************/
/* flops.c */
/* Version 2.0, 18 Dec 1992 */
/* Al Aburto */
/* aburto@xxxxxxxx */
/*****************************/
/*
Flops.c is a 'c' program which attempts to estimate your systems
floating-point 'MFLOPS' rating for the FADD, FSUB, FMUL, and FDIV
operations based on specific 'instruction mixes' (discussed below).
The program provides an estimate of PEAK MFLOPS performance by making
maximal use of register variables with minimal interaction with main
memory. The execution loops are all small so that they will fit in
any cache. Flops.c can be used along with Linpack and the Livermore
kernels (which exersize memory much more extensively) to gain further
insight into the limits of system performance. The flops.c execution
modules also include various percent weightings of FDIV's (from 0% to
25% FDIV's) so that the range of performance can be obtained when
using FDIV's. FDIV's, being computationally more intensive than
FADD's or FMUL's, can impact performance considerably on some systems.
Flops.c consists of 8 independent modules (routines) which, except for
module 2, conduct numerical integration of various functions. Module
2, estimates the value of pi based upon the Maclaurin series expansion
of atan(1). MFLOPS ratings are provided for each module, but the
programs overall results are summerized by the MFLOPS(1), MFLOPS(2),
MFLOPS(3), and MFLOPS(4) outputs.
The MFLOPS(1) result is identical to the result provided by all
previous versions of flops.c. It is based only upon the results from
modules 2 and 3. Two problems surfaced in using MFLOPS(1). First, it
was difficult to completely 'vectorize' the result due to the
recurrence of the 's' variable in module 2. This problem is addressed
in the MFLOPS(2) result which does not use module 2, but maintains
nearly the same weighting of FDIV's (9.2%) as in MFLOPS(1) (9.6%).
The second problem with MFLOPS(1) centers around the percentage of
FDIV's (9.6%) which was viewed as too high for an important class of
problems. This concern is addressed in the MFLOPS(3) result where NO
FDIV's are conducted at all.
The number of floating-point instructions per iteration (loop) is
given below for each module executed:
MODULE FADD FSUB FMUL FDIV TOTAL Comment
1 7 0 6 1 14 7.1% FDIV's
2 3 2 1 1 7 difficult to vectorize.
3 6 2 9 0 17 0.0% FDIV's
4 7 0 8 0 15 0.0% FDIV's
5 13 0 15 1 29 3.4% FDIV's
6 13 0 16 0 29 0.0% FDIV's
7 3 3 3 3 12 25.0% FDIV's
8 13 0 17 0 30 0.0% FDIV's
A*2+3 21 12 14 5 52 A=5, MFLOPS(1), Same as
40.4% 23.1% 26.9% 9.6% previous versions of the
flops.c program. Includes
only Modules 2 and 3, does
9.6% FDIV's, and is not
easily vectorizable.
1+3+4 58 14 66 14 152 A=4, MFLOPS(2), New output
+5+6+ 38.2% 9.2% 43.4% 9.2% does not include Module 2,
A*7 but does 9.2% FDIV's.
1+3+4 62 5 74 5 146 A=0, MFLOPS(3), New output
+5+6+ 42.9% 3.4% 50.7% 3.4% does not include Module 2,
7+8 but does 3.4% FDIV's.
3+4+6 39 2 50 0 91 A=0, MFLOPS(4), New output
+8 42.9% 2.2% 54.9% 0.0% does not include Module 2,
and does NO FDIV's.
NOTE: Various timer routines are included as indicated below. The
timer routines, with some comments, are attached at the end
of the main program.
NOTE: Please do not remove any of the printouts.
EXAMPLE COMPILATION:
UNIX based systems
cc -DUNIX -O flops.c -o flops
cc -DUNIX -DROPT flops.c -o flops
cc -DUNIX -fast -O4 flops.c -o flops
.
.
.
etc.
Al Aburto
aburto@xxxxxxxx
*/
/***************************************************************/
/* Timer options. You MUST uncomment one of the options below */
/* or compile, for example, with the '-DUNIX' option. */
/***************************************************************/
/* #define Amiga */
/* #define UNIX */
/* #define UNIX_Old */
/* #define VMS */
/* #define BORLAND_C */
/* #define MSC */
/* #define MAC */
/* #define IPSC */
/* #define FORTRAN_SEC */
/* #define GTODay */
/* #define CTimer */
/* #define UXPM */
/* #define MAC_TMgr */
/* #define PARIX */
/* #define POSIX */
/* #define WIN32 */
/* #define POSIX1 */
/***********************/
#include <stdio.h>
#include <math.h>
/* 'Uncomment' the line below to run */
/* with 'register double' variables */
/* defined, or compile with the */
/* '-DROPT' option. Don't need this if */
/* registers used automatically, but */
/* you might want to try it anyway. */
/* #define ROPT */
double nulltime, TimeArray[3]; /* Variables needed for 'dtime()'. */
double TLimit; /* Threshold to determine Number of */
/* Loops to run. Fixed at 15.0 seconds.*/
double T[36]; /* Global Array used to hold timing */
/* results and other information. */
double sa,sb,sc,sd,one,two,three;
double four,five,piref,piprg;
double scale,pierr;
double A0 = 1.0;
double A1 = -0.1666666666671334;
double A2 = 0.833333333809067E-2;
double A3 = 0.198412715551283E-3;
double A4 = 0.27557589750762E-5;
double A5 = 0.2507059876207E-7;
double A6 = 0.164105986683E-9;
double B0 = 1.0;
double B1 = -0.4999999999982;
double B2 = 0.4166666664651E-1;
double B3 = -0.1388888805755E-2;
double B4 = 0.24801428034E-4;
double B5 = -0.2754213324E-6;
double B6 = 0.20189405E-8;
double C0 = 1.0;
double C1 = 0.99999999668;
double C2 = 0.49999995173;
double C3 = 0.16666704243;
double C4 = 0.4166685027E-1;
double C5 = 0.832672635E-2;
double C6 = 0.140836136E-2;
double C7 = 0.17358267E-3;
double C8 = 0.3931683E-4;
double D1 = 0.3999999946405E-1;
double D2 = 0.96E-3;
double D3 = 0.1233153E-5;
double E2 = 0.48E-3;
double E3 = 0.411051E-6;
int main()
{
#ifdef ROPT
register double s,u,v,w,x;
#else
double s,u,v,w,x;
#endif
long loops, NLimit;
register long i, m, n;
printf("\n");
printf(" FLOPS C Program (Double Precision), V2.0 18 Dec 1992\n\n");
/****************************/
loops = 15625; /* Initial number of loops. */
/* DO NOT CHANGE! */
/****************************/
/****************************************************/
/* Set Variable Values. */
/* T[1] references all timing results relative to */
/* one million loops. */
/* */
/* The program will execute from 31250 to 512000000 */
/* loops based on a runtime of Module 1 of at least */
/* TLimit = 15.0 seconds. That is, a runtime of 15 */
/* seconds for Module 1 is used to determine the */
/* number of loops to execute. */
/* */
/* No more than NLimit = 512000000 loops are allowed*/
/****************************************************/
T[1] = 1.0E+06/(double)loops;
TLimit = 15.0;
NLimit = 512000000;
piref = 3.14159265358979324;
one = 1.0;
two = 2.0;
three = 3.0;
four = 4.0;
five = 5.0;
scale = one;
printf(" Module Error RunTime MFLOPS\n");
printf(" (usec)\n");
/*************************/
/* Initialize the timer. */
/*************************/
dtime(TimeArray);
dtime(TimeArray);
/*******************************************************/
/* Module 1. Calculate integral of df(x)/f(x) defined */
/* below. Result is ln(f(1)). There are 14 */
/* double precision operations per loop */
/* ( 7 +, 0 -, 6 *, 1 / ) that are included */
/* in the timing. */
/* 50.0% +, 00.0% -, 42.9% *, and 07.1% / */
/*******************************************************/
n = loops;
sa = 0.0;
while ( sa < TLimit )
{
n = 2 * n;
x = one / (double)n; /*********************/
s = 0.0; /* Loop 1. */
v = 0.0; /*********************/
w = one;
dtime(TimeArray);
for( i = 1 ; i <= n-1 ; i++ )
{
v = v + w;
u = v * x;
s = s + (D1+u*(D2+u*D3))/(w+u*(D1+u*(E2+u*E3)));
}
dtime(TimeArray);
sa = TimeArray[1];
if ( n == NLimit ) break;
/* printf(" %10ld %12.5lf\n",n,sa); */
}
scale = 1.0E+06 / (double)n;
T[1] = scale;
/****************************************/
/* Estimate nulltime ('for' loop time). */
/****************************************/
dtime(TimeArray);
for( i = 1 ; i <= n-1 ; i++ )
{
}
dtime(TimeArray);
nulltime = T[1] * TimeArray[1];
if ( nulltime < 0.0 ) nulltime = 0.0;
T[2] = T[1] * sa - nulltime;
sa = (D1+D2+D3)/(one+D1+E2+E3);
sb = D1;
T[3] = T[2] / 14.0; /*********************/
sa = x * ( sa + sb + two * s ) / two; /* Module 1 Results. */
sb = one / sa; /*********************/
n = (long)( (double)( 40000 * (long)sb ) / scale );
sc = sb - 25.2;
T[4] = one / T[3];
/********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/********************/
printf(" 1 %13.4le %10.4lf %10.4lf\n",sc,T[2],T[4]);
m = n;
/*******************************************************/
/* Module 2. Calculate value of PI from Taylor Series */
/* expansion of atan(1.0). There are 7 */
/* double precision operations per loop */
/* ( 3 +, 2 -, 1 *, 1 / ) that are included */
/* in the timing. */
/* 42.9% +, 28.6% -, 14.3% *, and 14.3% / */
/*******************************************************/
s = -five; /********************/
sa = -one; /* Loop 2. */
/********************/
dtime(TimeArray);
for ( i = 1 ; i <= m ; i++ )
{
s = -s;
sa = sa + s;
}
dtime(TimeArray);
T[5] = T[1] * TimeArray[1];
if ( T[5] < 0.0 ) T[5] = 0.0;
sc = (double)m;
u = sa; /*********************/
v = 0.0; /* Loop 3. */
w = 0.0; /*********************/
x = 0.0;
dtime(TimeArray);
for ( i = 1 ; i <= m ; i++)
{
s = -s;
sa = sa + s;
u = u + two;
x = x +(s - u);
v = v - s * u;
w = w + s / u;
}
dtime(TimeArray);
T[6] = T[1] * TimeArray[1];
T[7] = ( T[6] - T[5] ) / 7.0; /*********************/
m = (long)( sa * x / sc ); /* PI Results */
sa = four * w / five; /*********************/
sb = sa + five / v;
sc = 31.25;
piprg = sb - sc / (v * v * v);
pierr = piprg - piref;
T[8] = one / T[7];
/*********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/*********************/
printf(" 2 %13.4le %10.4lf %10.4lf\n",pierr,T[6]-T[5],T[8]);
/*******************************************************/
/* Module 3. Calculate integral of sin(x) from 0.0 to */
/* PI/3.0 using Trapazoidal Method. Result */
/* is 0.5. There are 17 double precision */
/* operations per loop (6 +, 2 -, 9 *, 0 /) */
/* included in the timing. */
/* 35.3% +, 11.8% -, 52.9% *, and 00.0% / */
/*******************************************************/
x = piref / ( three * (double)m ); /*********************/
s = 0.0; /* Loop 4. */
v = 0.0; /*********************/
dtime(TimeArray);
for( i = 1 ; i <= m-1 ; i++ )
{
v = v + one;
u = v * x;
w = u * u;
s = s + u * ((((((A6*w-A5)*w+A4)*w-A3)*w+A2)*w+A1)*w+one);
}
dtime(TimeArray);
T[9] = T[1] * TimeArray[1] - nulltime;
u = piref / three;
w = u * u;
sa = u * ((((((A6*w-A5)*w+A4)*w-A3)*w+A2)*w+A1)*w+one);
T[10] = T[9] / 17.0; /*********************/
sa = x * ( sa + two * s ) / two; /* sin(x) Results. */
sb = 0.5; /*********************/
sc = sa - sb;
T[11] = one / T[10];
/*********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/*********************/
printf(" 3 %13.4le %10.4lf %10.4lf\n",sc,T[9],T[11]);
/************************************************************/
/* Module 4. Calculate Integral of cos(x) from 0.0 to PI/3 */
/* using the Trapazoidal Method. Result is */
/* sin(PI/3). There are 15 double precision */
/* operations per loop (7 +, 0 -, 8 *, and 0 / ) */
/* included in the timing. */
/* 50.0% +, 00.0% -, 50.0% *, 00.0% / */
/************************************************************/
A3 = -A3;
A5 = -A5;
x = piref / ( three * (double)m ); /*********************/
s = 0.0; /* Loop 5. */
v = 0.0; /*********************/
dtime(TimeArray);
for( i = 1 ; i <= m-1 ; i++ )
{
u = (double)i * x;
w = u * u;
s = s + w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one;
}
dtime(TimeArray);
T[12] = T[1] * TimeArray[1] - nulltime;
u = piref / three;
w = u * u;
sa = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one;
T[13] = T[12] / 15.0; /*******************/
sa = x * ( sa + one + two * s ) / two; /* Module 4 Result */
u = piref / three; /*******************/
w = u * u;
sb = u * ((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+A0);
sc = sa - sb;
T[14] = one / T[13];
/*********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/*********************/
printf(" 4 %13.4le %10.4lf %10.4lf\n",sc,T[12],T[14]);
/************************************************************/
/* Module 5. Calculate Integral of tan(x) from 0.0 to PI/3 */
/* using the Trapazoidal Method. Result is */
/* ln(cos(PI/3)). There are 29 double precision */
/* operations per loop (13 +, 0 -, 15 *, and 1 /)*/
/* included in the timing. */
/* 46.7% +, 00.0% -, 50.0% *, and 03.3% / */
/************************************************************/
x = piref / ( three * (double)m ); /*********************/
s = 0.0; /* Loop 6. */
v = 0.0; /*********************/
dtime(TimeArray);
for( i = 1 ; i <= m-1 ; i++ )
{
u = (double)i * x;
w = u * u;
v = u * ((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one);
s = s + v / (w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one);
}
dtime(TimeArray);
T[15] = T[1] * TimeArray[1] - nulltime;
u = piref / three;
w = u * u;
sa = u*((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one);
sb = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one;
sa = sa / sb;
T[16] = T[15] / 29.0; /*******************/
sa = x * ( sa + two * s ) / two; /* Module 5 Result */
sb = 0.6931471805599453; /*******************/
sc = sa - sb;
T[17] = one / T[16];
/*********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/*********************/
printf(" 5 %13.4le %10.4lf %10.4lf\n",sc,T[15],T[17]);
/************************************************************/
/* Module 6. Calculate Integral of sin(x)*cos(x) from 0.0 */
/* to PI/4 using the Trapazoidal Method. Result */
/* is sin(PI/4)^2. There are 29 double precision */
/* operations per loop (13 +, 0 -, 16 *, and 0 /)*/
/* included in the timing. */
/* 46.7% +, 00.0% -, 53.3% *, and 00.0% / */
/************************************************************/
x = piref / ( four * (double)m ); /*********************/
s = 0.0; /* Loop 7. */
v = 0.0; /*********************/
dtime(TimeArray);
for( i = 1 ; i <= m-1 ; i++ )
{
u = (double)i * x;
w = u * u;
v = u * ((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one);
s = s + v*(w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one);
}
dtime(TimeArray);
T[18] = T[1] * TimeArray[1] - nulltime;
u = piref / four;
w = u * u;
sa = u*((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one);
sb = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one;
sa = sa * sb;
T[19] = T[18] / 29.0; /*******************/
sa = x * ( sa + two * s ) / two; /* Module 6 Result */
sb = 0.25; /*******************/
sc = sa - sb;
T[20] = one / T[19];
/*********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/*********************/
printf(" 6 %13.4le %10.4lf %10.4lf\n",sc,T[18],T[20]);
/*******************************************************/
/* Module 7. Calculate value of the definite integral */
/* from 0 to sa of 1/(x+1), x/(x*x+1), and */
/* x*x/(x*x*x+1) using the Trapizoidal Rule.*/
/* There are 12 double precision operations */
/* per loop ( 3 +, 3 -, 3 *, and 3 / ) that */
/* are included in the timing. */
/* 25.0% +, 25.0% -, 25.0% *, and 25.0% / */
/*******************************************************/
/*********************/
s = 0.0; /* Loop 8. */
w = one; /*********************/
sa = 102.3321513995275;
v = sa / (double)m;
dtime(TimeArray);
for ( i = 1 ; i <= m-1 ; i++)
{
x = (double)i * v;
u = x * x;
s = s - w / ( x + w ) - x / ( u + w ) - u / ( x * u + w );
}
dtime(TimeArray);
T[21] = T[1] * TimeArray[1] - nulltime;
/*********************/
/* Module 7 Results */
/*********************/
T[22] = T[21] / 12.0;
x = sa;
u = x * x;
sa = -w - w / ( x + w ) - x / ( u + w ) - u / ( x * u + w );
sa = 18.0 * v * (sa + two * s );
m = -2000 * (long)sa;
m = (long)( (double)m / scale );
sc = sa + 500.2;
T[23] = one / T[22];
/********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/********************/
printf(" 7 %13.4le %10.4lf %10.4lf\n",sc,T[21],T[23]);
/************************************************************/
/* Module 8. Calculate Integral of sin(x)*cos(x)*cos(x) */
/* from 0 to PI/3 using the Trapazoidal Method. */
/* Result is (1-cos(PI/3)^3)/3. There are 30 */
/* double precision operations per loop included */
/* in the timing: */
/* 13 +, 0 -, 17 * 0 / */
/* 46.7% +, 00.0% -, 53.3% *, and 00.0% / */
/************************************************************/
x = piref / ( three * (double)m ); /*********************/
s = 0.0; /* Loop 9. */
v = 0.0; /*********************/
dtime(TimeArray);
for( i = 1 ; i <= m-1 ; i++ )
{
u = (double)i * x;
w = u * u;
v = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one;
s = s + v*v*u*((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one);
}
dtime(TimeArray);
T[24] = T[1] * TimeArray[1] - nulltime;
u = piref / three;
w = u * u;
sa = u*((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one);
sb = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one;
sa = sa * sb * sb;
T[25] = T[24] / 30.0; /*******************/
sa = x * ( sa + two * s ) / two; /* Module 8 Result */
sb = 0.29166666666666667; /*******************/
sc = sa - sb;
T[26] = one / T[25];
/*********************/
/* DO NOT REMOVE */
/* THIS PRINTOUT! */
/*********************/
printf(" 8 %13.4le %10.4lf %10.4lf\n",sc,T[24],T[26]);
/**************************************************/
/* MFLOPS(1) output. This is the same weighting */
/* used for all previous versions of the flops.c */
/* program. Includes Modules 2 and 3 only. */
/**************************************************/
T[27] = ( five * (T[6] - T[5]) + T[9] ) / 52.0;
T[28] = one / T[27];
/**************************************************/
/* MFLOPS(2) output. This output does not include */
/* Module 2, but it still does 9.2% FDIV's. */
/**************************************************/
T[29] = T[2] + T[9] + T[12] + T[15] + T[18];
T[29] = (T[29] + four * T[21]) / 152.0;
T[30] = one / T[29];
/**************************************************/
/* MFLOPS(3) output. This output does not include */
/* Module 2, but it still does 3.4% FDIV's. */
/**************************************************/
T[31] = T[2] + T[9] + T[12] + T[15] + T[18];
T[31] = (T[31] + T[21] + T[24]) / 146.0;
T[32] = one / T[31];
/**************************************************/
/* MFLOPS(4) output. This output does not include */
/* Module 2, and it does NO FDIV's. */
/**************************************************/
T[33] = (T[9] + T[12] + T[18] + T[24]) / 91.0;
T[34] = one / T[33];
printf("\n");
printf(" Iterations = %10ld\n",m);
printf(" NullTime (usec) = %10.4lf\n",nulltime);
printf(" MFLOPS(1) = %10.4lf\n",T[28]);
printf(" MFLOPS(2) = %10.4lf\n",T[30]);
printf(" MFLOPS(3) = %10.4lf\n",T[32]);
printf(" MFLOPS(4) = %10.4lf\n\n",T[34]);
return 0;
}
/*****************************************************/
/* Various timer routines. */
/* Al Aburto, aburto@xxxxxxxx, 18 Feb 1997 */
/* */
/* dtime(p) outputs the elapsed time seconds in p[1] */
/* from a call of dtime(p) to the next call of */
/* dtime(p). Use CAUTION as some of these routines */
/* will mess up when timing across the hour mark!!! */
/* */
/* For timing I use the 'user' time whenever */
/* possible. Using 'user+sys' time is a separate */
/* issue. */
/* */
/* Example Usage: */
/* [Timer options added here] */
/* double RunTime, TimeArray[3]; */
/* main() */
/* { */
/* dtime(TimeArray); */
/* [routine to time] */
/* dtime(TimeArray); */
/* RunTime = TimeArray[1]; */
/* } */
/* [Timer code added here] */
/*****************************************************/
/******************************/
/* Timer code. */
/******************************/
/*******************/
/* Amiga dtime() */
/*******************/
#ifdef Amiga
#include <ctype.h>
#define HZ 50
dtime(p)
double p[];
{
double q;
struct tt {
long days;
long minutes;
long ticks;
} tt;
q = p[2];
DateStamp(&tt);
p[2] = ( (double)(tt.ticks + (tt.minutes * 60L * 50L)) ) / (double)HZ;
p[1] = p[2] - q;
return 0;
}
#endif
/*****************************************************/
/* UNIX dtime(). This is the preferred UNIX timer. */
/* Provided by: Markku Kolkka, mk59200@xxxxxxxxx */
/* HP-UX Addition by: Bo Thide', bt@xxxxxxx */
/*****************************************************/
#ifdef UNIX
#include <sys/time.h>
#include <sys/resource.h>
#ifdef hpux
#include <sys/syscall.h>
#define getrusage(a,b) syscall(SYS_getrusage,a,b)
#endif
struct rusage rusage;
dtime(p)
double p[];
{
double q;
q = p[2];
getrusage(RUSAGE_SELF,&rusage);
p[2] = (double)(rusage.ru_utime.tv_sec);
p[2] = p[2] + (double)(rusage.ru_utime.tv_usec) * 1.0e-06;
p[1] = p[2] - q;
return 0;
}
#endif
/***************************************************/
/* UNIX_Old dtime(). This is the old UNIX timer. */
/* Use only if absolutely necessary as HZ may be */
/* ill defined on your system. */
/***************************************************/
#ifdef UNIX_Old
#include <sys/types.h>
#include <sys/times.h>
#include <sys/param.h>
#ifndef HZ
#define HZ 60
#endif
struct tms tms;
dtime(p)
double p[];
{
double q;
q = p[2];
times(&tms);
p[2] = (double)(tms.tms_utime) / (double)HZ;
p[1] = p[2] - q;
return 0;
}
#endif
/*********************************************************/
/* VMS dtime() for VMS systems. */
/* Provided by: RAMO@xxxxxxxxxxxxxxxxxxx */
/* Some people have run into problems with this timer. */
/*********************************************************/
#ifdef VMS
#include time
#ifndef HZ
#define HZ 100
#endif
struct tbuffer_t
{
int proc_user_time;
int proc_system_time;
int child_user_time;
int child_system_time;
};
struct tbuffer_t tms;
dtime(p)
double p[];
{
double q;
q = p[2];
times(&tms);
p[2] = (double)(tms.proc_user_time) / (double)HZ;
p[1] = p[2] - q;
return 0;
}
#endif
/******************************/
/* BORLAND C dtime() for DOS */
/******************************/
#ifdef BORLAND_C
#include <ctype.h>
#include <dos.h>
#include <time.h>
#define HZ 100
struct time tnow;
dtime(p)
double p[];
{
double q;
q = p[2];
gettime(&tnow);
p[2] = 60.0 * (double)(tnow.ti_min);
p[2] = p[2] + (double)(tnow.ti_sec);
p[2] = p[2] + (double)(tnow.ti_hund)/(double)HZ;
p[1] = p[2] - q;
return 0;
}
#endif
/**************************************/
/* Microsoft C (MSC) dtime() for DOS */
/**************************************/
#ifdef MSC
#include <time.h>
#include <ctype.h>
#define HZ CLOCKS_PER_SEC
clock_t tnow;
dtime(p)
double p[];
{
double q;
q = p[2];
tnow = clock();
p[2] = (double)tnow / (double)HZ;
p[1] = p[2] - q;
return 0;
}
#endif
/*************************************/
/* Macintosh (MAC) Think C dtime() */
/*************************************/
#ifdef MAC
#include <time.h>
#define HZ 60
dtime(p)
double p[];
{
double q;
q = p[2];
p[2] = (double)clock() / (double)HZ;
p[1] = p[2] - q;
return 0;
}
#endif
/************************************************************/
/* iPSC/860 (IPSC) dtime() for i860. */
/* Provided by: Dan Yergeau, yergeau@xxxxxxxxxxxxxxxxxxxx */
/************************************************************/
#ifdef IPSC
extern double dclock();
dtime(p)
double p[];
{
double q;
q = p[2];
p[2] = dclock();
p[1] = p[2] - q;
return 0;
}
#endif
/**************************************************/
/* FORTRAN dtime() for Cray type systems. */
/* This is the preferred timer for Cray systems. */
/**************************************************/
#ifdef FORTRAN_SEC
fortran double second();
dtime(p)
double p[];
{
double q,v;
q = p[2];
second(&v);
p[2] = v;
p[1] = p[2] - q;
return 0;
}
#endif
/***********************************************************/
/* UNICOS C dtime() for Cray UNICOS systems. Don't use */
/* unless absolutely necessary as returned time includes */
/* 'user+system' time. Provided by: R. Mike Dority, */
/* dority@xxxxxxxxxxxxxxxx */
/***********************************************************/
#ifdef CTimer
#include <time.h>
dtime(p)
double p[];
{
double q;
clock_t clock(void);
q = p[2];
p[2] = (double)clock() / (double)CLOCKS_PER_SEC;
p[1] = p[2] - q;
return 0;
}
#endif
/********************************************/
/* Another UNIX timer using gettimeofday(). */
/* However, getrusage() is preferred. */
/********************************************/
#ifdef GTODay
#include <sys/time.h>
struct timeval tnow;
dtime(p)
double p[];
{
double q;
q = p[2];
gettimeofday(&tnow,NULL);
p[2] = (double)tnow.tv_sec + (double)tnow.tv_usec * 1.0e-6;
p[1] = p[2] - q;
return 0;
}
#endif
/*****************************************************/
/* Fujitsu UXP/M timer. */
/* Provided by: Mathew Lim, ANUSF, M.Lim@xxxxxxxxxx */
/*****************************************************/
#ifdef UXPM
#include <sys/types.h>
#include <sys/timesu.h>
struct tmsu rusage;
dtime(p)
double p[];
{
double q;
q = p[2];
timesu(&rusage);
p[2] = (double)(rusage.tms_utime) * 1.0e-06;
p[1] = p[2] - q;
return 0;
}
#endif
/**********************************************/
/* Macintosh (MAC_TMgr) Think C dtime() */
/* requires Think C Language Extensions or */
/* #include <MacHeaders> in the prefix */
/* provided by Francis H Schiffer 3rd (fhs) */
/* skipschiffer@xxxxxxxxxxxxxx */
/**********************************************/
#ifdef MAC_TMgr
#include <Time.h>
#include <stdlib.h>
static TMTask mgrTimer;
static Boolean mgrInited = FALSE;
static double mgrClock;
#define RMV_TIMER RmvTime( (QElemPtr)&mgrTimer )
#define MAX_TIME 1800000000L
/* MAX_TIME limits time between calls to */
/* dtime( ) to no more than 30 minutes */
/* this limitation could be removed by */
/* creating a completion routine to sum */
/* 30 minute segments (fhs 1994 feb 9) */
static void Remove_timer( )
{
RMV_TIMER;
mgrInited = FALSE;
}
int dtime( p )
double p[];
{
if ( mgrInited ) {
RMV_TIMER;
mgrClock += (MAX_TIME + mgrTimer.tmCount)*1.0e-6;
} else {
if ( _atexit( &Remove_timer ) == 0 ) mgrInited = TRUE;
mgrClock = 0.0;
}
p[1] = mgrClock - p[2];
p[2] = mgrClock;
if ( mgrInited ) {
mgrTimer.tmAddr = NULL;
mgrTimer.tmCount = 0;
mgrTimer.tmWakeUp = 0;
mgrTimer.tmReserved = 0;
InsTime( (QElemPtr)&mgrTimer );
PrimeTime( (QElemPtr)&mgrTimer, -MAX_TIME );
}
return( 0 );
}
#endif
/***********************************************************/
/* Parsytec GCel timer. */
/* Provided by: Georg Wambach, gw@xxxxxxxxxxxxxxxxxxxxxxx */
/***********************************************************/
#ifdef PARIX
#include <sys/time.h>
dtime(p)
double p[];
{
double q;
q = p[2];
p[2] = (double) (TimeNowHigh()) / (double) CLK_TCK_HIGH;
p[1] = p[2] - q;
return 0;
}
#endif
/************************************************/
/* Sun Solaris POSIX dtime() routine */
/* Provided by: Case Larsen, CTLarsen@xxxxxxx */
/************************************************/
#ifdef POSIX
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/rusage.h>
#ifdef __hpux
#include <sys/syscall.h>
#define getrusage(a,b) syscall(SYS_getrusage,a,b)
#endif
struct rusage rusage;
dtime(p)
double p[];
{
double q;
q = p[2];
getrusage(RUSAGE_SELF,&rusage);
p[2] = (double)(rusage.ru_utime.tv_sec);
p[2] = p[2] + (double)(rusage.ru_utime.tv_nsec) * 1.0e-09;
p[1] = p[2] - q;
return 0;
}
#endif
/****************************************************/
/* Windows NT (32 bit) dtime() routine */
/* Provided by: Piers Haken, piersh@xxxxxxxxxxxxx */
/****************************************************/
#ifdef WIN32
#include <windows.h>
dtime(p)
double p[];
{
double q;
q = p[2];
p[2] = (double)GetTickCount() * 1.0e-03;
p[1] = p[2] - q;
return 0;
}
#endif
/*****************************************************/
/* Time according to POSIX.1 - <J.Pelan@xxxxxxxxx> */
/* Ref: "POSIX Programmer's Guide" O'Reilly & Assoc.*/
/*****************************************************/
#ifdef POSIX1
#define _POSIX_SOURCE 1
#include <unistd.h>
#include <limits.h>
#include <sys/times.h>
struct tms tms;
dtime(p)
double p[];
{
double q;
times(&tms);
q = p[2];
p[2] = (double)tms.tms_utime / (double)CLK_TCK;
p[1] = p[2] - q;
return 0;
}
#endif
/*------ End flops.c code, say good night Jan! (Sep 1992) ------*/
gcc -DUNIX flops.c -m32 -march=i386 -mtune=generic -o flops
FLOPS C Program (Double Precision), V2.0 18 Dec 1992
Module Error RunTime MFLOPS
(usec)
1 -8.1208e-11 0.0098 1422.1333
2 -1.5454e-13 0.0089 783.8530
3 1.5743e-13 0.0168 1012.0297
4 9.3703e-14 0.0140 1068.9755
5 -4.6207e-13 0.0224 1297.3674
6 3.9452e-13 0.0199 1454.4546
7 3.8767e-11 0.0212 565.5022
8 4.8178e-13 0.0335 896.7211
Iterations = 512000000
NullTime (usec) = 0.0025
MFLOPS(1) = 846.2281
MFLOPS(2) = 905.5897
MFLOPS(3) = 1060.7272
MFLOPS(4) = 1080.4519
----------------------------------------------------------------------
gcc -DUNIX flops.c -m32 -march=i686 -mtune=generic -o flops
FLOPS C Program (Double Precision), V2.0 18 Dec 1992
Module Error RunTime MFLOPS
(usec)
1 -8.1208e-11 0.0098 1431.2205
2 -1.5454e-13 0.0088 794.2766
3 1.5743e-13 0.0163 1044.5818
4 9.3703e-14 0.0130 1149.6287
5 -4.6207e-13 0.0229 1268.5468
6 3.9452e-13 0.0209 1388.6151
7 3.8767e-11 0.0216 554.2779
8 4.8178e-13 0.0331 905.6038
Iterations = 512000000
NullTime (usec) = 0.0025
MFLOPS(1) = 861.7874
MFLOPS(2) = 897.0299
MFLOPS(3) = 1060.8477
MFLOPS(4) = 1092.0000
----------------------------------------------------------------------
gcc -DUNIX flops.c -m32 -march=i686 -mtune=generic -o flops -msse2
FLOPS C Program (Double Precision), V2.0 18 Dec 1992
Module Error RunTime MFLOPS
(usec)
1 -8.1208e-11 0.0100 1404.3009
2 -1.5454e-13 0.0099 704.9126
3 1.5743e-13 0.0155 1095.0498
4 9.3703e-14 0.0124 1214.3454
5 -4.6207e-13 0.0231 1254.3994
6 3.9452e-13 0.0213 1364.1191
7 3.8767e-11 0.0216 555.0791
8 4.8178e-13 0.0341 878.8647
Iterations = 512000000
NullTime (usec) = 0.0025
MFLOPS(1) = 797.8403
MFLOPS(2) = 901.0181
MFLOPS(3) = 1058.1445
MFLOPS(4) = 1092.8197
-------------------------------------------------------------------------
gcc -DUNIX flops.c -m32 -march=k8 -mtune=k8 -o flops
FLOPS C Program (Double Precision), V2.0 18 Dec 1992
Module Error RunTime MFLOPS
(usec)
1 -8.1208e-11 0.0099 1419.8794
2 -1.5454e-13 0.0089 788.6833
3 1.5743e-13 0.0169 1003.1645
4 9.3703e-14 0.0125 1196.1870
5 -4.6207e-13 0.0225 1287.4672
6 3.9452e-13 0.0205 1416.7053
7 3.8767e-11 0.0212 565.5022
8 4.8178e-13 0.0330 910.3272
Iterations = 512000000
NullTime (usec) = 0.0024
MFLOPS(1) = 847.9532
MFLOPS(2) = 908.9746
MFLOPS(3) = 1069.4690
MFLOPS(4) = 1097.5567
--------------------------------------------------------------------------
gcc -DUNIX flops.c -m32 -march=k8 -mtune=k8 -o flops -msse2
FLOPS C Program (Double Precision), V2.0 18 Dec 1992
Module Error RunTime MFLOPS
(usec)
1 -8.1208e-11 0.0100 1406.5056
2 -1.5454e-13 0.0088 794.2766
3 1.5743e-13 0.0169 1008.2780
4 9.3703e-14 0.0126 1192.4721
5 -4.6207e-13 0.0228 1273.7707
6 3.9452e-13 0.0206 1410.2462
7 3.8767e-11 0.0213 562.6022
8 4.8178e-13 0.0330 907.7447
Iterations = 512000000
NullTime (usec) = 0.0024
MFLOPS(1) = 853.4988
MFLOPS(2) = 904.5371
MFLOPS(3) = 1064.8981
MFLOPS(4) = 1095.6982
--------------------------------------------------------------------------
gcc -DUNIX flops.c -m64 -march=k8 -mtune=k8 -o flops
FLOPS C Program (Double Precision), V2.0 18 Dec 1992
Module Error RunTime MFLOPS
(usec)
1 4.0146e-13 0.0109 1287.2759
2 -1.4166e-13 0.0091 765.1101
3 4.7184e-14 0.0213 799.9499
4 -1.2557e-13 0.0162 927.0304
5 -1.3800e-13 0.0295 984.5539
6 3.2380e-13 0.0272 1065.9873
7 -8.4583e-11 0.0199 603.7359
8 3.4867e-13 0.0370 811.2740
Iterations = 512000000
NullTime (usec) = 0.0025
MFLOPS(1) = 776.1614
MFLOPS(2) = 823.9712
MFLOPS(3) = 902.2225
MFLOPS(4) = 895.5306
--
fedora-devel-list mailing list
fedora-devel-list@xxxxxxxxxx
https://www.redhat.com/mailman/listinfo/fedora-devel-list