On Sun, Sep 29, 2024 at 5:28 PM <linux@xxxxxxxxxxx> wrote: > > From: "Dr. David Alan Gilbert" <linux@xxxxxxxxxxx> > > We start with the function 'atomctrl_calculate_voltage_evv_on_sclk' > which has been unused since 2016's commit > e805ed83ba1c ("drm/amd/powerplay: delete useless files.") > > Remove it. > > It was the last user of the struct ATOM_ASIC_PROFILING_INFO_V3_4 > remove it. Thanks. I've applied the patch, but left the atombios.h structure in place as it documents the vbios firmware data table structure which might be useful for debugging. Alex > > It was also the last user of the entire fixed point maths library in > ppevvmath.h. > > Remove it. > > Signed-off-by: Dr. David Alan Gilbert <linux@xxxxxxxxxxx> > --- > drivers/gpu/drm/amd/include/atombios.h | 72 --- > .../drm/amd/pm/powerplay/hwmgr/ppatomctrl.c | 428 ------------- > .../drm/amd/pm/powerplay/hwmgr/ppatomctrl.h | 2 - > .../drm/amd/pm/powerplay/hwmgr/ppevvmath.h | 561 ------------------ > 4 files changed, 1063 deletions(-) > delete mode 100644 drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h > > diff --git a/drivers/gpu/drm/amd/include/atombios.h b/drivers/gpu/drm/amd/include/atombios.h > index b78360a71bc9..e810366a3c83 100644 > --- a/drivers/gpu/drm/amd/include/atombios.h > +++ b/drivers/gpu/drm/amd/include/atombios.h > @@ -5432,78 +5432,6 @@ typedef struct _ATOM_ASIC_PROFILING_INFO_V3_3 > ULONG ulSDCMargine; > }ATOM_ASIC_PROFILING_INFO_V3_3; > > -// for Fiji speed EVV algorithm > -typedef struct _ATOM_ASIC_PROFILING_INFO_V3_4 > -{ > - ATOM_COMMON_TABLE_HEADER asHeader; > - ULONG ulEvvLkgFactor; > - ULONG ulBoardCoreTemp; > - ULONG ulMaxVddc; > - ULONG ulMinVddc; > - ULONG ulLoadLineSlop; > - ULONG ulLeakageTemp; > - ULONG ulLeakageVoltage; > - EFUSE_LINEAR_FUNC_PARAM sCACm; > - EFUSE_LINEAR_FUNC_PARAM sCACb; > - EFUSE_LOGISTIC_FUNC_PARAM sKt_b; > - EFUSE_LOGISTIC_FUNC_PARAM sKv_m; > - EFUSE_LOGISTIC_FUNC_PARAM sKv_b; > - USHORT usLkgEuseIndex; > - UCHAR ucLkgEfuseBitLSB; > - UCHAR ucLkgEfuseLength; > - ULONG ulLkgEncodeLn_MaxDivMin; > - ULONG ulLkgEncodeMax; > - ULONG ulLkgEncodeMin; > - ULONG ulEfuseLogisticAlpha; > - USHORT usPowerDpm0; > - USHORT usPowerDpm1; > - USHORT usPowerDpm2; > - USHORT usPowerDpm3; > - USHORT usPowerDpm4; > - USHORT usPowerDpm5; > - USHORT usPowerDpm6; > - USHORT usPowerDpm7; > - ULONG ulTdpDerateDPM0; > - ULONG ulTdpDerateDPM1; > - ULONG ulTdpDerateDPM2; > - ULONG ulTdpDerateDPM3; > - ULONG ulTdpDerateDPM4; > - ULONG ulTdpDerateDPM5; > - ULONG ulTdpDerateDPM6; > - ULONG ulTdpDerateDPM7; > - EFUSE_LINEAR_FUNC_PARAM sRoFuse; > - ULONG ulEvvDefaultVddc; > - ULONG ulEvvNoCalcVddc; > - USHORT usParamNegFlag; > - USHORT usSpeed_Model; > - ULONG ulSM_A0; > - ULONG ulSM_A1; > - ULONG ulSM_A2; > - ULONG ulSM_A3; > - ULONG ulSM_A4; > - ULONG ulSM_A5; > - ULONG ulSM_A6; > - ULONG ulSM_A7; > - UCHAR ucSM_A0_sign; > - UCHAR ucSM_A1_sign; > - UCHAR ucSM_A2_sign; > - UCHAR ucSM_A3_sign; > - UCHAR ucSM_A4_sign; > - UCHAR ucSM_A5_sign; > - UCHAR ucSM_A6_sign; > - UCHAR ucSM_A7_sign; > - ULONG ulMargin_RO_a; > - ULONG ulMargin_RO_b; > - ULONG ulMargin_RO_c; > - ULONG ulMargin_fixed; > - ULONG ulMargin_Fmax_mean; > - ULONG ulMargin_plat_mean; > - ULONG ulMargin_Fmax_sigma; > - ULONG ulMargin_plat_sigma; > - ULONG ulMargin_DC_sigma; > - ULONG ulReserved[8]; // Reserved for future ASIC > -}ATOM_ASIC_PROFILING_INFO_V3_4; > - > // for Polaris10/Polaris11 speed EVV algorithm > typedef struct _ATOM_ASIC_PROFILING_INFO_V3_5 > { > diff --git a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.c b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.c > index b56298d9da98..fe24219c3bf4 100644 > --- a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.c > +++ b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.c > @@ -28,7 +28,6 @@ > #include "ppatomctrl.h" > #include "atombios.h" > #include "cgs_common.h" > -#include "ppevvmath.h" > > #define MEM_ID_MASK 0xff000000 > #define MEM_ID_SHIFT 24 > @@ -677,433 +676,6 @@ bool atomctrl_get_pp_assign_pin( > return bRet; > } > > -int atomctrl_calculate_voltage_evv_on_sclk( > - struct pp_hwmgr *hwmgr, > - uint8_t voltage_type, > - uint32_t sclk, > - uint16_t virtual_voltage_Id, > - uint16_t *voltage, > - uint16_t dpm_level, > - bool debug) > -{ > - ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo; > - struct amdgpu_device *adev = hwmgr->adev; > - EFUSE_LINEAR_FUNC_PARAM sRO_fuse; > - EFUSE_LINEAR_FUNC_PARAM sCACm_fuse; > - EFUSE_LINEAR_FUNC_PARAM sCACb_fuse; > - EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse; > - EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse; > - EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse; > - EFUSE_INPUT_PARAMETER sInput_FuseValues; > - READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues; > - > - uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused; > - fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7; > - fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma; > - fInt fLkg_FT, repeat; > - fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX; > - fInt fRLL_LoadLine, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin; > - fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM; > - fInt fSclk_margin, fSclk, fEVV_V; > - fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL; > - uint32_t ul_FT_Lkg_V0NORM; > - fInt fLn_MaxDivMin, fMin, fAverage, fRange; > - fInt fRoots[2]; > - fInt fStepSize = GetScaledFraction(625, 100000); > - > - int result; > - > - getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *) > - smu_atom_get_data_table(hwmgr->adev, > - GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo), > - NULL, NULL, NULL); > - > - if (!getASICProfilingInfo) > - return -1; > - > - if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 || > - (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 && > - getASICProfilingInfo->asHeader.ucTableContentRevision < 4)) > - return -1; > - > - /*----------------------------------------------------------- > - *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL > - *----------------------------------------------------------- > - */ > - fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000); > - > - switch (dpm_level) { > - case 1: > - fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000); > - break; > - case 2: > - fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000); > - break; > - case 3: > - fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000); > - break; > - case 4: > - fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000); > - break; > - case 5: > - fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000); > - break; > - case 6: > - fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000); > - break; > - case 7: > - fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000); > - break; > - default: > - pr_err("DPM Level not supported\n"); > - fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000); > - } > - > - /*------------------------- > - * DECODING FUSE VALUES > - * ------------------------ > - */ > - /*Decode RO_Fused*/ > - sRO_fuse = getASICProfilingInfo->sRoFuse; > - > - sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex; > - sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB; > - sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength; > - > - sOutput_FuseValues.sEfuse = sInput_FuseValues; > - > - result = amdgpu_atom_execute_table(adev->mode_info.atom_context, > - GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), > - (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues)); > - > - if (result) > - return result; > - > - /* Finally, the actual fuse value */ > - ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue); > - fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1); > - fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1); > - fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength); > - > - sCACm_fuse = getASICProfilingInfo->sCACm; > - > - sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex; > - sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB; > - sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength; > - > - sOutput_FuseValues.sEfuse = sInput_FuseValues; > - > - result = amdgpu_atom_execute_table(adev->mode_info.atom_context, > - GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), > - (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues)); > - > - if (result) > - return result; > - > - ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue); > - fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000); > - fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000); > - > - fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength); > - > - sCACb_fuse = getASICProfilingInfo->sCACb; > - > - sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex; > - sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB; > - sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength; > - sOutput_FuseValues.sEfuse = sInput_FuseValues; > - > - result = amdgpu_atom_execute_table(adev->mode_info.atom_context, > - GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), > - (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues)); > - > - if (result) > - return result; > - > - ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue); > - fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000); > - fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000); > - > - fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength); > - > - sKt_Beta_fuse = getASICProfilingInfo->sKt_b; > - > - sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex; > - sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB; > - sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength; > - > - sOutput_FuseValues.sEfuse = sInput_FuseValues; > - > - result = amdgpu_atom_execute_table(adev->mode_info.atom_context, > - GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), > - (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues)); > - > - if (result) > - return result; > - > - ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue); > - fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000); > - fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000); > - > - fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused, > - fAverage, fRange, sKt_Beta_fuse.ucEfuseLength); > - > - sKv_m_fuse = getASICProfilingInfo->sKv_m; > - > - sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex; > - sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB; > - sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength; > - > - sOutput_FuseValues.sEfuse = sInput_FuseValues; > - > - result = amdgpu_atom_execute_table(adev->mode_info.atom_context, > - GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), > - (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues)); > - if (result) > - return result; > - > - ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue); > - fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000); > - fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000); > - fRange = fMultiply(fRange, ConvertToFraction(-1)); > - > - fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused, > - fAverage, fRange, sKv_m_fuse.ucEfuseLength); > - > - sKv_b_fuse = getASICProfilingInfo->sKv_b; > - > - sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex; > - sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB; > - sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength; > - sOutput_FuseValues.sEfuse = sInput_FuseValues; > - > - result = amdgpu_atom_execute_table(adev->mode_info.atom_context, > - GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), > - (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues)); > - > - if (result) > - return result; > - > - ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue); > - fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000); > - fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000); > - > - fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused, > - fAverage, fRange, sKv_b_fuse.ucEfuseLength); > - > - /* Decoding the Leakage - No special struct container */ > - /* > - * usLkgEuseIndex=56 > - * ucLkgEfuseBitLSB=6 > - * ucLkgEfuseLength=10 > - * ulLkgEncodeLn_MaxDivMin=69077 > - * ulLkgEncodeMax=1000000 > - * ulLkgEncodeMin=1000 > - * ulEfuseLogisticAlpha=13 > - */ > - > - sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex; > - sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB; > - sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength; > - > - sOutput_FuseValues.sEfuse = sInput_FuseValues; > - > - result = amdgpu_atom_execute_table(adev->mode_info.atom_context, > - GetIndexIntoMasterTable(COMMAND, ReadEfuseValue), > - (uint32_t *)&sOutput_FuseValues, sizeof(sOutput_FuseValues)); > - > - if (result) > - return result; > - > - ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue); > - fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000); > - fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000); > - > - fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM, > - fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength); > - fLkg_FT = fFT_Lkg_V0NORM; > - > - /*------------------------------------------- > - * PART 2 - Grabbing all required values > - *------------------------------------------- > - */ > - fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000), > - ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign))); > - fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000), > - ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign))); > - fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000), > - ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign))); > - fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000), > - ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign))); > - fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000), > - ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign))); > - fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000), > - ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign))); > - fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000), > - ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign))); > - fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000), > - ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign))); > - > - fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a)); > - fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b)); > - fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c)); > - > - fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed)); > - > - fMargin_FMAX_mean = GetScaledFraction( > - le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000); > - fMargin_Plat_mean = GetScaledFraction( > - le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000); > - fMargin_FMAX_sigma = GetScaledFraction( > - le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000); > - fMargin_Plat_sigma = GetScaledFraction( > - le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000); > - > - fMargin_DC_sigma = GetScaledFraction( > - le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100); > - fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000)); > - > - fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100)); > - fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100)); > - fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100)); > - fKv_m_fused = fNegate(fDivide(fKv_m_fused, ConvertToFraction(100))); > - fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10)); > - > - fSclk = GetScaledFraction(sclk, 100); > - > - fV_max = fDivide(GetScaledFraction( > - le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4)); > - fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10); > - fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100); > - fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10); > - fV_FT = fDivide(GetScaledFraction( > - le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4)); > - fV_min = fDivide(GetScaledFraction( > - le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4)); > - > - /*----------------------- > - * PART 3 > - *----------------------- > - */ > - > - fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5)); > - fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b); > - fC_Term = fAdd(fMargin_RO_c, > - fAdd(fMultiply(fSM_A0, fLkg_FT), > - fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)), > - fAdd(fMultiply(fSM_A3, fSclk), > - fSubtract(fSM_A7, fRO_fused))))); > - > - fVDDC_base = fSubtract(fRO_fused, > - fSubtract(fMargin_RO_c, > - fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk)))); > - fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2)); > - > - repeat = fSubtract(fVDDC_base, > - fDivide(fMargin_DC_sigma, ConvertToFraction(1000))); > - > - fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a, > - fGetSquare(repeat)), > - fAdd(fMultiply(fMargin_RO_b, repeat), > - fMargin_RO_c)); > - > - fDC_SCLK = fSubtract(fRO_fused, > - fSubtract(fRO_DC_margin, > - fSubtract(fSM_A3, > - fMultiply(fSM_A2, repeat)))); > - fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1)); > - > - fSigma_DC = fSubtract(fSclk, fDC_SCLK); > - > - fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean); > - fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean); > - fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma); > - fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma); > - > - fSquared_Sigma_DC = fGetSquare(fSigma_DC); > - fSquared_Sigma_CR = fGetSquare(fSigma_CR); > - fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX); > - > - fSclk_margin = fAdd(fMicro_FMAX, > - fAdd(fMicro_CR, > - fAdd(fMargin_fixed, > - fSqrt(fAdd(fSquared_Sigma_FMAX, > - fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR)))))); > - /* > - fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5; > - fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6; > - fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused; > - */ > - > - fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5); > - fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6); > - fC_Term = fAdd(fRO_DC_margin, > - fAdd(fMultiply(fSM_A0, fLkg_FT), > - fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT), > - fAdd(fSclk, fSclk_margin)), > - fAdd(fMultiply(fSM_A3, > - fAdd(fSclk, fSclk_margin)), > - fSubtract(fSM_A7, fRO_fused))))); > - > - SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots); > - > - if (GreaterThan(fRoots[0], fRoots[1])) > - fEVV_V = fRoots[1]; > - else > - fEVV_V = fRoots[0]; > - > - if (GreaterThan(fV_min, fEVV_V)) > - fEVV_V = fV_min; > - else if (GreaterThan(fEVV_V, fV_max)) > - fEVV_V = fSubtract(fV_max, fStepSize); > - > - fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0); > - > - /*----------------- > - * PART 4 > - *----------------- > - */ > - > - fV_x = fV_min; > - > - while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) { > - fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd( > - fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk), > - fGetSquare(fV_x)), fDerateTDP); > - > - fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor, > - fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused, > - fT_prod), fKv_b_fused), fV_x)), fV_x))); > - fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply( > - fKt_Beta_fused, fT_prod))); > - fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply( > - fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT))); > - fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply( > - fKt_Beta_fused, fT_FT))); > - > - fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right); > - > - fTDP_Current = fDivide(fTDP_Power, fV_x); > - > - fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine), > - ConvertToFraction(10))); > - > - fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0); > - > - if (GreaterThan(fV_max, fV_NL) && > - (GreaterThan(fV_NL, fEVV_V) || > - Equal(fV_NL, fEVV_V))) { > - fV_NL = fMultiply(fV_NL, ConvertToFraction(1000)); > - > - *voltage = (uint16_t)fV_NL.partial.real; > - break; > - } else > - fV_x = fAdd(fV_x, fStepSize); > - } > - > - return result; > -} > - > /** > * atomctrl_get_voltage_evv_on_sclk: gets voltage via call to ATOM COMMAND table. > * @hwmgr: input: pointer to hwManager > diff --git a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.h b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.h > index 1f987e846628..22b0ac12df97 100644 > --- a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.h > +++ b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppatomctrl.h > @@ -316,8 +316,6 @@ extern int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr, > pp_atomctrl_clock_dividers_kong *dividers); > extern int atomctrl_read_efuse(struct pp_hwmgr *hwmgr, uint16_t start_index, > uint16_t end_index, uint32_t *efuse); > -extern int atomctrl_calculate_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type, > - uint32_t sclk, uint16_t virtual_voltage_Id, uint16_t *voltage, uint16_t dpm_level, bool debug); > extern int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr, uint32_t clock_value, pp_atomctrl_clock_dividers_ai *dividers); > extern int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock, > uint8_t level); > diff --git a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h b/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h > deleted file mode 100644 > index 409aeec6baa9..000000000000 > --- a/drivers/gpu/drm/amd/pm/powerplay/hwmgr/ppevvmath.h > +++ /dev/null > @@ -1,561 +0,0 @@ > -/* > - * Copyright 2015 Advanced Micro Devices, Inc. > - * > - * Permission is hereby granted, free of charge, to any person obtaining a > - * copy of this software and associated documentation files (the "Software"), > - * to deal in the Software without restriction, including without limitation > - * the rights to use, copy, modify, merge, publish, distribute, sublicense, > - * and/or sell copies of the Software, and to permit persons to whom the > - * Software is furnished to do so, subject to the following conditions: > - * > - * The above copyright notice and this permission notice shall be included in > - * all copies or substantial portions of the Software. > - * > - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR > - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, > - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL > - * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR > - * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, > - * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR > - * OTHER DEALINGS IN THE SOFTWARE. > - * > - */ > -#include <asm/div64.h> > - > -enum ppevvmath_constants { > - /* We multiply all original integers with 2^SHIFT_AMOUNT to get the fInt representation */ > - SHIFT_AMOUNT = 16, > - > - /* Change this value to change the number of decimal places in the final output - 5 is a good default */ > - PRECISION = 5, > - > - SHIFTED_2 = (2 << SHIFT_AMOUNT), > - > - /* 32767 - Might change in the future */ > - MAX = (1 << (SHIFT_AMOUNT - 1)) - 1, > -}; > - > -/* ------------------------------------------------------------------------------- > - * NEW TYPE - fINT > - * ------------------------------------------------------------------------------- > - * A variable of type fInt can be accessed in 3 ways using the dot (.) operator > - * fInt A; > - * A.full => The full number as it is. Generally not easy to read > - * A.partial.real => Only the integer portion > - * A.partial.decimal => Only the fractional portion > - */ > -typedef union _fInt { > - int full; > - struct _partial { > - unsigned int decimal: SHIFT_AMOUNT; /*Needs to always be unsigned*/ > - int real: 32 - SHIFT_AMOUNT; > - } partial; > -} fInt; > - > -/* ------------------------------------------------------------------------------- > - * Function Declarations > - * ------------------------------------------------------------------------------- > - */ > -static fInt ConvertToFraction(int); /* Use this to convert an INT to a FINT */ > -static fInt Convert_ULONG_ToFraction(uint32_t); /* Use this to convert an uint32_t to a FINT */ > -static fInt GetScaledFraction(int, int); /* Use this to convert an INT to a FINT after scaling it by a factor */ > -static int ConvertBackToInteger(fInt); /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */ > - > -static fInt fNegate(fInt); /* Returns -1 * input fInt value */ > -static fInt fAdd (fInt, fInt); /* Returns the sum of two fInt numbers */ > -static fInt fSubtract (fInt A, fInt B); /* Returns A-B - Sometimes easier than Adding negative numbers */ > -static fInt fMultiply (fInt, fInt); /* Returns the product of two fInt numbers */ > -static fInt fDivide (fInt A, fInt B); /* Returns A/B */ > -static fInt fGetSquare(fInt); /* Returns the square of a fInt number */ > -static fInt fSqrt(fInt); /* Returns the Square Root of a fInt number */ > - > -static int uAbs(int); /* Returns the Absolute value of the Int */ > -static int uPow(int base, int exponent); /* Returns base^exponent an INT */ > - > -static void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */ > -static bool Equal(fInt, fInt); /* Returns true if two fInts are equal to each other */ > -static bool GreaterThan(fInt A, fInt B); /* Returns true if A > B */ > - > -static fInt fExponential(fInt exponent); /* Can be used to calculate e^exponent */ > -static fInt fNaturalLog(fInt value); /* Can be used to calculate ln(value) */ > - > -/* Fuse decoding functions > - * ------------------------------------------------------------------------------------- > - */ > -static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength); > -static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength); > -static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength); > - > -/* Internal Support Functions - Use these ONLY for testing or adding to internal functions > - * ------------------------------------------------------------------------------------- > - * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons. > - */ > -static fInt Divide (int, int); /* Divide two INTs and return result as FINT */ > -static fInt fNegate(fInt); > - > -static int uGetScaledDecimal (fInt); /* Internal function */ > -static int GetReal (fInt A); /* Internal function */ > - > -/* ------------------------------------------------------------------------------------- > - * TROUBLESHOOTING INFORMATION > - * ------------------------------------------------------------------------------------- > - * 1) ConvertToFraction - InputOutOfRangeException: Only accepts numbers smaller than MAX (default: 32767) > - * 2) fAdd - OutputOutOfRangeException: Output bigger than MAX (default: 32767) > - * 3) fMultiply - OutputOutOfRangeException: > - * 4) fGetSquare - OutputOutOfRangeException: > - * 5) fDivide - DivideByZeroException > - * 6) fSqrt - NegativeSquareRootException: Input cannot be a negative number > - */ > - > -/* ------------------------------------------------------------------------------------- > - * START OF CODE > - * ------------------------------------------------------------------------------------- > - */ > -static fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/ > -{ > - uint32_t i; > - bool bNegated = false; > - > - fInt fPositiveOne = ConvertToFraction(1); > - fInt fZERO = ConvertToFraction(0); > - > - fInt lower_bound = Divide(78, 10000); > - fInt solution = fPositiveOne; /*Starting off with baseline of 1 */ > - fInt error_term; > - > - static const uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78}; > - static const uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078}; > - > - if (GreaterThan(fZERO, exponent)) { > - exponent = fNegate(exponent); > - bNegated = true; > - } > - > - while (GreaterThan(exponent, lower_bound)) { > - for (i = 0; i < 11; i++) { > - if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) { > - exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000)); > - solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000)); > - } > - } > - } > - > - error_term = fAdd(fPositiveOne, exponent); > - > - solution = fMultiply(solution, error_term); > - > - if (bNegated) > - solution = fDivide(fPositiveOne, solution); > - > - return solution; > -} > - > -static fInt fNaturalLog(fInt value) > -{ > - uint32_t i; > - fInt upper_bound = Divide(8, 1000); > - fInt fNegativeOne = ConvertToFraction(-1); > - fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */ > - fInt error_term; > - > - static const uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078}; > - static const uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78}; > - > - while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) { > - for (i = 0; i < 10; i++) { > - if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) { > - value = fDivide(value, GetScaledFraction(k_array[i], 10000)); > - solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000)); > - } > - } > - } > - > - error_term = fAdd(fNegativeOne, value); > - > - return fAdd(solution, error_term); > -} > - > -static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength) > -{ > - fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value); > - fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); > - > - fInt f_decoded_value; > - > - f_decoded_value = fDivide(f_fuse_value, f_bit_max_value); > - f_decoded_value = fMultiply(f_decoded_value, f_range); > - f_decoded_value = fAdd(f_decoded_value, f_min); > - > - return f_decoded_value; > -} > - > - > -static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength) > -{ > - fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value); > - fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); > - > - fInt f_CONSTANT_NEG13 = ConvertToFraction(-13); > - fInt f_CONSTANT1 = ConvertToFraction(1); > - > - fInt f_decoded_value; > - > - f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1); > - f_decoded_value = fNaturalLog(f_decoded_value); > - f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13)); > - f_decoded_value = fAdd(f_decoded_value, f_average); > - > - return f_decoded_value; > -} > - > -static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength) > -{ > - fInt fLeakage; > - fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); > - > - fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse)); > - fLeakage = fDivide(fLeakage, f_bit_max_value); > - fLeakage = fExponential(fLeakage); > - fLeakage = fMultiply(fLeakage, f_min); > - > - return fLeakage; > -} > - > -static fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */ > -{ > - fInt temp; > - > - if (X <= MAX) > - temp.full = (X << SHIFT_AMOUNT); > - else > - temp.full = 0; > - > - return temp; > -} > - > -static fInt fNegate(fInt X) > -{ > - fInt CONSTANT_NEGONE = ConvertToFraction(-1); > - return fMultiply(X, CONSTANT_NEGONE); > -} > - > -static fInt Convert_ULONG_ToFraction(uint32_t X) > -{ > - fInt temp; > - > - if (X <= MAX) > - temp.full = (X << SHIFT_AMOUNT); > - else > - temp.full = 0; > - > - return temp; > -} > - > -static fInt GetScaledFraction(int X, int factor) > -{ > - int times_shifted, factor_shifted; > - bool bNEGATED; > - fInt fValue; > - > - times_shifted = 0; > - factor_shifted = 0; > - bNEGATED = false; > - > - if (X < 0) { > - X = -1*X; > - bNEGATED = true; > - } > - > - if (factor < 0) { > - factor = -1*factor; > - bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */ > - } > - > - if ((X > MAX) || factor > MAX) { > - if ((X/factor) <= MAX) { > - while (X > MAX) { > - X = X >> 1; > - times_shifted++; > - } > - > - while (factor > MAX) { > - factor = factor >> 1; > - factor_shifted++; > - } > - } else { > - fValue.full = 0; > - return fValue; > - } > - } > - > - if (factor == 1) > - return ConvertToFraction(X); > - > - fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor)); > - > - fValue.full = fValue.full << times_shifted; > - fValue.full = fValue.full >> factor_shifted; > - > - return fValue; > -} > - > -/* Addition using two fInts */ > -static fInt fAdd (fInt X, fInt Y) > -{ > - fInt Sum; > - > - Sum.full = X.full + Y.full; > - > - return Sum; > -} > - > -/* Addition using two fInts */ > -static fInt fSubtract (fInt X, fInt Y) > -{ > - fInt Difference; > - > - Difference.full = X.full - Y.full; > - > - return Difference; > -} > - > -static bool Equal(fInt A, fInt B) > -{ > - if (A.full == B.full) > - return true; > - else > - return false; > -} > - > -static bool GreaterThan(fInt A, fInt B) > -{ > - if (A.full > B.full) > - return true; > - else > - return false; > -} > - > -static fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */ > -{ > - fInt Product; > - int64_t tempProduct; > - > - /*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/ > - /* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION > - bool X_LessThanOne, Y_LessThanOne; > - > - X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0); > - Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0); > - > - if (X_LessThanOne && Y_LessThanOne) { > - Product.full = X.full * Y.full; > - return Product > - }*/ > - > - tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */ > - tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */ > - Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */ > - > - return Product; > -} > - > -static fInt fDivide (fInt X, fInt Y) > -{ > - fInt fZERO, fQuotient; > - int64_t longlongX, longlongY; > - > - fZERO = ConvertToFraction(0); > - > - if (Equal(Y, fZERO)) > - return fZERO; > - > - longlongX = (int64_t)X.full; > - longlongY = (int64_t)Y.full; > - > - longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */ > - > - div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */ > - > - fQuotient.full = (int)longlongX; > - return fQuotient; > -} > - > -static int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/ > -{ > - fInt fullNumber, scaledDecimal, scaledReal; > - > - scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */ > - > - scaledDecimal.full = uGetScaledDecimal(A); > - > - fullNumber = fAdd(scaledDecimal, scaledReal); > - > - return fullNumber.full; > -} > - > -static fInt fGetSquare(fInt A) > -{ > - return fMultiply(A, A); > -} > - > -/* x_new = x_old - (x_old^2 - C) / (2 * x_old) */ > -static fInt fSqrt(fInt num) > -{ > - fInt F_divide_Fprime, Fprime; > - fInt test; > - fInt twoShifted; > - int seed, counter, error; > - fInt x_new, x_old, C, y; > - > - fInt fZERO = ConvertToFraction(0); > - > - /* (0 > num) is the same as (num < 0), i.e., num is negative */ > - > - if (GreaterThan(fZERO, num) || Equal(fZERO, num)) > - return fZERO; > - > - C = num; > - > - if (num.partial.real > 3000) > - seed = 60; > - else if (num.partial.real > 1000) > - seed = 30; > - else if (num.partial.real > 100) > - seed = 10; > - else > - seed = 2; > - > - counter = 0; > - > - if (Equal(num, fZERO)) /*Square Root of Zero is zero */ > - return fZERO; > - > - twoShifted = ConvertToFraction(2); > - x_new = ConvertToFraction(seed); > - > - do { > - counter++; > - > - x_old.full = x_new.full; > - > - test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */ > - y = fSubtract(test, C); /*y = f(x) = x^2 - C; */ > - > - Fprime = fMultiply(twoShifted, x_old); > - F_divide_Fprime = fDivide(y, Fprime); > - > - x_new = fSubtract(x_old, F_divide_Fprime); > - > - error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old); > - > - if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/ > - return x_new; > - > - } while (uAbs(error) > 0); > - > - return x_new; > -} > - > -static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[]) > -{ > - fInt *pRoots = &Roots[0]; > - fInt temp, root_first, root_second; > - fInt f_CONSTANT10, f_CONSTANT100; > - > - f_CONSTANT100 = ConvertToFraction(100); > - f_CONSTANT10 = ConvertToFraction(10); > - > - while (GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) { > - A = fDivide(A, f_CONSTANT10); > - B = fDivide(B, f_CONSTANT10); > - C = fDivide(C, f_CONSTANT10); > - } > - > - temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */ > - temp = fMultiply(temp, C); /* root = 4*A*C */ > - temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */ > - temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */ > - > - root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */ > - root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */ > - > - root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */ > - root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */ > - > - root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */ > - root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */ > - > - *(pRoots + 0) = root_first; > - *(pRoots + 1) = root_second; > -} > - > -/* ----------------------------------------------------------------------------- > - * SUPPORT FUNCTIONS > - * ----------------------------------------------------------------------------- > - */ > - > -/* Conversion Functions */ > -static int GetReal (fInt A) > -{ > - return (A.full >> SHIFT_AMOUNT); > -} > - > -static fInt Divide (int X, int Y) > -{ > - fInt A, B, Quotient; > - > - A.full = X << SHIFT_AMOUNT; > - B.full = Y << SHIFT_AMOUNT; > - > - Quotient = fDivide(A, B); > - > - return Quotient; > -} > - > -static int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */ > -{ > - int dec[PRECISION]; > - int i, scaledDecimal = 0, tmp = A.partial.decimal; > - > - for (i = 0; i < PRECISION; i++) { > - dec[i] = tmp / (1 << SHIFT_AMOUNT); > - tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]); > - tmp *= 10; > - scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 - i); > - } > - > - return scaledDecimal; > -} > - > -static int uPow(int base, int power) > -{ > - if (power == 0) > - return 1; > - else > - return (base)*uPow(base, power - 1); > -} > - > -static int uAbs(int X) > -{ > - if (X < 0) > - return (X * -1); > - else > - return X; > -} > - > -static fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term) > -{ > - fInt solution; > - > - solution = fDivide(A, fStepSize); > - solution.partial.decimal = 0; /*All fractional digits changes to 0 */ > - > - if (error_term) > - solution.partial.real += 1; /*Error term of 1 added */ > - > - solution = fMultiply(solution, fStepSize); > - solution = fAdd(solution, fStepSize); > - > - return solution; > -} > - > -- > 2.46.2 >