On Wed, Aug 28, 2024 at 11:53 AM Matthew Brost <matthew.brost@xxxxxxxxx> wrote: > > On Wed, Aug 28, 2024 at 04:46:24PM +0200, Christian König wrote: > > Am 28.08.24 um 16:31 schrieb Daniel Vetter: > > > On Tue, Aug 27, 2024 at 07:48:38PM -0700, Matthew Brost wrote: > > > > + if (!ctx->mmap_locked) { > > > > + /* > > > > + * XXX: HMM locking document indicates only a read-lock > > > > + * is required but there apears to be a window between > > > > + * the MMU_NOTIFY_MIGRATE event triggered in a CPU fault > > > > + * via migrate_vma_setup and the pages actually moving > > > > + * in migrate_vma_finalize in which this code can grab > > > > + * garbage pages. Grabbing the write-lock if the range > > > > + * is attached to vram appears to protect against this > > > > + * race. > > > > + */ > > Thanks the comments, replying to both of you inline. > > > > This one is really scary, since it means the entire migrate pte trickery > > > is essentially completely busted. Grabbing the mmap write lock just means > > > you block out pretty much everything interesting from concurrently > > > happening. > > > > > > My gut feeling says we need to figure out what's happening here, because > > > this looks a bit too fundamental to me. > > I agree. I haven’t looked into this issue for a couple of months but > really need to understand what is going on. > > I should have mentioned this in the cover letter: the goal of this > series was to produce something for review that is stable and supports > UMDs/user applications. It was not intended to be presented as a final > solution. This issue certainly falls into the category of "needs to be > understood and requires a proper fix." > > One open question I have is whether the test case that triggers this > issue is even defined behavior. The test creates concurrent access > between the GPU and CPU to the same memory address, resulting in GPU and > CPU faults racing against each other. It’s possible that this is > undefined behavior, so data corruption might be acceptable—i.e., the > kernel can’t crash, but incorrect results might be permissible. > > e.g. This is the only defined usage model: > > alloc_memory(); > start_compute_kernel(); > sync_on_compute_kernel_completion(); > read_memory(); > > Hopefully, in the next week or so, I'll be heavily engaging with the UMD > teams. Development can then start, and applications will be running soon > after. This will allow us to address issues like this, collect data on > memory usage, and verify some of the assumptions I've made, such as > optimizing for 2M+ allocations. > > > > > I think I have at least a high level understanding what's going on here, > > Felix and especially Philip should know more of the details. > > > > I meant to reach out to AMD for issues like this. So, Felix > (felix.kuehling@xxxxxxx) and Philip (Philip.Yang@xxxxxxx) would be good > contacts? Yes. Alex > > > In general grabbing the mm_lock to protect PTEs from changing is completely > > nonsense. The mm_lock is to protect the VMAs and *not* the PTEs! > > > > Thanks for the hint. I believe that in the AMD implementation, I noticed > some additional locks for migration, which might be how you mitigated > this issue. > > I must say it is a bit unfortunate that the HMM locking documentation > doesn’t mention this. I believe the documentation needs additional > information, which I can add once we finalize the solution. > > Matt > > > Even with the write side of the mm_lock taken it is perfectly possible that > > PTE change. It's just less likely. > > > > We run into multiple issues before we figured out this important distinction > > as well. > > > > Christian. > > > > > -Sima > > > > > > > > > > + if (vram_pages) > > > > + mmap_write_lock(mm); > > > > + else > > > > + mmap_read_lock(mm); > > > > + } > > > > + err = hmm_range_fault(&hmm_range); > > > > + if (!ctx->mmap_locked) { > > > > + if (vram_pages) > > > > + mmap_write_unlock(mm); > > > > + else > > > > + mmap_read_unlock(mm); > > > > + } > > > > + > > > > + if (err == -EBUSY) { > > > > + if (time_after(jiffies, timeout)) > > > > + break; > > > > + > > > > + hmm_range.notifier_seq = mmu_interval_read_begin(notifier); > > > > + continue; > > > > + } > > > > + break; > > > > + } > > > > + if (!ctx->mmap_locked) > > > > + mmput(mm); > > > > + if (err) > > > > + goto err_free; > > > > + > > > > + pages = (struct page **)pfns; > > > > + > > > > + if (ctx->prefault) { > > > > + range->pages = pages; > > > > + goto set_seqno; > > > > + } > > > > + > > > > +map_pages: > > > > + if (is_device_private_page(hmm_pfn_to_page(pfns[0]))) { > > > > + WARN_ON_ONCE(!range->vram_allocation); > > > > + > > > > + for (i = 0; i < npages; ++i) { > > > > + pages[i] = hmm_pfn_to_page(pfns[i]); > > > > + > > > > + if (WARN_ON_ONCE(!is_device_private_page(pages[i]))) { > > > > + err = -EOPNOTSUPP; > > > > + goto err_free; > > > > + } > > > > + } > > > > + > > > > + /* Do not race with notifier unmapping pages */ > > > > + drm_gpusvm_notifier_lock(gpusvm); > > > > + range->flags.has_vram_pages = true; > > > > + range->pages = pages; > > > > + if (mmu_interval_read_retry(notifier, hmm_range.notifier_seq)) { > > > > + err = -EAGAIN; > > > > + __drm_gpusvm_range_unmap_pages(gpusvm, range); > > > > + } > > > > + drm_gpusvm_notifier_unlock(gpusvm); > > > > + } else { > > > > + dma_addr_t *dma_addr = (dma_addr_t *)pfns; > > > > + > > > > + for_each_dma_page(i, j, npages, order) { > > > > + if (WARN_ON_ONCE(i && order != > > > > + hmm_pfn_to_map_order(pfns[i]))) { > > > > + err = -EOPNOTSUPP; > > > > + npages = i; > > > > + goto err_unmap; > > > > + } > > > > + order = hmm_pfn_to_map_order(pfns[i]); > > > > + > > > > + pages[j] = hmm_pfn_to_page(pfns[i]); > > > > + if (WARN_ON_ONCE(is_zone_device_page(pages[j]))) { > > > > + err = -EOPNOTSUPP; > > > > + npages = i; > > > > + goto err_unmap; > > > > + } > > > > + > > > > + set_page_dirty_lock(pages[j]); > > > > + mark_page_accessed(pages[j]); > > > > + > > > > + dma_addr[j] = dma_map_page(gpusvm->drm->dev, > > > > + pages[j], 0, > > > > + PAGE_SIZE << order, > > > > + DMA_BIDIRECTIONAL); > > > > + if (dma_mapping_error(gpusvm->drm->dev, dma_addr[j])) { > > > > + err = -EFAULT; > > > > + npages = i; > > > > + goto err_unmap; > > > > + } > > > > + } > > > > + > > > > + /* Huge pages, reduce memory footprint */ > > > > + if (order) { > > > > + dma_addr = kmalloc_array(j, sizeof(*dma_addr), > > > > + GFP_KERNEL); > > > > + if (dma_addr) { > > > > + for (i = 0; i < j; ++i) > > > > + dma_addr[i] = (dma_addr_t)pfns[i]; > > > > + kvfree(pfns); > > > > + kfree_mapping = true; > > > > + } else { > > > > + dma_addr = (dma_addr_t *)pfns; > > > > + } > > > > + } > > > > + > > > > + /* Do not race with notifier unmapping pages */ > > > > + drm_gpusvm_notifier_lock(gpusvm); > > > > + range->order = order; > > > > + range->flags.kfree_mapping = kfree_mapping; > > > > + range->flags.has_dma_mapping = true; > > > > + range->dma_addr = dma_addr; > > > > + range->vram_allocation = NULL; > > > > + if (mmu_interval_read_retry(notifier, hmm_range.notifier_seq)) { > > > > + err = -EAGAIN; > > > > + __drm_gpusvm_range_unmap_pages(gpusvm, range); > > > > + } > > > > + drm_gpusvm_notifier_unlock(gpusvm); > > > > + } > > > > + > > > > + if (err == -EAGAIN) > > > > + goto retry; > > > > +set_seqno: > > > > + range->notifier_seq = hmm_range.notifier_seq; > > > > + > > > > + return 0; > > > > + > > > > +err_unmap: > > > > + for_each_dma_page(i, j, npages, order) > > > > + dma_unmap_page(gpusvm->drm->dev, > > > > + (dma_addr_t)pfns[j], > > > > + PAGE_SIZE << order, DMA_BIDIRECTIONAL); > > > > +err_free: > > > > + if (alloc_pfns) > > > > + kvfree(pfns); > > > > +err_out: > > > > + return err; > > > > +} > > > > + > > > > +/** > > > > + * drm_gpusvm_range_unmap_pages - Unmap pages associated with a GPU SVM range > > > > + * @gpusvm: Pointer to the GPU SVM structure > > > > + * @range: Pointer to the GPU SVM range structure > > > > + * @ctx: GPU SVM context > > > > + * > > > > + * This function unmaps pages associated with a GPU SVM range. If @in_notifier > > > > + * is set, it is assumed that gpusvm->notifier_lock is held in write mode; if it > > > > + * is clear, it acquires gpusvm->notifier_lock in read mode. Must be called on > > > > + * each GPU SVM range attached to notifier in gpusvm->ops->invalidate for IOMMU > > > > + * security model. > > > > + */ > > > > +void drm_gpusvm_range_unmap_pages(struct drm_gpusvm *gpusvm, > > > > + struct drm_gpusvm_range *range, > > > > + const struct drm_gpusvm_ctx *ctx) > > > > +{ > > > > + if (ctx->in_notifier) > > > > + lockdep_assert_held_write(&gpusvm->notifier_lock); > > > > + else > > > > + drm_gpusvm_notifier_lock(gpusvm); > > > > + > > > > + __drm_gpusvm_range_unmap_pages(gpusvm, range); > > > > + > > > > + if (!ctx->in_notifier) > > > > + drm_gpusvm_notifier_unlock(gpusvm); > > > > +} > > > > + > > > > +/** > > > > + * drm_gpusvm_migration_put_page - Put a migration page > > > > + * @page: Pointer to the page to put > > > > + * > > > > + * This function unlocks and puts a page. > > > > + */ > > > > +static void drm_gpusvm_migration_put_page(struct page *page) > > > > +{ > > > > + unlock_page(page); > > > > + put_page(page); > > > > +} > > > > + > > > > +/** > > > > + * drm_gpusvm_migration_put_pages - Put migration pages > > > > + * @npages: Number of pages > > > > + * @migrate_pfn: Array of migrate page frame numbers > > > > + * > > > > + * This function puts an array of pages. > > > > + */ > > > > +static void drm_gpusvm_migration_put_pages(unsigned long npages, > > > > + unsigned long *migrate_pfn) > > > > +{ > > > > + unsigned long i; > > > > + > > > > + for (i = 0; i < npages; ++i) { > > > > + if (!migrate_pfn[i]) > > > > + continue; > > > > + > > > > + drm_gpusvm_migration_put_page(migrate_pfn_to_page(migrate_pfn[i])); > > > > + migrate_pfn[i] = 0; > > > > + } > > > > +} > > > > + > > > > +/** > > > > + * drm_gpusvm_get_vram_page - Get a reference to a VRAM page > > > > + * @page: Pointer to the page > > > > + * @zdd: Pointer to the GPU SVM zone device data > > > > + * > > > > + * This function associates the given page with the specified GPU SVM zone > > > > + * device data and initializes it for zone device usage. > > > > + */ > > > > +static void drm_gpusvm_get_vram_page(struct page *page, > > > > + struct drm_gpusvm_zdd *zdd) > > > > +{ > > > > + page->zone_device_data = drm_gpusvm_zdd_get(zdd); > > > > + zone_device_page_init(page); > > > > +} > > > > + > > > > +/** > > > > + * drm_gpusvm_migrate_map_pages() - Map migration pages for GPU SVM migration > > > > + * @dev: The device for which the pages are being mapped > > > > + * @dma_addr: Array to store DMA addresses corresponding to mapped pages > > > > + * @migrate_pfn: Array of migrate page frame numbers to map > > > > + * @npages: Number of pages to map > > > > + * @dir: Direction of data transfer (e.g., DMA_BIDIRECTIONAL) > > > > + * > > > > + * This function maps pages of memory for migration usage in GPU SVM. It > > > > + * iterates over each page frame number provided in @migrate_pfn, maps the > > > > + * corresponding page, and stores the DMA address in the provided @dma_addr > > > > + * array. > > > > + * > > > > + * Return: 0 on success, -EFAULT if an error occurs during mapping. > > > > + */ > > > > +static int drm_gpusvm_migrate_map_pages(struct device *dev, > > > > + dma_addr_t *dma_addr, > > > > + long unsigned int *migrate_pfn, > > > > + unsigned long npages, > > > > + enum dma_data_direction dir) > > > > +{ > > > > + unsigned long i; > > > > + > > > > + for (i = 0; i < npages; ++i) { > > > > + struct page *page = migrate_pfn_to_page(migrate_pfn[i]); > > > > + > > > > + if (!page) > > > > + continue; > > > > + > > > > + if (WARN_ON_ONCE(is_zone_device_page(page))) > > > > + return -EFAULT; > > > > + > > > > + dma_addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir); > > > > + if (dma_mapping_error(dev, dma_addr[i])) > > > > + return -EFAULT; > > > > + } > > > > + > > > > + return 0; > > > > +} > > > > + > > > > +/** > > > > + * drm_gpusvm_migrate_unmap_pages() - Unmap pages previously mapped for GPU SVM migration > > > > + * @dev: The device for which the pages were mapped > > > > + * @dma_addr: Array of DMA addresses corresponding to mapped pages > > > > + * @npages: Number of pages to unmap > > > > + * @dir: Direction of data transfer (e.g., DMA_BIDIRECTIONAL) > > > > + * > > > > + * This function unmaps previously mapped pages of memory for GPU Shared Virtual > > > > + * Memory (SVM). It iterates over each DMA address provided in @dma_addr, checks > > > > + * if it's valid and not already unmapped, and unmaps the corresponding page. > > > > + */ > > > > +static void drm_gpusvm_migrate_unmap_pages(struct device *dev, > > > > + dma_addr_t *dma_addr, > > > > + unsigned long npages, > > > > + enum dma_data_direction dir) > > > > +{ > > > > + unsigned long i; > > > > + > > > > + for (i = 0; i < npages; ++i) { > > > > + if (!dma_addr[i] || dma_mapping_error(dev, dma_addr[i])) > > > > + continue; > > > > + > > > > + dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir); > > > > + } > > > > +} > > > > + > > > > +/** > > > > + * drm_gpusvm_migrate_to_vram - Migrate GPU SVM range to VRAM > > > > + * @gpusvm: Pointer to the GPU SVM structure > > > > + * @range: Pointer to the GPU SVM range structure > > > > + * failure of this function. > > > > + * @vram_allocation: Driver-private pointer to the VRAM allocation. The caller > > > > + * should hold a reference to the VRAM allocation, which > > > > + * should be dropped via ops->vram_allocation or upon the > > > > + * failure of this function. > > > > + * @ctx: GPU SVM context > > > > + * > > > > + * This function migrates the specified GPU SVM range to VRAM. It performs the > > > > + * necessary setup and invokes the driver-specific operations for migration to > > > > + * VRAM. Upon successful return, @vram_allocation can safely reference @range > > > > + * until ops->vram_release is called which only upon successful return. > > > > + * > > > > + * Returns: > > > > + * 0 on success, negative error code on failure. > > > > + */ > > > > +int drm_gpusvm_migrate_to_vram(struct drm_gpusvm *gpusvm, > > > > + struct drm_gpusvm_range *range, > > > > + void *vram_allocation, > > > > + const struct drm_gpusvm_ctx *ctx) > > > > +{ > > > > + u64 start = range->va.start, end = range->va.end; > > > > + struct migrate_vma migrate = { > > > > + .start = start, > > > > + .end = end, > > > > + .pgmap_owner = gpusvm->device_private_page_owner, > > > > + .flags = MIGRATE_VMA_SELECT_SYSTEM, > > > > + }; > > > > + struct mm_struct *mm = gpusvm->mm; > > > > + unsigned long i, npages = npages_in_range(start, end); > > > > + struct vm_area_struct *vas; > > > > + struct drm_gpusvm_zdd *zdd = NULL; > > > > + struct page **pages; > > > > + dma_addr_t *dma_addr; > > > > + void *buf; > > > > + int err; > > > > + > > > > + if (!range->flags.migrate_vram) > > > > + return -EINVAL; > > > > + > > > > + if (!gpusvm->ops->populate_vram_pfn || !gpusvm->ops->copy_to_vram || > > > > + !gpusvm->ops->copy_to_sram) > > > > + return -EOPNOTSUPP; > > > > + > > > > + if (!ctx->mmap_locked) { > > > > + if (!mmget_not_zero(mm)) { > > > > + err = -EFAULT; > > > > + goto err_out; > > > > + } > > > > + mmap_write_lock(mm); > > > > + } > > > > + > > > > + mmap_assert_locked(mm); > > > > + > > > > + vas = vma_lookup(mm, start); > > > > + if (!vas) { > > > > + err = -ENOENT; > > > > + goto err_mmunlock; > > > > + } > > > > + > > > > + if (end > vas->vm_end || start < vas->vm_start) { > > > > + err = -EINVAL; > > > > + goto err_mmunlock; > > > > + } > > > > + > > > > + if (!vma_is_anonymous(vas)) { > > > > + err = -EBUSY; > > > > + goto err_mmunlock; > > > > + } > > > > + > > > > + buf = kvcalloc(npages, 2 * sizeof(*migrate.src) + sizeof(*dma_addr) + > > > > + sizeof(*pages), GFP_KERNEL); > > > > + if (!buf) { > > > > + err = -ENOMEM; > > > > + goto err_mmunlock; > > > > + } > > > > + dma_addr = buf + (2 * sizeof(*migrate.src) * npages); > > > > + pages = buf + (2 * sizeof(*migrate.src) + sizeof(*dma_addr)) * npages; > > > > + > > > > + zdd = drm_gpusvm_zdd_alloc(range); > > > > + if (!zdd) { > > > > + err = -ENOMEM; > > > > + goto err_free; > > > > + } > > > > + > > > > + migrate.vma = vas; > > > > + migrate.src = buf; > > > > + migrate.dst = migrate.src + npages; > > > > + > > > > + err = migrate_vma_setup(&migrate); > > > > + if (err) > > > > + goto err_free; > > > > + > > > > + /* > > > > + * FIXME: Below cases, !migrate.cpages and migrate.cpages != npages, not > > > > + * always an error. Need to revisit possible cases and how to handle. We > > > > + * could prefault on migrate.cpages != npages via hmm_range_fault. > > > > + */ > > > > + > > > > + if (!migrate.cpages) { > > > > + err = -EFAULT; > > > > + goto err_free; > > > > + } > > > > + > > > > + if (migrate.cpages != npages) { > > > > + err = -EBUSY; > > > > + goto err_finalize; > > > > + } > > > > + > > > > + err = gpusvm->ops->populate_vram_pfn(gpusvm, vram_allocation, npages, > > > > + migrate.dst); > > > > + if (err) > > > > + goto err_finalize; > > > > + > > > > + err = drm_gpusvm_migrate_map_pages(gpusvm->drm->dev, dma_addr, > > > > + migrate.src, npages, DMA_TO_DEVICE); > > > > + if (err) > > > > + goto err_finalize; > > > > + > > > > + for (i = 0; i < npages; ++i) { > > > > + struct page *page = pfn_to_page(migrate.dst[i]); > > > > + > > > > + pages[i] = page; > > > > + migrate.dst[i] = migrate_pfn(migrate.dst[i]); > > > > + drm_gpusvm_get_vram_page(page, zdd); > > > > + } > > > > + > > > > + err = gpusvm->ops->copy_to_vram(gpusvm, pages, dma_addr, npages); > > > > + if (err) > > > > + goto err_finalize; > > > > + > > > > + /* Upon success bind vram allocation to range and zdd */ > > > > + range->vram_allocation = vram_allocation; > > > > + WRITE_ONCE(zdd->vram_allocation, vram_allocation); /* Owns ref */ > > > > + > > > > +err_finalize: > > > > + if (err) > > > > + drm_gpusvm_migration_put_pages(npages, migrate.dst); > > > > + migrate_vma_pages(&migrate); > > > > + migrate_vma_finalize(&migrate); > > > > + drm_gpusvm_migrate_unmap_pages(gpusvm->drm->dev, dma_addr, npages, > > > > + DMA_TO_DEVICE); > > > > +err_free: > > > > + if (zdd) > > > > + drm_gpusvm_zdd_put(zdd); > > > > + kvfree(buf); > > > > +err_mmunlock: > > > > + if (!ctx->mmap_locked) { > > > > + mmap_write_unlock(mm); > > > > + mmput(mm); > > > > + } > > > > +err_out: > > > > + return err; > > > > +} > > > > + > > > > +/** > > > > + * drm_gpusvm_migrate_populate_sram_pfn - Populate SRAM PFNs for a VM area > > > > + * @vas: Pointer to the VM area structure, can be NULL > > > > + * @npages: Number of pages to populate > > > > + * @src_mpfn: Source array of migrate PFNs > > > > + * @mpfn: Array of migrate PFNs to populate > > > > + * @addr: Start address for PFN allocation > > > > + * > > > > + * This function populates the SRAM migrate page frame numbers (PFNs) for the > > > > + * specified VM area structure. It allocates and locks pages in the VM area for > > > > + * SRAM usage. If vas is non-NULL use alloc_page_vma for allocation, if NULL use > > > > + * alloc_page for allocation. > > > > + * > > > > + * Returns: > > > > + * 0 on success, negative error code on failure. > > > > + */ > > > > +static int drm_gpusvm_migrate_populate_sram_pfn(struct vm_area_struct *vas, > > > > + unsigned long npages, > > > > + unsigned long *src_mpfn, > > > > + unsigned long *mpfn, u64 addr) > > > > +{ > > > > + unsigned long i; > > > > + > > > > + for (i = 0; i < npages; ++i, addr += PAGE_SIZE) { > > > > + struct page *page; > > > > + > > > > + if (!(src_mpfn[i] & MIGRATE_PFN_MIGRATE)) > > > > + continue; > > > > + > > > > + if (vas) > > > > + page = alloc_page_vma(GFP_HIGHUSER, vas, addr); > > > > + else > > > > + page = alloc_page(GFP_HIGHUSER); > > > > + > > > > + if (!page) > > > > + return -ENOMEM; > > > > + > > > > + lock_page(page); > > > > + mpfn[i] = migrate_pfn(page_to_pfn(page)); > > > > + } > > > > + > > > > + return 0; > > > > +} > > > > + > > > > +/** > > > > + * drm_gpusvm_evict_to_sram - Evict GPU SVM range to SRAM > > > > + * @gpusvm: Pointer to the GPU SVM structure > > > > + * @range: Pointer to the GPU SVM range structure > > > > + * > > > > + * Similar to __drm_gpusvm_migrate_to_sram but does not require mmap lock and > > > > + * migration done via migrate_device_* functions. Fallback path as it is > > > > + * preferred to issue migrations with mmap lock. > > > > + * > > > > + * Returns: > > > > + * 0 on success, negative error code on failure. > > > > + */ > > > > +static int drm_gpusvm_evict_to_sram(struct drm_gpusvm *gpusvm, > > > > + struct drm_gpusvm_range *range) > > > > +{ > > > > + unsigned long npages; > > > > + struct page **pages; > > > > + unsigned long *src, *dst; > > > > + dma_addr_t *dma_addr; > > > > + void *buf; > > > > + int i, err = 0; > > > > + > > > > + npages = npages_in_range(range->va.start, range->va.end); > > > > + > > > > + buf = kvcalloc(npages, 2 * sizeof(*src) + sizeof(*dma_addr) + > > > > + sizeof(*pages), GFP_KERNEL); > > > > + if (!buf) { > > > > + err = -ENOMEM; > > > > + goto err_out; > > > > + } > > > > + src = buf; > > > > + dst = buf + (sizeof(*src) * npages); > > > > + dma_addr = buf + (2 * sizeof(*src) * npages); > > > > + pages = buf + (2 * sizeof(*src) + sizeof(*dma_addr)) * npages; > > > > + > > > > + err = gpusvm->ops->populate_vram_pfn(gpusvm, range->vram_allocation, > > > > + npages, src); > > > > + if (err) > > > > + goto err_free; > > > > + > > > > + err = migrate_device_vma_range(gpusvm->mm, > > > > + gpusvm->device_private_page_owner, src, > > > > + npages, range->va.start); > > > > + if (err) > > > > + goto err_free; > > > > + > > > > + err = drm_gpusvm_migrate_populate_sram_pfn(NULL, npages, src, dst, 0); > > > > + if (err) > > > > + goto err_finalize; > > > > + > > > > + err = drm_gpusvm_migrate_map_pages(gpusvm->drm->dev, dma_addr, > > > > + dst, npages, DMA_BIDIRECTIONAL); > > > > + if (err) > > > > + goto err_finalize; > > > > + > > > > + for (i = 0; i < npages; ++i) > > > > + pages[i] = migrate_pfn_to_page(src[i]); > > > > + > > > > + err = gpusvm->ops->copy_to_sram(gpusvm, pages, dma_addr, npages); > > > > + if (err) > > > > + goto err_finalize; > > > > + > > > > +err_finalize: > > > > + if (err) > > > > + drm_gpusvm_migration_put_pages(npages, dst); > > > > + migrate_device_pages(src, dst, npages); > > > > + migrate_device_finalize(src, dst, npages); > > > > + drm_gpusvm_migrate_unmap_pages(gpusvm->drm->dev, dma_addr, npages, > > > > + DMA_BIDIRECTIONAL); > > > > +err_free: > > > > + kvfree(buf); > > > > +err_out: > > > > + > > > > + return err; > > > > +} > > > > + > > > > +/** > > > > + * __drm_gpusvm_migrate_to_sram - Migrate GPU SVM range to SRAM (internal) > > > > + * @gpusvm: Pointer to the GPU SVM structure > > > > + * @vas: Pointer to the VM area structure > > > > + * @page: Pointer to the page for fault handling (can be NULL) > > > > + * @start: Start address of the migration range > > > > + * @end: End address of the migration range > > > > + * > > > > + * This internal function performs the migration of the specified GPU SVM range > > > > + * to SRAM. It sets up the migration, populates + dma maps SRAM PFNs, and > > > > + * invokes the driver-specific operations for migration to SRAM. > > > > + * > > > > + * Returns: > > > > + * 0 on success, negative error code on failure. > > > > + */ > > > > +static int __drm_gpusvm_migrate_to_sram(struct drm_gpusvm *gpusvm, > > > > + struct vm_area_struct *vas, > > > > + struct page *page, > > > > + u64 start, u64 end) > > > > +{ > > > > + struct migrate_vma migrate = { > > > > + .vma = vas, > > > > + .pgmap_owner = gpusvm->device_private_page_owner, > > > > + .flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE, > > > > + .fault_page = page, > > > > + }; > > > > + unsigned long npages; > > > > + struct page **pages; > > > > + dma_addr_t *dma_addr; > > > > + void *buf; > > > > + int i, err = 0; > > > > + > > > > + mmap_assert_locked(gpusvm->mm); > > > > + > > > > + /* Corner where VMA area struct has been partially unmapped */ > > > > + if (start < vas->vm_start) > > > > + start = vas->vm_start; > > > > + if (end > vas->vm_end) > > > > + end = vas->vm_end; > > > > + > > > > + migrate.start = start; > > > > + migrate.end = end; > > > > + npages = npages_in_range(start, end); > > > > + > > > > + buf = kvcalloc(npages, 2 * sizeof(*migrate.src) + sizeof(*dma_addr) + > > > > + sizeof(*pages), GFP_KERNEL); > > > > + if (!buf) { > > > > + err = -ENOMEM; > > > > + goto err_out; > > > > + } > > > > + dma_addr = buf + (2 * sizeof(*migrate.src) * npages); > > > > + pages = buf + (2 * sizeof(*migrate.src) + sizeof(*dma_addr)) * npages; > > > > + > > > > + migrate.vma = vas; > > > > + migrate.src = buf; > > > > + migrate.dst = migrate.src + npages; > > > > + > > > > + err = migrate_vma_setup(&migrate); > > > > + if (err) > > > > + goto err_free; > > > > + > > > > + /* Raced with another CPU fault, nothing to do */ > > > > + if (!migrate.cpages) > > > > + goto err_free; > > > > + > > > > + err = drm_gpusvm_migrate_populate_sram_pfn(vas, npages, > > > > + migrate.src, migrate.dst, > > > > + start); > > > > + if (err) > > > > + goto err_finalize; > > > > + > > > > + err = drm_gpusvm_migrate_map_pages(gpusvm->drm->dev, dma_addr, > > > > + migrate.dst, npages, > > > > + DMA_BIDIRECTIONAL); > > > > + if (err) > > > > + goto err_finalize; > > > > + > > > > + for (i = 0; i < npages; ++i) > > > > + pages[i] = migrate_pfn_to_page(migrate.src[i]); > > > > + > > > > + err = gpusvm->ops->copy_to_sram(gpusvm, pages, dma_addr, npages); > > > > + if (err) > > > > + goto err_finalize; > > > > + > > > > +err_finalize: > > > > + if (err) > > > > + drm_gpusvm_migration_put_pages(npages, migrate.dst); > > > > + migrate_vma_pages(&migrate); > > > > + migrate_vma_finalize(&migrate); > > > > + drm_gpusvm_migrate_unmap_pages(gpusvm->drm->dev, dma_addr, npages, > > > > + DMA_BIDIRECTIONAL); > > > > +err_free: > > > > + kvfree(buf); > > > > +err_out: > > > > + mmap_assert_locked(gpusvm->mm); > > > > + > > > > + return err; > > > > +} > > > > + > > > > +/** > > > > + * drm_gpusvm_migrate_to_sram - Migrate (evict) GPU SVM range to SRAM > > > > + * @gpusvm: Pointer to the GPU SVM structure > > > > + * @range: Pointer to the GPU SVM range structure > > > > + * @ctx: GPU SVM context > > > > + * > > > > + * This function initiates the migration of the specified GPU SVM range to > > > > + * SRAM. It performs necessary checks and invokes the internal migration > > > > + * function for actual migration. > > > > + * > > > > + * Returns: > > > > + * 0 on success, negative error code on failure. > > > > + */ > > > > +int drm_gpusvm_migrate_to_sram(struct drm_gpusvm *gpusvm, > > > > + struct drm_gpusvm_range *range, > > > > + const struct drm_gpusvm_ctx *ctx) > > > > +{ > > > > + u64 start = range->va.start, end = range->va.end; > > > > + struct mm_struct *mm = gpusvm->mm; > > > > + struct vm_area_struct *vas; > > > > + int err; > > > > + bool retry = false; > > > > + > > > > + if (!ctx->mmap_locked) { > > > > + if (!mmget_not_zero(mm)) { > > > > + err = -EFAULT; > > > > + goto err_out; > > > > + } > > > > + if (ctx->trylock_mmap) { > > > > + if (!mmap_read_trylock(mm)) { > > > > + err = drm_gpusvm_evict_to_sram(gpusvm, range); > > > > + goto err_mmput; > > > > + } > > > > + } else { > > > > + mmap_read_lock(mm); > > > > + } > > > > + } > > > > + > > > > + mmap_assert_locked(mm); > > > > + > > > > + /* > > > > + * Loop required to find all VMA area structs for the corner case when > > > > + * VRAM backing has been partially unmapped from MM's address space. > > > > + */ > > > > +again: > > > > + vas = find_vma(mm, start); > > > > + if (!vas) { > > > > + if (!retry) > > > > + err = -ENOENT; > > > > + goto err_mmunlock; > > > > + } > > > > + > > > > + if (end <= vas->vm_start || start >= vas->vm_end) { > > > > + if (!retry) > > > > + err = -EINVAL; > > > > + goto err_mmunlock; > > > > + } > > > > + > > > > + err = __drm_gpusvm_migrate_to_sram(gpusvm, vas, NULL, start, end); > > > > + if (err) > > > > + goto err_mmunlock; > > > > + > > > > + if (vas->vm_end < end) { > > > > + retry = true; > > > > + start = vas->vm_end; > > > > + goto again; > > > > + } > > > > + > > > > + if (!ctx->mmap_locked) { > > > > + mmap_read_unlock(mm); > > > > + /* > > > > + * Using mmput_async as this function can be called while > > > > + * holding a dma-resv lock, and a final put can grab the mmap > > > > + * lock, causing a lock inversion. > > > > + */ > > > > + mmput_async(mm); > > > > + } > > > > + > > > > + return 0; > > > > + > > > > +err_mmunlock: > > > > + if (!ctx->mmap_locked) > > > > + mmap_read_unlock(mm); > > > > +err_mmput: > > > > + if (!ctx->mmap_locked) > > > > + mmput_async(mm); > > > > +err_out: > > > > + return err; > > > > +} > > > > + > > > > +/** > > > > + * drm_gpusvm_page_free - Put GPU SVM zone device data associated with a page > > > > + * @page: Pointer to the page > > > > + * > > > > + * This function is a callback used to put the GPU SVM zone device data > > > > + * associated with a page when it is being released. > > > > + */ > > > > +static void drm_gpusvm_page_free(struct page *page) > > > > +{ > > > > + drm_gpusvm_zdd_put(page->zone_device_data); > > > > +} > > > > + > > > > +/** > > > > + * drm_gpusvm_migrate_to_ram - Migrate GPU SVM range to RAM (page fault handler) > > > > + * @vmf: Pointer to the fault information structure > > > > + * > > > > + * This function is a page fault handler used to migrate a GPU SVM range to RAM. > > > > + * It retrieves the GPU SVM range information from the faulting page and invokes > > > > + * the internal migration function to migrate the range back to RAM. > > > > + * > > > > + * Returns: > > > > + * VM_FAULT_SIGBUS on failure, 0 on success. > > > > + */ > > > > +static vm_fault_t drm_gpusvm_migrate_to_ram(struct vm_fault *vmf) > > > > +{ > > > > + struct drm_gpusvm_zdd *zdd = vmf->page->zone_device_data; > > > > + int err; > > > > + > > > > + err = __drm_gpusvm_migrate_to_sram(zdd->range->gpusvm, > > > > + vmf->vma, vmf->page, > > > > + zdd->range->va.start, > > > > + zdd->range->va.end); > > > > + > > > > + return err ? VM_FAULT_SIGBUS : 0; > > > > +} > > > > + > > > > +/** > > > > + * drm_gpusvm_pagemap_ops - Device page map operations for GPU SVM > > > > + */ > > > > +static const struct dev_pagemap_ops drm_gpusvm_pagemap_ops = { > > > > + .page_free = drm_gpusvm_page_free, > > > > + .migrate_to_ram = drm_gpusvm_migrate_to_ram, > > > > +}; > > > > + > > > > +/** > > > > + * drm_gpusvm_pagemap_ops_get - Retrieve GPU SVM device page map operations > > > > + * > > > > + * Returns: > > > > + * Pointer to the GPU SVM device page map operations structure. > > > > + */ > > > > +const struct dev_pagemap_ops *drm_gpusvm_pagemap_ops_get(void) > > > > +{ > > > > + return &drm_gpusvm_pagemap_ops; > > > > +} > > > > + > > > > +/** > > > > + * drm_gpusvm_has_mapping - Check if GPU SVM has mapping for the given address range > > > > + * @gpusvm: Pointer to the GPU SVM structure. > > > > + * @start: Start address > > > > + * @end: End address > > > > + * > > > > + * Returns: > > > > + * True if GPU SVM has mapping, False otherwise > > > > + */ > > > > +bool drm_gpusvm_has_mapping(struct drm_gpusvm *gpusvm, u64 start, u64 end) > > > > +{ > > > > + struct drm_gpusvm_notifier *notifier; > > > > + > > > > + drm_gpusvm_for_each_notifier(notifier, gpusvm, start, end) { > > > > + struct drm_gpusvm_range *range = NULL; > > > > + > > > > + drm_gpusvm_for_each_range(range, notifier, start, end) > > > > + return true; > > > > + } > > > > + > > > > + return false; > > > > +} > > > > diff --git a/drivers/gpu/drm/xe/drm_gpusvm.h b/drivers/gpu/drm/xe/drm_gpusvm.h > > > > new file mode 100644 > > > > index 000000000000..0ea70f8534a8 > > > > --- /dev/null > > > > +++ b/drivers/gpu/drm/xe/drm_gpusvm.h > > > > @@ -0,0 +1,415 @@ > > > > +/* SPDX-License-Identifier: MIT */ > > > > +/* > > > > + * Copyright © 2024 Intel Corporation > > > > + */ > > > > + > > > > +#ifndef __DRM_GPUSVM_H__ > > > > +#define __DRM_GPUSVM_H__ > > > > + > > > > +#include <linux/kref.h> > > > > +#include <linux/mmu_notifier.h> > > > > +#include <linux/workqueue.h> > > > > + > > > > +struct dev_pagemap_ops; > > > > +struct drm_device; > > > > +struct drm_gpusvm; > > > > +struct drm_gpusvm_notifier; > > > > +struct drm_gpusvm_ops; > > > > +struct drm_gpusvm_range; > > > > + > > > > +/** > > > > + * struct drm_gpusvm_ops - Operations structure for GPU SVM > > > > + * > > > > + * This structure defines the operations for GPU Shared Virtual Memory (SVM). > > > > + * These operations are provided by the GPU driver to manage SVM ranges and > > > > + * perform operations such as migration between VRAM and system RAM. > > > > + */ > > > > +struct drm_gpusvm_ops { > > > > + /** > > > > + * @notifier_alloc: Allocate a GPU SVM notifier (optional) > > > > + * > > > > + * This function shall allocate a GPU SVM notifier. > > > > + * > > > > + * Returns: > > > > + * Pointer to the allocated GPU SVM notifier on success, NULL on failure. > > > > + */ > > > > + struct drm_gpusvm_notifier *(*notifier_alloc)(void); > > > > + > > > > + /** > > > > + * @notifier_free: Free a GPU SVM notifier (optional) > > > > + * @notifier: Pointer to the GPU SVM notifier to be freed > > > > + * > > > > + * This function shall free a GPU SVM notifier. > > > > + */ > > > > + void (*notifier_free)(struct drm_gpusvm_notifier *notifier); > > > > + > > > > + /** > > > > + * @range_alloc: Allocate a GPU SVM range (optional) > > > > + * @gpusvm: Pointer to the GPU SVM > > > > + * > > > > + * This function shall allocate a GPU SVM range. > > > > + * > > > > + * Returns: > > > > + * Pointer to the allocated GPU SVM range on success, NULL on failure. > > > > + */ > > > > + struct drm_gpusvm_range *(*range_alloc)(struct drm_gpusvm *gpusvm); > > > > + > > > > + /** > > > > + * @range_free: Free a GPU SVM range (optional) > > > > + * @range: Pointer to the GPU SVM range to be freed > > > > + * > > > > + * This function shall free a GPU SVM range. > > > > + */ > > > > + void (*range_free)(struct drm_gpusvm_range *range); > > > > + > > > > + /** > > > > + * @vram_release: Release VRAM allocation (optional) > > > > + * @vram_allocation: Driver-private pointer to the VRAM allocation > > > > + * > > > > + * This function shall release VRAM allocation and expects to drop a > > > > + * reference to VRAM allocation. > > > > + */ > > > > + void (*vram_release)(void *vram_allocation); > > > > + > > > > + /** > > > > + * @populate_vram_pfn: Populate VRAM PFN (required for migration) > > > > + * @gpusvm: Pointer to the GPU SVM > > > > + * @vram_allocation: Driver-private pointer to the VRAM allocation > > > > + * @npages: Number of pages to populate > > > > + * @pfn: Array of page frame numbers to populate > > > > + * > > > > + * This function shall populate VRAM page frame numbers (PFN). > > > > + * > > > > + * Returns: > > > > + * 0 on success, a negative error code on failure. > > > > + */ > > > > + int (*populate_vram_pfn)(struct drm_gpusvm *gpusvm, > > > > + void *vram_allocation, > > > > + unsigned long npages, > > > > + unsigned long *pfn); > > > > + > > > > + /** > > > > + * @copy_to_vram: Copy to VRAM (required for migration) > > > > + * @gpusvm: Pointer to the GPU SVM > > > > + * @pages: Pointer to array of VRAM pages (destination) > > > > + * @dma_addr: Pointer to array of DMA addresses (source) > > > > + * @npages: Number of pages to copy > > > > + * > > > > + * This function shall copy pages to VRAM. > > > > + * > > > > + * Returns: > > > > + * 0 on success, a negative error code on failure. > > > > + */ > > > > + int (*copy_to_vram)(struct drm_gpusvm *gpusvm, > > > > + struct page **pages, > > > > + dma_addr_t *dma_addr, > > > > + unsigned long npages); > > > > + > > > > + /** > > > > + * @copy_to_sram: Copy to system RAM (required for migration) > > > > + * @gpusvm: Pointer to the GPU SVM > > > > + * @pages: Pointer to array of VRAM pages (source) > > > > + * @dma_addr: Pointer to array of DMA addresses (destination) > > > > + * @npages: Number of pages to copy > > > > + * > > > > + * This function shall copy pages to system RAM. > > > > + * > > > > + * Returns: > > > > + * 0 on success, a negative error code on failure. > > > > + */ > > > > + int (*copy_to_sram)(struct drm_gpusvm *gpusvm, > > > > + struct page **pages, > > > > + dma_addr_t *dma_addr, > > > > + unsigned long npages); > > > > + > > > > + /** > > > > + * @invalidate: Invalidate GPU SVM notifier (required) > > > > + * @gpusvm: Pointer to the GPU SVM > > > > + * @notifier: Pointer to the GPU SVM notifier > > > > + * @mmu_range: Pointer to the mmu_notifier_range structure > > > > + * > > > > + * This function shall invalidate the GPU page tables. It can safely > > > > + * walk the notifier range RB tree/list in this function. Called while > > > > + * holding the notifier lock. > > > > + */ > > > > + void (*invalidate)(struct drm_gpusvm *gpusvm, > > > > + struct drm_gpusvm_notifier *notifier, > > > > + const struct mmu_notifier_range *mmu_range); > > > > +}; > > > > + > > > > +/** > > > > + * struct drm_gpusvm_notifier - Structure representing a GPU SVM notifier > > > > + * > > > > + * @gpusvm: Pointer to the GPU SVM structure > > > > + * @notifier: MMU interval notifier > > > > + * @interval: Interval for the notifier > > > > + * @rb: Red-black tree node for the parent GPU SVM structure notifier tree > > > > + * @root: Cached root node of the RB tree containing ranges > > > > + * @range_list: List head containing of ranges in the same order they appear in > > > > + * interval tree. This is useful to keep iterating ranges while > > > > + * doing modifications to RB tree. > > > > + * @flags.removed: Flag indicating whether the MMU interval notifier has been > > > > + * removed > > > > + * > > > > + * This structure represents a GPU SVM notifier. > > > > + */ > > > > +struct drm_gpusvm_notifier { > > > > + struct drm_gpusvm *gpusvm; > > > > + struct mmu_interval_notifier notifier; > > > > + struct { > > > > + u64 start; > > > > + u64 end; > > > > + } interval; > > > > + struct { > > > > + struct rb_node node; > > > > + struct list_head entry; > > > > + u64 __subtree_last; > > > > + } rb; > > > > + struct rb_root_cached root; > > > > + struct list_head range_list; > > > > + struct { > > > > + u32 removed : 1; > > > > + } flags; > > > > +}; > > > > + > > > > +/** > > > > + * struct drm_gpusvm_range - Structure representing a GPU SVM range > > > > + * > > > > + * @gpusvm: Pointer to the GPU SVM structure > > > > + * @notifier: Pointer to the GPU SVM notifier > > > > + * @refcount: Reference count for the range > > > > + * @rb: Red-black tree node for the parent GPU SVM notifier structure range tree > > > > + * @va: Virtual address range > > > > + * @notifier_seq: Notifier sequence number of the range's pages > > > > + * @pages: Pointer to the array of pages (if backing store is in VRAM) > > > > + * @dma_addr: DMA address array (if backing store is SRAM and DMA mapped) > > > > + * @vram_allocation: Driver-private pointer to the VRAM allocation > > > > + * @order: Order of dma mapping. i.e. PAGE_SIZE << order is mapping size > > > > + * @flags.migrate_vram: Flag indicating whether the range can be migrated to VRAM > > > > + * @flags.unmapped: Flag indicating if the range has been unmapped > > > > + * @flags.partial_unmap: Flag indicating if the range has been partially unmapped > > > > + * @flags.has_vram_pages: Flag indicating if the range has vram pages > > > > + * @flags.has_dma_mapping: Flag indicating if the range has a DMA mapping > > > > + * @flags.kfree_mapping: Flag indicating @dma_addr is a compact allocation based > > > > + * on @order which releases via kfree > > > > + * > > > > + * This structure represents a GPU SVM range used for tracking memory ranges > > > > + * mapped in a DRM device. > > > > + */ > > > > +struct drm_gpusvm_range { > > > > + struct drm_gpusvm *gpusvm; > > > > + struct drm_gpusvm_notifier *notifier; > > > > + struct kref refcount; > > > > + struct { > > > > + struct rb_node node; > > > > + struct list_head entry; > > > > + u64 __subtree_last; > > > > + } rb; > > > > + struct { > > > > + u64 start; > > > > + u64 end; > > > > + } va; > > > > + unsigned long notifier_seq; > > > > + union { > > > > + struct page **pages; > > > > + dma_addr_t *dma_addr; > > > > + }; > > > > + void *vram_allocation; > > > > + u16 order; > > > > + struct { > > > > + /* All flags below must be set upon creation */ > > > > + u16 migrate_vram : 1; > > > > + /* All flags below must be set / cleared under notifier lock */ > > > > + u16 unmapped : 1; > > > > + u16 partial_unmap : 1; > > > > + u16 has_vram_pages : 1; > > > > + u16 has_dma_mapping : 1; > > > > + u16 kfree_mapping : 1; > > > > + } flags; > > > > +}; > > > > + > > > > +/** > > > > + * struct drm_gpusvm - GPU SVM structure > > > > + * > > > > + * @name: Name of the GPU SVM > > > > + * @drm: Pointer to the DRM device structure > > > > + * @mm: Pointer to the mm_struct for the address space > > > > + * @device_private_page_owner: Device private pages owner > > > > + * @mm_start: Start address of GPU SVM > > > > + * @mm_range: Range of the GPU SVM > > > > + * @notifier_size: Size of individual notifiers > > > > + * @ops: Pointer to the operations structure for GPU SVM > > > > + * @chunk_sizes: Pointer to the array of chunk sizes used in range allocation. > > > > + * Entries should be powers of 2 in descending order. > > > > + * @num_chunks: Number of chunks > > > > + * @notifier_lock: Read-write semaphore for protecting notifier operations > > > > + * @zdd_wq: Workqueue for deferred work on zdd destruction > > > > + * @root: Cached root node of the Red-Black tree containing GPU SVM notifiers > > > > + * @notifier_list: list head containing of notifiers in the same order they > > > > + * appear in interval tree. This is useful to keep iterating > > > > + * notifiers while doing modifications to RB tree. > > > > + * > > > > + * This structure represents a GPU SVM (Shared Virtual Memory) used for tracking > > > > + * memory ranges mapped in a DRM (Direct Rendering Manager) device. > > > > + * > > > > + * No reference counting is provided, as this is expected to be embedded in the > > > > + * driver VM structure along with the struct drm_gpuvm, which handles reference > > > > + * counting. > > > > + */ > > > > +struct drm_gpusvm { > > > > + const char *name; > > > > + struct drm_device *drm; > > > > + struct mm_struct *mm; > > > > + void *device_private_page_owner; > > > > + u64 mm_start; > > > > + u64 mm_range; > > > > + u64 notifier_size; > > > > + const struct drm_gpusvm_ops *ops; > > > > + const u64 *chunk_sizes; > > > > + int num_chunks; > > > > + struct rw_semaphore notifier_lock; > > > > + struct workqueue_struct *zdd_wq; > > > > + struct rb_root_cached root; > > > > + struct list_head notifier_list; > > > > +}; > > > > + > > > > +/** > > > > + * struct drm_gpusvm_ctx - DRM GPU SVM context > > > > + * > > > > + * @mmap_locked: mmap lock is locked > > > > + * @trylock_mmap: trylock mmap lock, used to avoid locking inversions > > > > + * (e.g.dma-revs -> mmap lock) > > > > + * @in_notifier: entering from a MMU notifier > > > > + * @read_only: operating on read-only memory > > > > + * @vram_possible: possible to use VRAM > > > > + * @prefault: prefault pages > > > > + * > > > > + * Context that is DRM GPUSVM is operating in (i.e. user arguments). > > > > + */ > > > > +struct drm_gpusvm_ctx { > > > > + u32 mmap_locked :1; > > > > + u32 trylock_mmap :1; > > > > + u32 in_notifier :1; > > > > + u32 read_only :1; > > > > + u32 vram_possible :1; > > > > + u32 prefault :1; > > > > +}; > > > > + > > > > +int drm_gpusvm_init(struct drm_gpusvm *gpusvm, > > > > + const char *name, struct drm_device *drm, > > > > + struct mm_struct *mm, void *device_private_page_owner, > > > > + u64 mm_start, u64 mm_range, u64 notifier_size, > > > > + const struct drm_gpusvm_ops *ops, > > > > + const u64 *chunk_sizes, int num_chunks); > > > > +void drm_gpusvm_fini(struct drm_gpusvm *gpusvm); > > > > +void drm_gpusvm_free(struct drm_gpusvm *gpusvm); > > > > + > > > > +struct drm_gpusvm_range * > > > > +drm_gpusvm_range_find_or_insert(struct drm_gpusvm *gpusvm, u64 fault_addr, > > > > + u64 gpuva_start, u64 gpuva_end, > > > > + const struct drm_gpusvm_ctx *ctx); > > > > +void drm_gpusvm_range_remove(struct drm_gpusvm *gpusvm, > > > > + struct drm_gpusvm_range *range); > > > > + > > > > +struct drm_gpusvm_range * > > > > +drm_gpusvm_range_get(struct drm_gpusvm_range *range); > > > > +void drm_gpusvm_range_put(struct drm_gpusvm_range *range); > > > > + > > > > +bool drm_gpusvm_range_pages_valid(struct drm_gpusvm *gpusvm, > > > > + struct drm_gpusvm_range *range); > > > > + > > > > +int drm_gpusvm_range_get_pages(struct drm_gpusvm *gpusvm, > > > > + struct drm_gpusvm_range *range, > > > > + const struct drm_gpusvm_ctx *ctx); > > > > +void drm_gpusvm_range_unmap_pages(struct drm_gpusvm *gpusvm, > > > > + struct drm_gpusvm_range *range, > > > > + const struct drm_gpusvm_ctx *ctx); > > > > + > > > > +int drm_gpusvm_migrate_to_vram(struct drm_gpusvm *gpusvm, > > > > + struct drm_gpusvm_range *range, > > > > + void *vram_allocation, > > > > + const struct drm_gpusvm_ctx *ctx); > > > > +int drm_gpusvm_migrate_to_sram(struct drm_gpusvm *gpusvm, > > > > + struct drm_gpusvm_range *range, > > > > + const struct drm_gpusvm_ctx *ctx); > > > > + > > > > +const struct dev_pagemap_ops *drm_gpusvm_pagemap_ops_get(void); > > > > + > > > > +bool drm_gpusvm_has_mapping(struct drm_gpusvm *gpusvm, u64 start, u64 end); > > > > + > > > > +struct drm_gpusvm_range * > > > > +drm_gpusvm_range_find(struct drm_gpusvm_notifier *notifier, u64 start, u64 end); > > > > + > > > > +/** > > > > + * drm_gpusvm_notifier_lock - Lock GPU SVM notifier > > > > + * @gpusvm__: Pointer to the GPU SVM structure. > > > > + * > > > > + * Abstract client usage GPU SVM notifier lock, take lock > > > > + */ > > > > +#define drm_gpusvm_notifier_lock(gpusvm__) \ > > > > + down_read(&(gpusvm__)->notifier_lock) > > > > + > > > > +/** > > > > + * drm_gpusvm_notifier_unlock - Unlock GPU SVM notifier > > > > + * @gpusvm__: Pointer to the GPU SVM structure. > > > > + * > > > > + * Abstract client usage GPU SVM notifier lock, drop lock > > > > + */ > > > > +#define drm_gpusvm_notifier_unlock(gpusvm__) \ > > > > + up_read(&(gpusvm__)->notifier_lock) > > > > + > > > > +/** > > > > + * __drm_gpusvm_range_next - Get the next GPU SVM range in the list > > > > + * @range: a pointer to the current GPU SVM range > > > > + * > > > > + * Return: A pointer to the next drm_gpusvm_range if available, or NULL if the > > > > + * current range is the last one or if the input range is NULL. > > > > + */ > > > > +static inline struct drm_gpusvm_range * > > > > +__drm_gpusvm_range_next(struct drm_gpusvm_range *range) > > > > +{ > > > > + if (range && !list_is_last(&range->rb.entry, > > > > + &range->notifier->range_list)) > > > > + return list_next_entry(range, rb.entry); > > > > + > > > > + return NULL; > > > > +} > > > > + > > > > +/** > > > > + * drm_gpusvm_for_each_range - Iterate over GPU SVM ranges in a notifier > > > > + * @range__: Iterator variable for the ranges. If set, it indicates the start of > > > > + * the iterator. If NULL, call drm_gpusvm_range_find() to get the range. > > > > + * @notifier__: Pointer to the GPU SVM notifier > > > > + * @start__: Start address of the range > > > > + * @end__: End address of the range > > > > + * > > > > + * This macro is used to iterate over GPU SVM ranges in a notifier. It is safe > > > > + * to use while holding the driver SVM lock or the notifier lock. > > > > + */ > > > > +#define drm_gpusvm_for_each_range(range__, notifier__, start__, end__) \ > > > > + for ((range__) = (range__) ?: \ > > > > + drm_gpusvm_range_find((notifier__), (start__), (end__)); \ > > > > + (range__) && (range__->va.start < (end__)); \ > > > > + (range__) = __drm_gpusvm_range_next(range__)) > > > > + > > > > +/** > > > > + * drm_gpusvm_range_set_unmapped - Mark a GPU SVM range as unmapped > > > > + * @range: Pointer to the GPU SVM range structure. > > > > + * @mmu_range: Pointer to the MMU notifier range structure. > > > > + * > > > > + * This function marks a GPU SVM range as unmapped and sets the partial_unmap flag > > > > + * if the range partially falls within the provided MMU notifier range. > > > > + */ > > > > +static inline void > > > > +drm_gpusvm_range_set_unmapped(struct drm_gpusvm_range *range, > > > > + const struct mmu_notifier_range *mmu_range) > > > > +{ > > > > + lockdep_assert_held_write(&range->gpusvm->notifier_lock); > > > > + > > > > + range->flags.unmapped = true; > > > > + if (range->va.start < mmu_range->start || > > > > + range->va.end > mmu_range->end) > > > > + range->flags.partial_unmap = true; > > > > +} > > > > + > > > > +#endif /* __DRM_GPUSVM_H__ */ > > > > -- > > > > 2.34.1 > > > > > >