[PATCH v2 RESEND 4/7] swiotlb: Dynamically allocated bounce buffers

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



From: Petr Tesarik <petr.tesarik.ext@xxxxxxxxxx>

The software IO TLB was designed with the assumption that it is not
used much, especially on 64-bit systems, so a small fixed memory
area (currently 64 MiB) is sufficient to handle the few cases which
still require a bounce buffer. However, these cases are not so rare
in some circumstances.

First, if SEV is active, all DMA must be done through shared
unencrypted pages, and SWIOTLB is used to make this happen without
changing device drivers. The software IO TLB size is increased to 6%
of total memory in sev_setup_arch(), but that is more of an
approximation. The actual requirements may vary depending on which
drivers are used and the amount of I/O.

Second, some embedded devices have very little RAM, so 64 MiB is not
negligible. Sadly, these are exactly the devices that also often
need a software IO TLB. Although minimum swiotlb size can be found
empirically by extensive testing, it would be easier to allocate a
small swiotlb at boot and let it grow on demand.

Growing the SWIOTLB data structures at run time is impossible. The
whole SWIOTLB region is contiguous in physical memory to allow
combining adjacent slots and also to ensure that alignment
constraints can be met. The SWIOTLB is too big for the buddy
allocator (cf. MAX_ORDER). More importantly, even if a new SWIOTLB
could be allocated (e.g. from CMA), it cannot be extended in-place
(because surrounding pages may be already allocated for other
purposes), and there is no mechanism for relocating already mapped
bounce buffers: The DMA API gets only the address of a buffer, and
the implementation (direct or IOMMU) checks whether it belongs to
the software IO TLB.

It is possible to allocate multiple smaller struct io_tlb_mem
instances. However, they would have to be stored in a non-constant
container (list or tree), which needs synchronization between
readers and writers, creating contention in a hot path for all
devices, not only those which need software IO TLB.

Another option is to allocate a very large SWIOTLB at boot, but
allow migrating pages to other users (like CMA does). This approach
might work, but there are many open issues:

1. After a page is migrated away from SWIOTLB, it must not be used
   as a (direct) DMA buffer. Otherwise SWIOTLB code would have to
   check which pages have been migrated to determine whether a given
   buffer address belongs to a bounce buffer or not, effectively
   introducing all the issues of multiple SWIOTLB instances.

2. Unlike SWIOTLB, CMA cannot be used from atomic contexts, and that
   for many different reasons. This might be changed in theory, but
   it would take a lot of investigation and time. OTOH improvement
   to the SWIOTLB is needed now.

3. If SWIOTLB is implemented separately from CMA and not as its
   part, users have to solve the dilemma of how to distribute
   precious DMA-able memory between them.

The present patch is a simplistic solution. Bounce buffers are
allocated using the non-coherent DMA API, removing the need to
implement a new custom allocator. These buffers are then tracked in
a per-device linked list, reducing the impact on devices that do not
need the SWIOTLB.

Analysis of real-world I/O patterns has shown that the same buffer
is typically looked up repeatedly (for further sync operations, or
to be unmapped). The most recently used bounce buffer is therefore
always moved to the beginning of the list. The list performed better
than a maple tree when tested with fio against a QEMU SATA drive
backed by a RAM block device in the host (4 cores, 16 iodepth).
Other scenarios are also likely to benefit from this MRU order but
have not been tested.

Operations on the list are serialized with a spinlock. It is
unfortunately not possible to use an RCU list, because quiescent
state is not guaranteed to happen before an asynchronous event (e.g.
hardware interrupt) on another CPU. If that CPU used an old version
of the list, it would fail to copy data to and/or from the newly
allocated bounce buffer.

Last but not least, bounce buffers are never allocated dynamically
if the SWIOTLB is in fact a DMA restricted pool, because that would
defeat the purpose of a restricted pool.

Signed-off-by: Petr Tesarik <petr.tesarik.ext@xxxxxxxxxx>
---
 include/linux/device.h  |   8 ++
 include/linux/swiotlb.h |   8 +-
 kernel/dma/swiotlb.c    | 252 ++++++++++++++++++++++++++++++++++++++--
 3 files changed, 259 insertions(+), 9 deletions(-)

diff --git a/include/linux/device.h b/include/linux/device.h
index 472dd24d4823..d1d2b8557b30 100644
--- a/include/linux/device.h
+++ b/include/linux/device.h
@@ -510,6 +510,12 @@ struct device_physical_location {
  * @dma_mem:	Internal for coherent mem override.
  * @cma_area:	Contiguous memory area for dma allocations
  * @dma_io_tlb_mem: Pointer to the swiotlb pool used.  Not for driver use.
+ * @dma_io_tlb_dyn_lock:
+ *		Spinlock to protect the list of dynamically allocated bounce
+ *		buffers.
+ * @dma_io_tlb_dyn_slots:
+ *		Dynamically allocated bounce buffers for this device.
+ *		Not for driver use.
  * @archdata:	For arch-specific additions.
  * @of_node:	Associated device tree node.
  * @fwnode:	Associated device node supplied by platform firmware.
@@ -615,6 +621,8 @@ struct device {
 #endif
 #ifdef CONFIG_SWIOTLB
 	struct io_tlb_mem *dma_io_tlb_mem;
+	spinlock_t dma_io_tlb_dyn_lock;
+	struct list_head dma_io_tlb_dyn_slots;
 #endif
 	/* arch specific additions */
 	struct dev_archdata	archdata;
diff --git a/include/linux/swiotlb.h b/include/linux/swiotlb.h
index 281ecc6b9bcc..6aada6ac31e2 100644
--- a/include/linux/swiotlb.h
+++ b/include/linux/swiotlb.h
@@ -114,6 +114,8 @@ struct io_tlb_mem {
 };
 extern struct io_tlb_mem io_tlb_default_mem;
 
+bool is_swiotlb_dyn(struct device *dev, phys_addr_t paddr);
+
 /**
  * is_swiotlb_fixed() - check if a physical address belongs to a swiotlb slot
  * @mem:	relevant swiotlb pool
@@ -147,7 +149,9 @@ static inline bool is_swiotlb_buffer(struct device *dev, phys_addr_t paddr)
 {
 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
 
-	return mem && is_swiotlb_fixed(mem, paddr);
+	return mem &&
+		(is_swiotlb_fixed(mem, paddr) ||
+		 is_swiotlb_dyn(dev, paddr));
 }
 
 static inline bool is_swiotlb_force_bounce(struct device *dev)
@@ -164,6 +168,8 @@ static inline bool is_swiotlb_force_bounce(struct device *dev)
 static inline void swiotlb_dev_init(struct device *dev)
 {
 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
+	spin_lock_init(&dev->dma_io_tlb_dyn_lock);
+	INIT_LIST_HEAD(&dev->dma_io_tlb_dyn_slots);
 }
 
 void swiotlb_init(bool addressing_limited, unsigned int flags);
diff --git a/kernel/dma/swiotlb.c b/kernel/dma/swiotlb.c
index 96ba93be6772..612e1c2e9573 100644
--- a/kernel/dma/swiotlb.c
+++ b/kernel/dma/swiotlb.c
@@ -68,6 +68,22 @@ struct io_tlb_slot {
 	unsigned int list;
 };
 
+/**
+ * struct io_tlb_dyn_slot - dynamically allocated swiotlb slot
+ * @node:	node in the per-device list
+ * @orig_addr:	physical address of the original DMA buffer
+ * @alloc_size:	total size of the DMA buffer
+ * @page:	first page of the bounce buffer
+ * @dma_addr:	DMA address of the bounce buffer
+ */
+struct io_tlb_dyn_slot {
+	struct list_head node;
+	phys_addr_t orig_addr;
+	size_t alloc_size;
+	struct page *page;
+	dma_addr_t dma_addr;
+};
+
 static bool swiotlb_force_bounce;
 static bool swiotlb_force_disable;
 
@@ -466,6 +482,191 @@ void __init swiotlb_exit(void)
 	memset(mem, 0, sizeof(*mem));
 }
 
+/**
+ * lookup_dyn_slot_locked() - look up a dynamically allocated bounce buffer
+ * @dev:	device which has mapped the buffer
+ * @paddr:	physical address within the bounce buffer
+ *
+ * Walk through the list of bounce buffers dynamically allocated for @dev,
+ * looking for a buffer which contains @paddr.
+ *
+ * Context: Any context. Expects dma_io_tlb_dyn_lock lock to be held.
+ * Return:
+ *   Address of a &struct io_tlb_dyn_slot, or %NULL if not found.
+ */
+static struct io_tlb_dyn_slot *lookup_dyn_slot_locked(struct device *dev,
+						      phys_addr_t paddr)
+{
+	struct io_tlb_dyn_slot *slot;
+
+	list_for_each_entry(slot, &dev->dma_io_tlb_dyn_slots, node) {
+		phys_addr_t start = page_to_phys(slot->page);
+		phys_addr_t end = start + slot->alloc_size - 1;
+
+		if (start <= paddr && paddr <= end)
+			return slot;
+	}
+	return NULL;
+}
+
+/**
+ * lookup_dyn_slot() - look up a dynamically allocated bounce buffer
+ * @dev:	device which has mapped the buffer
+ * @paddr:	physical address within the bounce buffer
+ *
+ * Search for a dynamically allocated bounce buffer which contains
+ * @paddr. If found, the buffer is moved to the beginning of the linked
+ * list. Use lookup_dyn_slot_locked() directly where this behavior is not
+ * required/desired.
+ *
+ * Context: Any context. Takes and releases dma_io_tlb_dyn_lock.
+ * Return:
+ *   Address of a &struct io_tlb_dyn_slot, or %NULL if not found.
+ */
+static struct io_tlb_dyn_slot *lookup_dyn_slot(struct device *dev,
+					       phys_addr_t paddr)
+{
+	struct io_tlb_dyn_slot *slot;
+	unsigned long flags;
+
+	spin_lock_irqsave(&dev->dma_io_tlb_dyn_lock, flags);
+	slot = lookup_dyn_slot_locked(dev, paddr);
+	list_move(&slot->node, &dev->dma_io_tlb_dyn_slots);
+	spin_unlock_irqrestore(&dev->dma_io_tlb_dyn_lock, flags);
+	return slot;
+}
+
+/**
+ * is_swiotlb_dyn() - check if a physical address belongs to a dynamically
+ *                    allocated bounce buffer
+ * @dev:	device which has mapped the buffer
+ * @paddr:	physical address within the bounce buffer
+ *
+ * Check whether there is a dynamically allocated bounce buffer which
+ * contains @paddr. If found, the buffer is moved to the beginning of
+ * the MRU list.
+ *
+ * Return:
+ * * %true if @paddr points into a dynamically allocated bounce buffer
+ * * %false otherwise
+ */
+bool is_swiotlb_dyn(struct device *dev, phys_addr_t paddr)
+{
+	return !!lookup_dyn_slot(dev, paddr);
+}
+
+/**
+ * swiotlb_dyn_bounce() - copy a dynamically allocated buffer from or back
+ *                        to the original dma location
+ * @dev:	device which has mapped the buffer
+ * @tlb_addr:	physical address inside the bounce buffer
+ * @size:	size of the region to be copied
+ * @dir:	direction of the data transfer
+ *
+ * Copy data to or from a buffer of @size bytes starting at @tlb_addr.
+ * This function works only for dynamically allocated bounce buffers.
+ */
+static void swiotlb_dyn_bounce(struct device *dev, phys_addr_t tlb_addr,
+		size_t size, enum dma_data_direction dir)
+{
+	struct io_tlb_dyn_slot *slot = lookup_dyn_slot(dev, tlb_addr);
+	unsigned int tlb_offset;
+	unsigned char *vaddr;
+
+	if (!slot)
+		return;
+
+	tlb_offset = tlb_addr - page_to_phys(slot->page);
+	vaddr = page_address(slot->page) + tlb_offset;
+
+	swiotlb_copy(dev, slot->orig_addr, vaddr, size, slot->alloc_size,
+		     tlb_offset, dir);
+}
+
+/**
+ * swiotlb_dyn_map() - allocate a bounce buffer dynamically
+ * @dev:	device which maps the buffer
+ * @orig_addr:	address of the original buffer
+ * @alloc_size:	total size of the original buffer
+ * @alloc_align_mask:
+ *		required physical alignment of the I/O buffer
+ * @dir:	direction of the data transfer
+ * @attrs:	optional DMA attributes for the map operation
+ *
+ * Allocate a new bounce buffer using DMA non-coherent API. This function
+ * assumes that there is a fallback allocation scheme if the allocation
+ * fails. In fact, it always fails for buffers smaller than a page and
+ * for address constraints that are not (yet) correctly handled by
+ * dma_direct_alloc_pages().
+ *
+ * Return: Physical address of the bounce buffer, or %DMA_MAPPING_ERROR.
+ */
+static phys_addr_t swiotlb_dyn_map(struct device *dev, phys_addr_t orig_addr,
+		size_t alloc_size, unsigned int alloc_align_mask,
+		enum dma_data_direction dir, unsigned long attrs)
+{
+	struct io_tlb_dyn_slot *slot;
+	unsigned long flags;
+	gfp_t gfp;
+
+	/* Allocation has page granularity. Avoid small buffers. */
+	if (alloc_size < PAGE_SIZE)
+		goto err;
+
+	/* DMA direct does not deal with physical address constraints. */
+	if (alloc_align_mask || dma_get_min_align_mask(dev))
+		goto err;
+
+	gfp = (attrs & DMA_ATTR_MAY_SLEEP) ? GFP_NOIO : GFP_NOWAIT;
+	slot = kmalloc(sizeof(*slot), gfp | __GFP_NOWARN);
+	if (!slot)
+		goto err;
+
+	slot->orig_addr = orig_addr;
+	slot->alloc_size = alloc_size;
+	slot->page = dma_direct_alloc_pages(dev, PAGE_ALIGN(alloc_size),
+					    &slot->dma_addr, dir,
+					    gfp | __GFP_NOWARN);
+	if (!slot->page)
+		goto err_free_slot;
+
+	spin_lock_irqsave(&dev->dma_io_tlb_dyn_lock, flags);
+	list_add(&slot->node, &dev->dma_io_tlb_dyn_slots);
+	spin_unlock_irqrestore(&dev->dma_io_tlb_dyn_lock, flags);
+
+	return page_to_phys(slot->page);
+
+err_free_slot:
+	kfree(slot);
+err:
+	return (phys_addr_t)DMA_MAPPING_ERROR;
+}
+
+/**
+ * swiotlb_dyn_unmap() - unmap a dynamically allocated bounce buffer
+ * @dev:	device which mapped the buffer
+ * @tlb_addr:	physical address of the bounce buffer
+ * @dir:	direction of the data transfer
+ *
+ * Release all resources associated with a dynamically allocated bounce
+ * buffer.
+ */
+static void swiotlb_dyn_unmap(struct device *dev, phys_addr_t tlb_addr,
+			      enum dma_data_direction dir)
+{
+	struct io_tlb_dyn_slot *slot;
+	unsigned long flags;
+
+	spin_lock_irqsave(&dev->dma_io_tlb_dyn_lock, flags);
+	slot = lookup_dyn_slot_locked(dev, tlb_addr);
+	list_del(&slot->node);
+	spin_unlock_irqrestore(&dev->dma_io_tlb_dyn_lock, flags);
+
+	dma_direct_free_pages(dev, slot->alloc_size, slot->page,
+			      slot->dma_addr, dir);
+	kfree(slot);
+}
+
 /*
  * Return the offset into a iotlb slot required to keep the device happy.
  */
@@ -474,11 +675,19 @@ static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
 	return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
 }
 
-/*
- * Bounce: copy the swiotlb buffer from or back to the original dma location
+/**
+ * swiotlb_fixed_bounce() - copy a fixed-slot swiotlb buffer from or back
+ *                          to the original dma location
+ * @dev:	device which has mapped the buffer
+ * @tlb_addr:	physical address inside the bounce buffer
+ * @size:	size of the region to be copied
+ * @dir:	direction of the data transfer
+ *
+ * Copy data to or from a buffer of @size bytes starting at @tlb_addr.
+ * This function works only for fixed bounce buffers.
  */
-static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
-			   enum dma_data_direction dir)
+static void swiotlb_fixed_bounce(struct device *dev, phys_addr_t tlb_addr,
+				 size_t size, enum dma_data_direction dir)
 {
 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
 	int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
@@ -574,6 +783,25 @@ static void swiotlb_copy(struct device *dev, phys_addr_t orig_addr,
 	}
 }
 
+/**
+ * swiotlb_bounce() - copy the swiotlb buffer from or back to the original
+ * dma location
+ * @dev:	device which has mapped the buffer
+ * @tlb_addr:	physical address inside the bounce buffer
+ * @size:	size of the region to be copied
+ * @dir:	direction of the data transfer
+ *
+ * Copy data to or from a buffer of @size bytes starting at @tlb_addr.
+ */
+static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
+			   enum dma_data_direction dir)
+{
+	if (is_swiotlb_fixed(dev->dma_io_tlb_mem, tlb_addr))
+		swiotlb_fixed_bounce(dev, tlb_addr, size, dir);
+	else
+		swiotlb_dyn_bounce(dev, tlb_addr, size, dir);
+}
+
 static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx)
 {
 	return start + (idx << IO_TLB_SHIFT);
@@ -834,8 +1062,13 @@ phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
 		return (phys_addr_t)DMA_MAPPING_ERROR;
 	}
 
-	tlb_addr = swiotlb_fixed_map(dev, orig_addr, alloc_size,
-				     alloc_align_mask, attrs);
+	tlb_addr = (phys_addr_t)DMA_MAPPING_ERROR;
+	if (!is_swiotlb_for_alloc(dev))
+		tlb_addr = swiotlb_dyn_map(dev, orig_addr, alloc_size,
+					   alloc_align_mask, dir, attrs);
+	if (tlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
+		tlb_addr = swiotlb_fixed_map(dev, orig_addr, alloc_size,
+					     alloc_align_mask, attrs);
 
 	if (tlb_addr == (phys_addr_t)DMA_MAPPING_ERROR) {
 		if (!(attrs & DMA_ATTR_NO_WARN))
@@ -919,7 +1152,10 @@ void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
 	    (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
 		swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
 
-	swiotlb_release_slots(dev, tlb_addr);
+	if (is_swiotlb_fixed(dev->dma_io_tlb_mem, tlb_addr))
+		swiotlb_release_slots(dev, tlb_addr);
+	else
+		swiotlb_dyn_unmap(dev, tlb_addr, dir);
 }
 
 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
@@ -1089,7 +1325,7 @@ bool swiotlb_free(struct device *dev, struct page *page, size_t size)
 {
 	phys_addr_t tlb_addr = page_to_phys(page);
 
-	if (!is_swiotlb_buffer(dev, tlb_addr))
+	if (!is_swiotlb_fixed(dev->dma_io_tlb_mem, tlb_addr))
 		return false;
 
 	swiotlb_release_slots(dev, tlb_addr);
-- 
2.25.1




[Index of Archives]     [Linux DRI Users]     [Linux Intel Graphics]     [Linux USB Devel]     [Video for Linux]     [Linux Audio Users]     [Yosemite News]     [Linux Kernel]     [Linux SCSI]     [XFree86]     [Linux USB Devel]     [Video for Linux]     [Linux Audio Users]     [Linux Kernel]     [Linux SCSI]     [XFree86]
  Powered by Linux