Re: [PATCH v2 4/5] thermal: devfreq_cooling: remove old power model and use EM

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Wednesday 18 Nov 2020 at 12:03:57 (+0000), Lukasz Luba wrote:
> Remove old power model and use new Energy Model to calculate the power
> budget. It drops static + dynamic power calculations and power table
> in order to use Energy Model performance domain data. This model
> should be easy to use and could find more users. It is also less
> complicated to setup the needed structures.
> 
> Signed-off-by: Lukasz Luba <lukasz.luba@xxxxxxx>
> ---
>  drivers/thermal/devfreq_cooling.c | 302 ++++++++++--------------------
>  include/linux/devfreq_cooling.h   |  17 --
>  2 files changed, 96 insertions(+), 223 deletions(-)
> 
> diff --git a/drivers/thermal/devfreq_cooling.c b/drivers/thermal/devfreq_cooling.c
> index b354271742c5..28754ad46b96 100644
> --- a/drivers/thermal/devfreq_cooling.c
> +++ b/drivers/thermal/devfreq_cooling.c
> @@ -33,20 +33,17 @@ static DEFINE_IDA(devfreq_ida);
>   * @cdev:	Pointer to associated thermal cooling device.
>   * @devfreq:	Pointer to associated devfreq device.
>   * @cooling_state:	Current cooling state.
> - * @power_table:	Pointer to table with maximum power draw for each
> - *			cooling state. State is the index into the table, and
> - *			the power is in mW.
>   * @freq_table:	Pointer to a table with the frequencies sorted in descending
>   *		order.  You can index the table by cooling device state
> - * @freq_table_size:	Size of the @freq_table and @power_table
> - * @power_ops:	Pointer to devfreq_cooling_power, used to generate the
> - *		@power_table.
> + * @max_state:	It is the last index, that is, one less than the number of the
> + *		OPPs
> + * @power_ops:	Pointer to devfreq_cooling_power, a more precised model.
>   * @res_util:	Resource utilization scaling factor for the power.
>   *		It is multiplied by 100 to minimize the error. It is used
>   *		for estimation of the power budget instead of using
> - *		'utilization' (which is	'busy_time / 'total_time').
> - *		The 'res_util' range is from 100 to (power_table[state] * 100)
> - *		for the corresponding 'state'.
> + *		'utilization' (which is	'busy_time' / 'total_time').
> + *		The 'res_util' range is from 100 to power * 100	for the
> + *		corresponding 'state'.
>   * @capped_state:	index to cooling state with in dynamic power budget
>   * @req_max_freq:	PM QoS request for limiting the maximum frequency
>   *			of the devfreq device.
> @@ -58,9 +55,8 @@ struct devfreq_cooling_device {
>  	struct thermal_cooling_device *cdev;
>  	struct devfreq *devfreq;
>  	unsigned long cooling_state;
> -	u32 *power_table;
>  	u32 *freq_table;
> -	size_t freq_table_size;
> +	size_t max_state;
>  	struct devfreq_cooling_power *power_ops;
>  	u32 res_util;
>  	int capped_state;
> @@ -74,7 +70,7 @@ static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
>  {
>  	struct devfreq_cooling_device *dfc = cdev->devdata;
>  
> -	*state = dfc->freq_table_size - 1;
> +	*state = dfc->max_state;
>  
>  	return 0;
>  }
> @@ -96,16 +92,22 @@ static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
>  	struct devfreq *df = dfc->devfreq;
>  	struct device *dev = df->dev.parent;
>  	unsigned long freq;
> +	int perf_idx;
>  
>  	if (state == dfc->cooling_state)
>  		return 0;
>  
>  	dev_dbg(dev, "Setting cooling state %lu\n", state);
>  
> -	if (state >= dfc->freq_table_size)
> +	if (state > dfc->max_state)
>  		return -EINVAL;
>  
> -	freq = dfc->freq_table[state];
> +	if (dfc->em) {
> +		perf_idx = dfc->max_state - state;
> +		freq = dfc->em->table[perf_idx].frequency * 1000;
> +	} else {
> +		freq = dfc->freq_table[state];
> +	}
>  
>  	dev_pm_qos_update_request(&dfc->req_max_freq,
>  				  DIV_ROUND_UP(freq, HZ_PER_KHZ));
> @@ -116,24 +118,24 @@ static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
>  }
>  
>  /**
> - * freq_get_state() - get the cooling state corresponding to a frequency
> + * get_perf_idx() - get the performance index corresponding to a frequency
>   * @dfc:	Pointer to devfreq cooling device
> - * @freq:	frequency in Hz
> + * @freq:	frequency in kHz
>   *
> - * Return: the cooling state associated with the @freq, or
> - * THERMAL_CSTATE_INVALID if it wasn't found.
> + * Return: the performance index associated with the @freq, or
> + * -EINVAL if it wasn't found.
>   */
> -static unsigned long
> -freq_get_state(struct devfreq_cooling_device *dfc, unsigned long freq)
> +static int get_perf_idx(struct devfreq_cooling_device *dfc, unsigned long freq)
>  {
> +	struct em_perf_domain *em = dfc->em;
>  	int i;
>  
> -	for (i = 0; i < dfc->freq_table_size; i++) {
> -		if (dfc->freq_table[i] == freq)
> +	for (i = 0; i < em->nr_perf_states; i++) {
> +		if (em->table[i].frequency == freq)
>  			return i;
>  	}
>  
> -	return THERMAL_CSTATE_INVALID;
> +	return -EINVAL;
>  }
>  
>  static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
> @@ -164,71 +166,15 @@ static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
>  	return voltage;
>  }
>  
> -/**
> - * get_static_power() - calculate the static power
> - * @dfc:	Pointer to devfreq cooling device
> - * @freq:	Frequency in Hz
> - *
> - * Calculate the static power in milliwatts using the supplied
> - * get_static_power().  The current voltage is calculated using the
> - * OPP library.  If no get_static_power() was supplied, assume the
> - * static power is negligible.
> - */
> -static unsigned long
> -get_static_power(struct devfreq_cooling_device *dfc, unsigned long freq)
> -{
> -	struct devfreq *df = dfc->devfreq;
> -	unsigned long voltage;
> -
> -	if (!dfc->power_ops->get_static_power)
> -		return 0;
> -
> -	voltage = get_voltage(df, freq);
> -
> -	if (voltage == 0)
> -		return 0;
> -
> -	return dfc->power_ops->get_static_power(df, voltage);
> -}
> -
> -/**
> - * get_dynamic_power - calculate the dynamic power
> - * @dfc:	Pointer to devfreq cooling device
> - * @freq:	Frequency in Hz
> - * @voltage:	Voltage in millivolts
> - *
> - * Calculate the dynamic power in milliwatts consumed by the device at
> - * frequency @freq and voltage @voltage.  If the get_dynamic_power()
> - * was supplied as part of the devfreq_cooling_power struct, then that
> - * function is used.  Otherwise, a simple power model (Pdyn = Coeff *
> - * Voltage^2 * Frequency) is used.
> - */
> -static unsigned long
> -get_dynamic_power(struct devfreq_cooling_device *dfc, unsigned long freq,
> -		  unsigned long voltage)
> +static void dfc_em_get_requested_power(struct em_perf_domain *em,
> +				       struct devfreq_dev_status *status,
> +				       u32 *power, int perf_idx)
>  {
> -	u64 power;
> -	u32 freq_mhz;
> -	struct devfreq_cooling_power *dfc_power = dfc->power_ops;
> -
> -	if (dfc_power->get_dynamic_power)
> -		return dfc_power->get_dynamic_power(dfc->devfreq, freq,
> -						    voltage);
> +	*power = em->table[perf_idx].power;
>  
> -	freq_mhz = freq / 1000000;
> -	power = (u64)dfc_power->dyn_power_coeff * freq_mhz * voltage * voltage;
> -	do_div(power, 1000000000);
> -
> -	return power;
> -}
> -
> -
> -static inline unsigned long get_total_power(struct devfreq_cooling_device *dfc,
> -					    unsigned long freq,
> -					    unsigned long voltage)
> -{
> -	return get_static_power(dfc, freq) + get_dynamic_power(dfc, freq,
> -							       voltage);
> +	/* Scale power for utilization */
> +	*power *= status->busy_time;
> +	*power /= status->total_time;
>  }

Nit: Reiterating my question on whether it's worth having this
additional function or whether its contents should be collapsed into the
single caller.

>  
>  static void _normalize_load(struct devfreq_dev_status *status)
> @@ -259,9 +205,7 @@ static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cd
>  	unsigned long state;
>  	unsigned long freq;
>  	unsigned long voltage;
> -	u32 dyn_power = 0;
> -	u32 static_power = 0;
> -	int res;
> +	int res, perf_idx;
>  
>  	mutex_lock(&df->lock);
>  	res = df->profile->get_dev_status(df->dev.parent, &status);
> @@ -271,13 +215,7 @@ static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cd
>  
>  	freq = status.current_frequency;
>  
> -	state = freq_get_state(dfc, freq);
> -	if (state == THERMAL_CSTATE_INVALID) {
> -		res = -EAGAIN;
> -		goto fail;
> -	}
> -
> -	if (dfc->power_ops->get_real_power) {
> +	if (dfc->power_ops && dfc->power_ops->get_real_power) {
>  		voltage = get_voltage(df, freq);
>  		if (voltage == 0) {
>  			res = -EINVAL;
> @@ -287,7 +225,7 @@ static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cd
>  		res = dfc->power_ops->get_real_power(df, power, freq, voltage);
>  		if (!res) {
>  			state = dfc->capped_state;
> -			dfc->res_util = dfc->power_table[state];
> +			dfc->res_util = dfc->em->table[state].power;
>  			dfc->res_util *= SCALE_ERROR_MITIGATION;
>  
>  			if (*power > 1)
> @@ -296,17 +234,15 @@ static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cd
>  			goto fail;
>  		}
>  	} else {
> -		dyn_power = dfc->power_table[state];
> +		/* Energy Model frequencies are in kHz */
> +		perf_idx = get_perf_idx(dfc, freq / 1000);
> +		if (perf_idx < 0) {
> +			res = -EAGAIN;
> +			goto fail;
> +		}
>  
>  		_normalize_load(&status);
> -
> -		/* Scale dynamic power for utilization */
> -		dyn_power *= status.busy_time;
> -		dyn_power /= status.total_time;
> -		/* Get static power */
> -		static_power = get_static_power(dfc, freq);
> -
> -		*power = dyn_power + static_power;
> +		dfc_em_get_requested_power(dfc->em, &status, power, perf_idx);
>  	}
>  
>  	trace_thermal_power_devfreq_get_power(cdev, &status, freq, *power);
> @@ -319,20 +255,17 @@ static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cd
>  }
>  
>  static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
> -				       unsigned long state,
> -				       u32 *power)
> +				       unsigned long state, u32 *power)
>  {
>  	struct devfreq_cooling_device *dfc = cdev->devdata;
> -	unsigned long freq;
> -	u32 static_power;
> +	int perf_idx;
>  
> -	if (state >= dfc->freq_table_size)
> +	if (state > dfc->max_state)
>  		return -EINVAL;
>  
> -	freq = dfc->freq_table[state];
> -	static_power = get_static_power(dfc, freq);
> +	perf_idx = dfc->max_state - state;
> +	*power = dfc->em->table[perf_idx].power;
>  
> -	*power = dfc->power_table[state] + static_power;
>  	return 0;
>  }
>  
> @@ -342,10 +275,7 @@ static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
>  	struct devfreq_cooling_device *dfc = cdev->devdata;
>  	struct devfreq *df = dfc->devfreq;
>  	struct devfreq_dev_status status;
> -	unsigned long busy_time;
>  	unsigned long freq;
> -	s32 dyn_power;
> -	u32 static_power;
>  	s32 est_power;
>  	int i;
>  
> @@ -355,31 +285,27 @@ static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
>  
>  	freq = status.current_frequency;
>  
> -	if (dfc->power_ops->get_real_power) {
> +	if (dfc->power_ops && dfc->power_ops->get_real_power) {
>  		/* Scale for resource utilization */
>  		est_power = power * dfc->res_util;
>  		est_power /= SCALE_ERROR_MITIGATION;
>  	} else {
> -		static_power = get_static_power(dfc, freq);
> -
> -		dyn_power = power - static_power;
> -		dyn_power = dyn_power > 0 ? dyn_power : 0;
> -
> -		/* Scale dynamic power for utilization */
> -		busy_time = status.busy_time ?: 1;
> -		est_power = (dyn_power * status.total_time) / busy_time;
> +		_normalize_load(&status);
> +		est_power = power * status.total_time;
> +		est_power /= status.busy_time;
>  	}
>  
>  	/*
>  	 * Find the first cooling state that is within the power
> -	 * budget for dynamic power.
> +	 * budget. The EM power table is sorted ascending.
>  	 */
> -	for (i = 0; i < dfc->freq_table_size - 1; i++)
> -		if (est_power >= dfc->power_table[i])
> +	for (i = dfc->max_state; i > 0; i--)
> +		if (est_power >= dfc->em->table[i].power)
>  			break;
>  
> -	*state = i;
> -	dfc->capped_state = i;
> +	*state = dfc->max_state - i;
> +	dfc->capped_state = *state;
> +
>  	trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
>  	return 0;
>  }
> @@ -391,91 +317,43 @@ static struct thermal_cooling_device_ops devfreq_cooling_ops = {
>  };
>  
>  /**
> - * devfreq_cooling_gen_tables() - Generate power and freq tables.
> - * @dfc: Pointer to devfreq cooling device.
> - *
> - * Generate power and frequency tables: the power table hold the
> - * device's maximum power usage at each cooling state (OPP).  The
> - * static and dynamic power using the appropriate voltage and
> - * frequency for the state, is acquired from the struct
> - * devfreq_cooling_power, and summed to make the maximum power draw.
> + * devfreq_cooling_gen_tables() - Generate frequency table.
> + * @dfc:	Pointer to devfreq cooling device.
> + * @num_opps:	Number of OPPs
>   *
> - * The frequency table holds the frequencies in descending order.
> - * That way its indexed by cooling device state.
> - *
> - * The tables are malloced, and pointers put in dfc.  They must be
> - * freed when unregistering the devfreq cooling device.
> + * Generate frequency table which holds the frequencies in descending
> + * order. That way its indexed by cooling device state. This is for
> + * compatibility with drivers which do not register Energy Model.
>   *
>   * Return: 0 on success, negative error code on failure.
>   */
> -static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc)
> +static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc,
> +				      int num_opps)
>  {
>  	struct devfreq *df = dfc->devfreq;
>  	struct device *dev = df->dev.parent;
> -	int ret, num_opps;
>  	unsigned long freq;
> -	u32 *power_table = NULL;
> -	u32 *freq_table;
>  	int i;
>  
> -	num_opps = dev_pm_opp_get_opp_count(dev);
> -
> -	if (dfc->power_ops) {
> -		power_table = kcalloc(num_opps, sizeof(*power_table),
> -				      GFP_KERNEL);
> -		if (!power_table)
> -			return -ENOMEM;
> -	}
> -
> -	freq_table = kcalloc(num_opps, sizeof(*freq_table),
> +	dfc->freq_table = kcalloc(num_opps, sizeof(*dfc->freq_table),
>  			     GFP_KERNEL);
> -	if (!freq_table) {
> -		ret = -ENOMEM;
> -		goto free_power_table;
> -	}
> +	if (!dfc->freq_table)
> +		return -ENOMEM;
>  
>  	for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
> -		unsigned long power, voltage;
>  		struct dev_pm_opp *opp;
>  
>  		opp = dev_pm_opp_find_freq_floor(dev, &freq);
>  		if (IS_ERR(opp)) {
> -			ret = PTR_ERR(opp);
> -			goto free_tables;
> +			kfree(dfc->freq_table);
> +			return PTR_ERR(opp);
>  		}
>  
> -		voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
>  		dev_pm_opp_put(opp);
> -
> -		if (dfc->power_ops) {
> -			if (dfc->power_ops->get_real_power)
> -				power = get_total_power(dfc, freq, voltage);
> -			else
> -				power = get_dynamic_power(dfc, freq, voltage);
> -
> -			dev_dbg(dev, "Power table: %lu MHz @ %lu mV: %lu = %lu mW\n",
> -				freq / 1000000, voltage, power, power);
> -
> -			power_table[i] = power;
> -		}
> -
> -		freq_table[i] = freq;
> +		dfc->freq_table[i] = freq;
>  	}
>  
> -	if (dfc->power_ops)
> -		dfc->power_table = power_table;
> -
> -	dfc->freq_table = freq_table;
> -	dfc->freq_table_size = num_opps;
> -
>  	return 0;
> -
> -free_tables:
> -	kfree(freq_table);
> -free_power_table:
> -	kfree(power_table);
> -
> -	return ret;
>  }
>  
>  /**
> @@ -500,7 +378,7 @@ of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
>  	struct thermal_cooling_device *cdev;
>  	struct devfreq_cooling_device *dfc;
>  	char dev_name[THERMAL_NAME_LENGTH];
> -	int err;
> +	int err, num_opps;
>  
>  	dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
>  	if (!dfc)
> @@ -508,28 +386,45 @@ of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
>  
>  	dfc->devfreq = df;
>  
> -	if (dfc_power) {
> -		dfc->power_ops = dfc_power;
> -
> +	dfc->em = em_pd_get(df->dev.parent);
> +	if (dfc->em) {
>  		devfreq_cooling_ops.get_requested_power =
>  			devfreq_cooling_get_requested_power;
>  		devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
>  		devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
> +
> +		dfc->power_ops = dfc_power;
> +
> +		num_opps = em_pd_nr_perf_states(dfc->em);
> +	} else {
> +		/* Backward compatibility for drivers which do not use IPA */
> +		dev_dbg(df->dev.parent, "missing EM for cooling device\n");
> +
> +		num_opps = dev_pm_opp_get_opp_count(df->dev.parent);
> +
> +		err = devfreq_cooling_gen_tables(dfc, num_opps);
> +		if (err)
> +			goto free_dfc;
>  	}
>  
> -	err = devfreq_cooling_gen_tables(dfc);
> -	if (err)
> +	if (num_opps <= 0) {
> +		err = -EINVAL;
>  		goto free_dfc;
> +	}
> +
> +	/* max_state is an index, not a counter */
> +	dfc->max_state = num_opps - 1;
>  
>  	err = dev_pm_qos_add_request(df->dev.parent, &dfc->req_max_freq,
>  				     DEV_PM_QOS_MAX_FREQUENCY,
>  				     PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
>  	if (err < 0)
> -		goto free_tables;
> +		goto free_table;
>  
>  	err = ida_simple_get(&devfreq_ida, 0, 0, GFP_KERNEL);
>  	if (err < 0)
>  		goto remove_qos_req;
> +
>  	dfc->id = err;
>  
>  	snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
> @@ -550,12 +445,9 @@ of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
>  
>  release_ida:
>  	ida_simple_remove(&devfreq_ida, dfc->id);
> -
>  remove_qos_req:
>  	dev_pm_qos_remove_request(&dfc->req_max_freq);
> -
> -free_tables:
> -	kfree(dfc->power_table);
> +free_table:
>  	kfree(dfc->freq_table);
>  free_dfc:
>  	kfree(dfc);
> @@ -696,9 +588,7 @@ void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
>  	if (dfc->em_registered)
>  		em_dev_unregister_perf_domain(dev);
>  
> -	kfree(dfc->power_table);
>  	kfree(dfc->freq_table);
> -
>  	kfree(dfc);
>  }
>  EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);
> diff --git a/include/linux/devfreq_cooling.h b/include/linux/devfreq_cooling.h
> index 19868fb922f1..4890b12b54b4 100644
> --- a/include/linux/devfreq_cooling.h
> +++ b/include/linux/devfreq_cooling.h
> @@ -17,17 +17,6 @@
>  
>  /**
>   * struct devfreq_cooling_power - Devfreq cooling power ops
> - * @get_static_power:	Take voltage, in mV, and return the static power
> - *			in mW.  If NULL, the static power is assumed
> - *			to be 0.
> - * @get_dynamic_power:	Take voltage, in mV, and frequency, in HZ, and
> - *			return the dynamic power draw in mW.  If NULL,
> - *			a simple power model is used.
> - * @dyn_power_coeff:	Coefficient for the simple dynamic power model in
> - *			mW/(MHz mV mV).
> - *			If get_dynamic_power() is NULL, then the
> - *			dynamic power is calculated as
> - *			@dyn_power_coeff * frequency * voltage^2
>   * @get_real_power:	When this is set, the framework uses it to ask the
>   *			device driver for the actual power.
>   *			Some devices have more sophisticated methods
> @@ -47,14 +36,8 @@
>   *			max total (static + dynamic) power value for each OPP.
>   */
>  struct devfreq_cooling_power {
> -	unsigned long (*get_static_power)(struct devfreq *devfreq,
> -					  unsigned long voltage);
> -	unsigned long (*get_dynamic_power)(struct devfreq *devfreq,
> -					   unsigned long freq,
> -					   unsigned long voltage);
>  	int (*get_real_power)(struct devfreq *df, u32 *power,
>  			      unsigned long freq, unsigned long voltage);
> -	unsigned long dyn_power_coeff;
>  };
>  
>  #ifdef CONFIG_DEVFREQ_THERMAL
> -- 
> 2.17.1
> 

Reviewed-by: Ionela Voinescu <ionela.voinescu@xxxxxxx>

Thanks,
Ionela.
_______________________________________________
dri-devel mailing list
dri-devel@xxxxxxxxxxxxxxxxxxxxx
https://lists.freedesktop.org/mailman/listinfo/dri-devel



[Index of Archives]     [Linux DRI Users]     [Linux Intel Graphics]     [Linux USB Devel]     [Video for Linux]     [Linux Audio Users]     [Yosemite News]     [Linux Kernel]     [Linux SCSI]     [XFree86]     [Linux USB Devel]     [Video for Linux]     [Linux Audio Users]     [Linux Kernel]     [Linux SCSI]     [XFree86]
  Powered by Linux