On Mon, Jun 21, 2021 at 10:09:48PM -0500, Bjorn Andersson wrote: > The SN65DSI86 provides the ability to supply a PWM signal on GPIO 4, > with the primary purpose of controlling the backlight of the attached > panel. Add an implementation that exposes this using the standard PWM > framework, to allow e.g. pwm-backlight to expose this to the user. > > Signed-off-by: Bjorn Andersson <bjorn.andersson@xxxxxxxxxx> > --- > > Changes since v2: > - Corrected calculation of scale, to include a 1 instead of 1/NSEC_TO_SEC and > rounded the period up in get_state, to make sure its idempotent > - Changed duty_cycle calculation to make sure it idempotent over my tested period > - Documented "Limitations" > - Documented muxing operation after pm_runtime_get_sync() > > drivers/gpu/drm/bridge/ti-sn65dsi86.c | 335 +++++++++++++++++++++++++- > 1 file changed, 334 insertions(+), 1 deletion(-) > > diff --git a/drivers/gpu/drm/bridge/ti-sn65dsi86.c b/drivers/gpu/drm/bridge/ti-sn65dsi86.c > index 5d712c8c3c3b..0eabbdad1830 100644 > --- a/drivers/gpu/drm/bridge/ti-sn65dsi86.c > +++ b/drivers/gpu/drm/bridge/ti-sn65dsi86.c > @@ -4,6 +4,7 @@ > * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf > */ > > +#include <linux/atomic.h> > #include <linux/auxiliary_bus.h> > #include <linux/bits.h> > #include <linux/clk.h> > @@ -15,6 +16,7 @@ > #include <linux/module.h> > #include <linux/of_graph.h> > #include <linux/pm_runtime.h> > +#include <linux/pwm.h> > #include <linux/regmap.h> > #include <linux/regulator/consumer.h> > > @@ -91,6 +93,13 @@ > #define SN_ML_TX_MODE_REG 0x96 > #define ML_TX_MAIN_LINK_OFF 0 > #define ML_TX_NORMAL_MODE BIT(0) > +#define SN_PWM_PRE_DIV_REG 0xA0 > +#define SN_BACKLIGHT_SCALE_REG 0xA1 > +#define BACKLIGHT_SCALE_MAX 0xFFFF > +#define SN_BACKLIGHT_REG 0xA3 > +#define SN_PWM_EN_INV_REG 0xA5 > +#define SN_PWM_INV_MASK BIT(0) > +#define SN_PWM_EN_MASK BIT(1) > #define SN_AUX_CMD_STATUS_REG 0xF4 > #define AUX_IRQ_STATUS_AUX_RPLY_TOUT BIT(3) > #define AUX_IRQ_STATUS_AUX_SHORT BIT(5) > @@ -113,11 +122,14 @@ > > #define SN_LINK_TRAINING_TRIES 10 > > +#define SN_PWM_GPIO_IDX 3 /* 4th GPIO */ > + > /** > * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver. > * @bridge_aux: AUX-bus sub device for MIPI-to-eDP bridge functionality. > * @gpio_aux: AUX-bus sub device for GPIO controller functionality. > * @aux_aux: AUX-bus sub device for eDP AUX channel functionality. > + * @pwm_aux: AUX-bus sub device for PWM controller functionality. > * > * @dev: Pointer to the top level (i2c) device. > * @regmap: Regmap for accessing i2c. > @@ -145,11 +157,17 @@ > * bitmap so we can do atomic ops on it without an extra > * lock so concurrent users of our 4 GPIOs don't stomp on > * each other's read-modify-write. > + * > + * @pchip: pwm_chip if the PWM is exposed. > + * @pwm_enabled: Used to track if the PWM signal is currently enabled. > + * @pwm_refclk_freq: Cache for the reference clock input to the PWM. > + * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM. > */ > struct ti_sn65dsi86 { > struct auxiliary_device bridge_aux; > struct auxiliary_device gpio_aux; > struct auxiliary_device aux_aux; > + struct auxiliary_device pwm_aux; > > struct device *dev; > struct regmap *regmap; > @@ -172,6 +190,12 @@ struct ti_sn65dsi86 { > struct gpio_chip gchip; > DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS); > #endif > +#if defined(CONFIG_PWM) > + struct pwm_chip pchip; > + bool pwm_enabled; > + unsigned int pwm_refclk_freq; > + atomic_t pwm_pin_busy; > +#endif > }; > > static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = { > @@ -190,6 +214,25 @@ static const struct regmap_config ti_sn65dsi86_regmap_config = { > .cache_type = REGCACHE_NONE, > }; > > +static int ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata, > + unsigned int reg, u16 *val) > +{ > + unsigned int tmp; > + int ret; > + > + ret = regmap_read(pdata->regmap, reg, &tmp); > + if (ret) > + return ret; > + *val = tmp; > + > + ret = regmap_read(pdata->regmap, reg + 1, &tmp); > + if (ret) > + return ret; > + *val |= tmp << 8; > + > + return 0; > +} > + > static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata, > unsigned int reg, u16 val) > { > @@ -253,6 +296,14 @@ static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata) > > regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK, > REFCLK_FREQ(i)); > + > +#if defined(CONFIG_PWM) > + /* > + * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG, > + * regardless of its actual sourcing. > + */ > + pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i]; > +#endif > } > > static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata) > @@ -1044,6 +1095,258 @@ static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata) > return 0; > } > > +#if defined(CONFIG_PWM) > +static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) > +{ > + return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0; > +} > + > +static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) > +{ > + atomic_set(&pdata->pwm_pin_busy, 0); > +} > + > +static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip) > +{ > + return container_of(chip, struct ti_sn65dsi86, pchip); > +} > + > +static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) > +{ > + struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); > + > + return ti_sn_pwm_pin_request(pdata); > +} > + > +static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm) > +{ > + struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); > + > + ti_sn_pwm_pin_release(pdata); > +} > + > +/* > + * Limitations: > + * - The PWM signal is not driven when the chip is powered down, or in its > + * reset state and the driver does not implement the "suspend state" > + * described in the documentation. In order to save power, state->enabled is > + * interpreted as denoting if the signal is expected to be valid, and is used to keep > + * the determine if the chip needs to be kept powered. > + * - Changing both period and duty_cycle is not done atomically, so the output > + * might briefly be a mix of the two settings. > + */ > +static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, > + const struct pwm_state *state) > +{ > + struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); > + unsigned int pwm_en_inv; > + unsigned int backlight; > + unsigned int pre_div; > + unsigned int scale; > + u64 tick; > + int ret; > + > + if (!pdata->pwm_enabled) { > + ret = pm_runtime_get_sync(pdata->dev); > + if (ret < 0) > + return ret; > + > + /* > + * The chip might have been powered down while we didn't hold a > + * PM runtime reference, so mux in the PWM function on the GPIO > + * pin again. > + */ > + ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG, > + SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX), > + SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX)); > + if (ret) { > + dev_err(pdata->dev, "failed to mux in PWM function\n"); > + goto out; > + } In reply to your v2 I requested to short-cut the case !pdata->pwm_enabled && !state->enabled without enabling stuff. > + } > + > + if (state->enabled) { > + /* > + * Per the datasheet the PWM frequency is given by: > + * > + * PWM_FREQ = REFCLK_FREQ / (PWM_PRE_DIV * BACKLIGHT_SCALE + 1) > + * > + * which can be rewritten: > + * > + * T_pwm * REFCLK_FREQ - 1 = PWM_PRE_DIV * BACKLIGHT_SCALE > + * > + * In order to keep BACKLIGHT_SCALE within its 16 bits, > + * PWM_PRE_DIV must be: > + * > + * PWM_PRE_DIV >= (T_pwm * REFCLK_FREQ - 1) / BACKLIGHT_SCALE_MAX; > + * > + * To simplify the search and optimize the resolution of the > + * PWM, the lowest possible PWM_PRE_DIV is used. Finally the > + * scale is calculated as: > + * > + * BACKLIGHT_SCALE = (T_pwm * REFCLK_FREQ - 1) / PWM_PRE_DIV > + * > + * Here T_pwm is represented in seconds, so appropriate scaling > + * to nanoseconds is necessary. > + */ > + > + /* Minimum T_pwm is (1 * 1 + 1) / REFCLK_FREQ */ > + if (state->period * pdata->pwm_refclk_freq <= 2 * NSEC_PER_SEC) { > + ret = -EINVAL; > + goto out; > + } > + > + pre_div = DIV_ROUND_UP((state->period * pdata->pwm_refclk_freq - NSEC_PER_SEC), > + (NSEC_PER_SEC * BACKLIGHT_SCALE_MAX)); > + if (pre_div > 0xff) > + pre_div = 0xff; > + > + scale = (state->period * pdata->pwm_refclk_freq - NSEC_PER_SEC) / (NSEC_PER_SEC * pre_div); Please consider this multiplication to overflow. Something like: if (state->period > $someterm) period = $someterm; else period = state->period; is usually appropriate. Also NSEC_PER_SEC * pre_div might overflow. Moreover to divide a u64 you must not rely on / but need do_div() or some variant of it. > + > + /* > + * PWM duty cycle is given as: > + * > + * duty = BACKLIGHT / (BACKLIGHT_SCALE + 1) > + * > + * The documentation is however inconsistent in its examples, > + * so the interpretation used here is that the duty cycle is > + * the period of BACKLIGHT * PRE_DIV / REFCLK_FREQ. I don't understand this. > + * > + * The ratio PRE_DIV / REFCLK_FREQ is rounded up to whole > + * nanoseconds in order to ensure that the calculations are > + * idempotent and gives results that are smaller than the > + * requested value. > + */ > + tick = DIV_ROUND_UP(NSEC_PER_SEC * pre_div, pdata->pwm_refclk_freq); > + backlight = state->duty_cycle / tick; You're loosing precision here by dividing by the result of a division. > + if (backlight > scale) > + backlight = scale; > + > + ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div); > + if (ret) { > + dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n"); > + goto out; > + } > + > + ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale); > + ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight); > + } > + > + pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, !!state->enabled) | > + FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED); > + ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv); > + if (ret) { > + dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n"); > + goto out; > + } > + > + pdata->pwm_enabled = !!state->enabled; > +out: > + > + if (!pdata->pwm_enabled) > + pm_runtime_put_sync(pdata->dev); > + > + return ret; > +} > + > +static void ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, > + struct pwm_state *state) > +{ > + struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip); > + unsigned int pwm_en_inv; > + unsigned int pre_div; > + u16 backlight; > + u16 scale; > + int ret; > + > + ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv); > + if (ret) > + return; > + > + ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale); > + if (ret) > + return; > + > + ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight); > + if (ret) > + return; > + > + ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div); > + if (ret) > + return; > + > + state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv); > + if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv)) > + state->polarity = PWM_POLARITY_INVERSED; > + else > + state->polarity = PWM_POLARITY_NORMAL; > + > + state->period = DIV_ROUND_UP(NSEC_PER_SEC * (pre_div * scale + 1), pdata->pwm_refclk_freq); > + state->duty_cycle = backlight * DIV_ROUND_UP(NSEC_PER_SEC * pre_div, pdata->pwm_refclk_freq); If you use state->duty_cycle = DIV_ROUND_UP(backlight * NSEC_PER_SEC * pre_div, pdata->pwm_refclk_freq); instead (with a cast to u64 to not yield an overflow) the result is more exact. I still find this surprising, I'd expect that SCALE also matters for the duty_cycle. With the assumption implemented here modifying SCALE only affects the period. This should be easy to verify?! I would expect that changing SCALE doesn't affect the relative duty_cycle, so the brightness of an LED is unaffected (unless the period gets too big of course). I didn't spend much cycles to verify that the logic in .apply() matches .get_state(). I'd keep that check for the next iteration. Best regards Uwe -- Pengutronix e.K. | Uwe Kleine-König | Industrial Linux Solutions | https://www.pengutronix.de/ |
Attachment:
signature.asc
Description: PGP signature