On 2023-08-10 12:02, Melissa Wen wrote: > From: Harry Wentland <harry.wentland@xxxxxxx> > > The region and segment calculation was incapable of dealing > with regions of more than 16 segments. We first fix this. > > Now that we can support regions up to 256 elements we can > define a better segment distribution for near-linear LUTs > for our maximum of 256 HW-supported points. > > With these changes an "identity" LUT looks visually > indistinguishable from bypass and allows us to use > our 3DLUT. > Have you had a chance to test whether this patch makes a difference? I haven't had the time yet. Harry > Signed-off-by: Harry Wentland <harry.wentland@xxxxxxx> > Signed-off-by: Melissa Wen <mwen@xxxxxxxxxx> > --- > .../amd/display/dc/dcn10/dcn10_cm_common.c | 93 +++++++++++++++---- > 1 file changed, 75 insertions(+), 18 deletions(-) > > diff --git a/drivers/gpu/drm/amd/display/dc/dcn10/dcn10_cm_common.c b/drivers/gpu/drm/amd/display/dc/dcn10/dcn10_cm_common.c > index 3538973bd0c6..04b2e04b68f3 100644 > --- a/drivers/gpu/drm/amd/display/dc/dcn10/dcn10_cm_common.c > +++ b/drivers/gpu/drm/amd/display/dc/dcn10/dcn10_cm_common.c > @@ -349,20 +349,37 @@ bool cm_helper_translate_curve_to_hw_format(struct dc_context *ctx, > * segment is from 2^-10 to 2^1 > * There are less than 256 points, for optimization > */ > - seg_distr[0] = 3; > - seg_distr[1] = 4; > - seg_distr[2] = 4; > - seg_distr[3] = 4; > - seg_distr[4] = 4; > - seg_distr[5] = 4; > - seg_distr[6] = 4; > - seg_distr[7] = 4; > - seg_distr[8] = 4; > - seg_distr[9] = 4; > - seg_distr[10] = 1; > + if (output_tf->tf == TRANSFER_FUNCTION_LINEAR) { > + seg_distr[0] = 0; /* 2 */ > + seg_distr[1] = 1; /* 4 */ > + seg_distr[2] = 2; /* 4 */ > + seg_distr[3] = 3; /* 8 */ > + seg_distr[4] = 4; /* 16 */ > + seg_distr[5] = 5; /* 32 */ > + seg_distr[6] = 6; /* 64 */ > + seg_distr[7] = 7; /* 128 */ > + > + region_start = -8; > + region_end = 1; > + } else { > + seg_distr[0] = 3; /* 8 */ > + seg_distr[1] = 4; /* 16 */ > + seg_distr[2] = 4; > + seg_distr[3] = 4; > + seg_distr[4] = 4; > + seg_distr[5] = 4; > + seg_distr[6] = 4; > + seg_distr[7] = 4; > + seg_distr[8] = 4; > + seg_distr[9] = 4; > + seg_distr[10] = 1; /* 2 */ > + /* total = 8*16 + 8 + 64 + 2 = */ > + > + region_start = -10; > + region_end = 1; > + } > + > > - region_start = -10; > - region_end = 1; > } > > for (i = region_end - region_start; i < MAX_REGIONS_NUMBER ; i++) > @@ -375,16 +392,56 @@ bool cm_helper_translate_curve_to_hw_format(struct dc_context *ctx, > > j = 0; > for (k = 0; k < (region_end - region_start); k++) { > - increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]); > + /* > + * We're using an ugly-ish hack here. Our HW allows for > + * 256 segments per region but SW_SEGMENTS is 16. > + * SW_SEGMENTS has some undocumented relationship to > + * the number of points in the tf_pts struct, which > + * is 512, unlike what's suggested TRANSFER_FUNC_POINTS. > + * > + * In order to work past this dilemma we'll scale our > + * increment by (1 << 4) and then do the inverse (1 >> 4) > + * when accessing the elements in tf_pts. > + * > + * TODO: find a better way using SW_SEGMENTS and > + * TRANSFER_FUNC_POINTS definitions > + */ > + increment = (NUMBER_SW_SEGMENTS << 4) / (1 << seg_distr[k]); > start_index = (region_start + k + MAX_LOW_POINT) * > NUMBER_SW_SEGMENTS; > - for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS; > + for (i = (start_index << 4); i < (start_index << 4) + (NUMBER_SW_SEGMENTS << 4); > i += increment) { > + struct fixed31_32 in_plus_one, in; > + struct fixed31_32 value, red_value, green_value, blue_value; > + uint32_t t = i & 0xf; > + > if (j == hw_points - 1) > break; > - rgb_resulted[j].red = output_tf->tf_pts.red[i]; > - rgb_resulted[j].green = output_tf->tf_pts.green[i]; > - rgb_resulted[j].blue = output_tf->tf_pts.blue[i]; > + > + in_plus_one = output_tf->tf_pts.red[(i >> 4) + 1]; > + in = output_tf->tf_pts.red[i >> 4]; > + value = dc_fixpt_sub(in_plus_one, in); > + value = dc_fixpt_shr(dc_fixpt_mul_int(value, t), 4); > + value = dc_fixpt_add(in, value); > + red_value = value; > + > + in_plus_one = output_tf->tf_pts.green[(i >> 4) + 1]; > + in = output_tf->tf_pts.green[i >> 4]; > + value = dc_fixpt_sub(in_plus_one, in); > + value = dc_fixpt_shr(dc_fixpt_mul_int(value, t), 4); > + value = dc_fixpt_add(in, value); > + green_value = value; > + > + in_plus_one = output_tf->tf_pts.blue[(i >> 4) + 1]; > + in = output_tf->tf_pts.blue[i >> 4]; > + value = dc_fixpt_sub(in_plus_one, in); > + value = dc_fixpt_shr(dc_fixpt_mul_int(value, t), 4); > + value = dc_fixpt_add(in, value); > + blue_value = value; > + > + rgb_resulted[j].red = red_value; > + rgb_resulted[j].green = green_value; > + rgb_resulted[j].blue = blue_value; > j++; > } > }