RFC: dm-switch target [v2]

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Note: This is a repost with cleaned-up code, which was originally posted
by Jason Shamberger.
  http://www.redhat.com/archives/dm-devel/2011-March/msg00131.html

- The license in the headers has been cleared up - This is and always
  has been GPL code.
- Code formatting and style more closely match the Linux Kernel.

---------------------------

We propose a new DM target, dm-switch, which can be used to efficiently
implement a mapping of IOs to underlying block devices in scenarios
where there are: (1) a large number of address regions, (2) a fixed size
of these address regions, (3) no pattern than allows for a compact
description with something like the dm-stripe target.

Motivation:

Dell EqualLogic and some other iSCSI storage arrays use a distributed
frameless architecture.  In this architecture, the storage group
consists of a number of distinct storage arrays ("members"), each having
independent controllers, disk storage and network adapters.  When a LUN
is created it is spread across multiple members.  The details of the
spreading are hidden from initiators connected to this storage system.
The storage group exposes a single target discovery portal, no matter
how many members are being used.  When iSCSI sessions are created, each
session is connected to an eth port on a single member.  Data to a LUN
can be sent on any iSCSI session, and if the blocks being accessed are
stored on another member the IO will be forwarded as required.  This
forwarding is invisible to the initiator.  The storage layout is also
dynamic, and the blocks stored on disk may be moved from member to
member as needed to balance the load.

This architecture simplifies the management and configuration of both
the storage group and initiators.  In a multipathing configuration, it
is possible to set up multiple iSCSI sessions to use multiple network
interfaces on both the host and target to take advantage of the
increased network bandwidth.  An initiator can use a simple round robin
algorithm to send IO on all paths and let the storage array members
forward it as necessary.  However, there is a performance advantage to
sending data directly to the correct member.  The Device Mapper table
architecture supports designating different address regions with
different targets.  However, in our architecture the LUN is spread with
a chunk size on the order of 10s of MBs, which means the resulting DM
table could have more than a million entries, which consumes too much
memory.

Solution:

Based on earlier discussion with the dm-devel contributors, we have
solved this problem by using Device Mapper to build a two-layer device
hierarchy:

    Upper Tier – Determine which array member the IO should be sent to.
    Lower Tier – Load balance amongst paths to a particular member.

The lower tier consists of a single multipath device for each member.
Each of these multipath devices contains the set of paths directly to
the array member in one priority group, and leverages existing path
selectors to load balance amongst these paths.  We also build a
non-preferred priority group containing paths to other array members for
failover reasons.

The upper tier consists of a single switch device, using the new DM
target module proposed here.  This device uses a bitmap to look up the
location of the IO and choose the appropriate lower tier device to route
the IO.  By using a bitmap we are able to use 4 bits for each address
range in a 16 member group (which is very large for us).  This is a much
denser representation than the DM table B-tree can achieve.

Though we have developed this target for a specific storage device, we
have made an effort to keep it a general purpose as possible in hopes
that others may benefit.  We welcome any feedback on the design or
implementation.

--- dm-switch.h ---

/*
 * Copyright (c) 2010-2011 by Dell, Inc.  All rights reserved.
 *
 * This file is released under the GPL.
 *
 * Description:
 *
 *     file:    dm-switch.h
 *     authors: Kevin_OKelley@xxxxxxxx
 *              Jim_Ramsay@xxxxxxxx
 *              Narendran_Ganapathy@xxxxxxxx
 *
 * This file contains the netlink message definitions for the "switch" target.
 *
 * The only defined message at this time is for uploading the mapping page
 * table.
 */

#ifndef __DM_SWITCH_H
#define __DM_SWITCH_H

#define MAX_IPC_MSG_LEN 65480	/* dictated by netlink socket */
#define MAX_ERR_STR_LEN 255	/* maximum length of the error string */

enum Opcode {
	OPCODE_PAGE_TABLE_UPLOAD = 1,
};

/*
 * IPC Page Table message
 */
struct IpcPgTable {
	uint32_t total_len;	/* Total length of this IPC message */
	enum Opcode opcode;
	uint32_t userland[2];	/* Userland optional data (dmsetup status) */
	uint32_t dev_major;	/* DM device major */
	uint32_t dev_minor;	/* DM device minor */
	uint32_t page_total;	/* Total pages in the volume */
	uint32_t page_offset;	/* Starting page offset for this IPC */
	uint32_t page_count;	/* Number of page table entries in this IPC */
	uint32_t page_size;	/* Page size in 512B sectors */
	uint16_t dev_count;	/* Number of devices */
	uint8_t pte_bits;	/* Page Table Entry field size in bits */
	uint8_t reserved;	/* Integer alignment  */
	uint8_t ptbl_buff[1];	/* Page table entries (variable length) */
};

/*
 * IPC Response message
 */
struct IpcResponse {
	uint32_t total_len;	/* total length of the IPC */
	enum Opcode opcode;
	uint32_t userland[2];	/* Userland optional data */
	uint32_t dev_major;	/* DM device major */
	uint32_t dev_minor;	/* DM device minor */
	uint32_t status;	/* 0 on success; errno on failure */
	char err_str[MAX_ERR_STR_LEN + 1];
	/* If status != 0, contains an informative error message */
};

/* Generic Netlink family attributes: used to define the family */
enum {
	NETLINK_ATTR_UNSPEC,
	NETLINK_ATTR_MSG,
	NETLINK_ATTR__MAX,
};
#define NETLINK_ATTR_MAX (NETLINK_ATTR__MAX - 1)

/* Netlink commands (operations) */
enum {
	NETLINK_CMD_UNSPEC,
	NETLINK_CMD_GET_PAGE_TBL,
	NETLINK_CMD__MAX,
};
#define NETLINK_CMD_MAX (NETLINK_CMD__MAX - 1)

#endif /* __DM_SWITCH_H */

--- dm-switch.c ---

/*
 * Copyright (c) 2010-2011 by Dell, Inc.  All rights reserved.
 *
 * This file is released under the GPL.
 *
 * Description:
 *
 *     file:    dm-switch.c
 *     authors: Kevin_OKelley@xxxxxxxx
 *              Jim_Ramsay@xxxxxxxx
 *              Narendran_Ganapathy@xxxxxxxx
 *
 * This file implements a "switch" target which efficiently implements a
 * mapping of IOs to underlying block devices in scenarios where there are:
 *   (1) a large number of address regions
 *   (2) a fixed size equal across all address regions
 *   (3) no pattern than allows for a compact description with something like
 *       the dm-stripe target.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/version.h>
#include <linux/dm-ioctl.h>
#include <linux/device-mapper.h>
#include <net/genetlink.h>
#include <asm/div64.h>

#include "dm-switch.h"
#define DM_MSG_PREFIX "switch"
MODULE_DESCRIPTION(DM_NAME
		   " fixed-size address-region-mapping throughput-oriented path selector");
MODULE_AUTHOR("Kevin D. O'Kelley <Kevin_OKelley@xxxxxxxx>");
MODULE_LICENSE("GPL");

#if defined(DEBUG) || defined(_DEBUG)
#define DBGPRINT(...)  printk(KERN_DEBUG #args)
#define DBGPRINTV(...)
/* #define DEBUG_HEXDUMP 1 */
#else
#define DBGPRINT(...)
#define DBGPRINTV(...)
#endif

/*
 * Switch device context block: A new one is created for each dm device.
 * Contains an array of devices from which we have taken references.
 */
struct switch_dev {
	struct dm_dev *dmdev;
	sector_t start;
	atomic_t error_count;
};

/* Switch page table block */
struct switch_ptbl {
	uint32_t pte_bits;	/* Page Table Entry field size in bits */
	uint32_t pte_mask;	/* Page Table Entry field mask */
	uint32_t pte_fields;	/* Number of Page Table Entries per uint32_t */
	uint32_t ptbl_bytes;	/* Page table size in bytes */
	uint32_t ptbl_num;	/* Page table size in entries */
	uint32_t ptbl_max;	/* Page table maximum size in entries; */
	uint32_t ptbl_buff[0];	/* Address of page table */
};

/* Switch context header */
struct switch_ctx {
	struct list_head list;
	dev_t dev_this;		/* Device serviced by this target */
	uint32_t dev_count;	/* Number of devices */
	uint32_t page_size;	/* Page size in 512B sectors */
	uint32_t userland[2];	/* Userland optional data (dmsetup status) */
	uint64_t ios_remapped;	/* I/Os remapped */
	uint64_t ios_unmapped;	/* I/Os not remapped */
	spinlock_t spinlock;	/* Control access to counters */

	struct switch_ptbl *ptbl;	/* Page table (if loaded) */
	struct switch_dev dev_list[0];
	/* Array of dm devices to switch between */
};

/*
 * Global variables
 */
LIST_HEAD(__g_context_list);	/* Linked list of context blocks */
static spinlock_t __g_spinlock;	/* Control access to list of context blocks */

/* Limit check for the switch constructor */
static int switch_ctr_limits(struct dm_target *ti, struct dm_dev *dm)
{
	struct block_device *sd = dm->bdev;
	struct hd_struct *hd = sd->bd_part;
	if (hd != NULL) {
		DBGPRINT("%s sd=0x%p (%d:%d), hd=0x%p, start=%llu, "
			 "size=%llu\n", __func__, sd, MAJOR(sd->bd_dev),
			 MINOR(sd->bd_dev), hd,
			 (unsigned long long)hd->start_sect,
			 (unsigned long long)hd->nr_sects);
		if (ti->len <= hd->nr_sects)
			return true;
		ti->error = "Device too small for target";
		return false;
	}
	ti->error = "Missing device limits";
	printk(KERN_WARNING "%s %s\n", __func__, ti->error);
	return true;
}

/*
 * Constructor: Called each time a dmsetup command creates a dm device.  The
 * target parameter will already have the table, type, begin and len fields
 * filled in.  Arguments are in pairs: <dev_path> <offset>.  Therefore, we get
 * multiple constructor calls, but we will need to build a list of switch_ctx
 * blocks so that the page table information gets matched to the correct
 * device.
 */
static int switch_ctr(struct dm_target *ti, unsigned int argc, char **argv)
{
	int n;
	uint32_t dev_count;
	unsigned long flags, major, minor;
	unsigned long long start;
	struct switch_ctx *pctx;
	struct mapped_device *md = NULL;
	struct dm_dev *dm;
	const char *dm_devname;

	DBGPRINTV("%s\n", __func__);
	if (argc < 4) {
		ti->error = "Insufficient arguments";
		return -EINVAL;
	}
	if (kstrtou32(argv[0], 10, &dev_count) != 0) {
		ti->error = "Invalid device count";
		return -EINVAL;
	}
	if (dev_count != (argc - 2) / 2) {
		ti->error = "Invalid argument count";
		return -EINVAL;
	}
	pctx = kmalloc(sizeof(*pctx) + (dev_count * sizeof(struct switch_dev)),
		       GFP_KERNEL);
	if (pctx == NULL) {
		ti->error = "Cannot allocate redirect context";
		return -ENOMEM;
	}
	pctx->dev_count = dev_count;
	if ((kstrtou32(argv[1], 10, &pctx->page_size) != 0) ||
	    (pctx->page_size == 0)) {
		ti->error = "Invalid page size";
		goto failed_kfree;
	}
	pctx->ptbl = NULL;
	pctx->userland[0] = pctx->userland[1] = 0;
	pctx->ios_remapped = pctx->ios_unmapped = 0;
	spin_lock_init(&pctx->spinlock);

	/*
	 * Find the device major and minor for the device that is being served
	 * by this target.
	 */
	md = dm_table_get_md(ti->table);
	if (md == NULL) {
		ti->error = "Cannot locate dm device";
		goto failed_kfree;
	}
	dm_devname = dm_device_name(md);
	if (dm_devname == NULL) {
		ti->error = "Cannot acquire dm device name";
		goto failed_kfree;
	}
	if (sscanf(dm_devname, "%lu:%lu", &major, &minor) != 2) {
		ti->error = "Invalid dm device name";
		goto failed_kfree;
	}
	pctx->dev_this = MKDEV(major, minor);
	DBGPRINT("%s ctx=0x%p (%d:%d), type=\"%s\", count=%d, "
		 "start=%llu, size=%llu\n",
		 __func__, pctx, MAJOR(pctx->dev_this),
		 MINOR(pctx->dev_this), ti->type->name, pctx->dev_count,
		 (unsigned long long)ti->begin, (unsigned long long)ti->len);

	/*
	 * Check each device beneath the target to ensure that the limits are
	 * consistent.
	 */
	for (n = 0, argc = 2; n < pctx->dev_count; n++, argc += 2) {
		DBGPRINTV("%s #%d 0x%p, %s, %s\n", __func__, n,
			  &pctx->dev_list[n], argv[argc], argv[argc + 1]);
		if (sscanf(argv[argc + 1], "%llu", &start) != 1) {
			ti->error = "Invalid device starting offset";
			goto failed_dev_list_prev;
		}
		if (dm_get_device
		    (ti, argv[argc], dm_table_get_mode(ti->table), &dm)) {
			ti->error = "Device lookup failed";
			goto failed_dev_list_prev;
		}
		pctx->dev_list[n].dmdev = dm;
		pctx->dev_list[n].start = start;
		atomic_set(&(pctx->dev_list[n].error_count), 0);
		if (!switch_ctr_limits(ti, dm))
			goto failed_dev_list_all;
	}

	spin_lock_irqsave(&__g_spinlock, flags);
	list_add_tail(&pctx->list, &__g_context_list);
	spin_unlock_irqrestore(&__g_spinlock, flags);
	ti->private = pctx;
	return 0;

failed_dev_list_prev:		/* De-reference previous devices */
	n--;			/*   (i.e. don't include this one) */

failed_dev_list_all:		/* De-reference all devices  */
	printk(KERN_WARNING "%s device=%s, start=%s\n", __func__,
	       argv[argc], argv[argc + 1]);
	for (; n >= 0; n--)
		dm_put_device(ti, pctx->dev_list[n].dmdev);

failed_kfree:
	printk(KERN_WARNING "%s %s\n", __func__, ti->error);
	kfree(pctx);
	return -EINVAL;
}

/*
 * Destructor: Don't free the dm_target, just the ti->private data (if any).
 */
static void switch_dtr(struct dm_target *ti)
{
	int n;
	unsigned long flags;
	struct switch_ctx *pctx = (struct switch_ctx *)ti->private;
	void *ptbl;

	DBGPRINT("%s ctx=0x%p (%d:%d)\n", __func__, pctx,
		 MAJOR(pctx->dev_this), MINOR(pctx->dev_this));
	spin_lock_irqsave(&__g_spinlock, flags);
	ptbl = pctx->ptbl;
	rcu_assign_pointer(pctx->ptbl, NULL);
	list_del(&pctx->list);
	spin_unlock_irqrestore(&__g_spinlock, flags);
	for (n = 0; n < pctx->dev_count; n++) {
		DBGPRINTV("%s dm_put_device(%s)\n", __func__,
			  pctx->dev_list[n].dmdev->name);
		dm_put_device(ti, pctx->dev_list[n].dmdev);
	}
	synchronize_rcu();
	kfree(ptbl);
	kfree(pctx);
}

/*
 * NOTE: If CONFIG_LBD is disabled, sector_t types are uint32_t.  Therefore, in
 * this routine, we convert the offset into a uint64_t instead of a sector_t so
 * that all of the remaining arithmatic is correct, including the do_div()
 * calls.
 */
static int switch_map(struct dm_target *ti, struct bio *bio,
		      union map_info *map_context)
{
	struct switch_ctx *pctx = (struct switch_ctx *)ti->private;
	struct switch_ptbl *ptbl;
	unsigned long flags;
	uint64_t itbl, offset = bio->bi_sector - ti->begin;
	uint32_t idev = 0, irem;
	uint64_t *pinc = &pctx->ios_unmapped;

	rcu_read_lock();
	ptbl = rcu_dereference(pctx->ptbl);
	if (ptbl != NULL) {
		itbl = offset;
		do_div(itbl, pctx->page_size);
		if (itbl < ptbl->ptbl_num) {
			irem = do_div(itbl, ptbl->pte_fields);
			idev =
			    (ptbl->ptbl_buff[itbl] >> (irem * ptbl->pte_bits))
			    & ptbl->pte_mask;
			if (idev <= pctx->dev_count) {
				pinc = &pctx->ios_remapped;
			} else {
				printk(KERN_WARNING "%s WARNING: dev=%d, "
				       "offset=%lld\n", __func__, idev, offset);
				idev = 0;
			}
		} else {
			printk(KERN_WARNING "%s WARNING: Page Table Entry "
			       "%lld >= %d\n", __func__, itbl, ptbl->ptbl_num);
		}
	}
	rcu_read_unlock();
	spin_lock_irqsave(&pctx->spinlock, flags);
	(*pinc)++;
	spin_unlock_irqrestore(&pctx->spinlock, flags);
	bio->bi_bdev = pctx->dev_list[idev].dmdev->bdev;
	bio->bi_sector = pctx->dev_list[idev].start + offset;
	return DM_MAPIO_REMAPPED;
}

/*
 * Switch status:
 *
 * INFO: #dev_count device [device] 5 'A'['A' ...] userland[0] userland[1]
 *       #remapped #unmapped
 *
 * where:
 *   "'A'['A']" is a single word with an 'A' (active) or 'D' for each device
 *   The userland values are set by the last userland message to load the page
 *   table
 *   "#remapped" is the number of remapped I/Os
 *   "#unmapped" is the number of I/Os that could not be remapped
 *
 * TABLE: #page_size #dev_count device start [device start ...]
 */
static int switch_status(struct dm_target *ti, status_type_t type, char
			 *result, unsigned int maxlen)
{
	struct switch_ctx *pctx = (struct switch_ctx *)ti->private;
	char buffer[pctx->dev_count + 1];
	unsigned int sz = 0;
	int n;
	uint64_t remapped, unmapped;
	unsigned long flags;

	result[0] = '\0';
	switch (type) {
	case STATUSTYPE_INFO:
		DMEMIT("%d", pctx->dev_count);
		for (n = 0; n < pctx->dev_count; n++) {
			DMEMIT(" %s", pctx->dev_list[n].dmdev->name);
			buffer[n] = 'A';
		}
		buffer[n] = '\0';
		spin_lock_irqsave(&pctx->spinlock, flags);
		remapped = pctx->ios_remapped;
		unmapped = pctx->ios_unmapped;
		spin_unlock_irqrestore(&pctx->spinlock, flags);
		DMEMIT(" 5 %s %08x %08x %lld %lld", buffer, pctx->userland[0],
		       pctx->userland[1], remapped, unmapped);
		break;

	case STATUSTYPE_TABLE:
		DMEMIT("%d %d", pctx->dev_count, pctx->page_size);
		for (n = 0; n < pctx->dev_count; n++) {
			DMEMIT(" %s %llu", pctx->dev_list[n].dmdev->name,
			       (unsigned long long)pctx->dev_list[n].start);
		}
		break;

	default:
		return 0;
	}
	return 0;
}

/*
 * Switch ioctl:
 *
 * Passthrough all ioctls to the first path.
 */
static int switch_ioctl(struct dm_target *ti, unsigned int cmd,
			unsigned long arg)
{
	struct switch_ctx *pctx = (struct switch_ctx *)ti->private;
	struct block_device *bdev;
	fmode_t mode = 0;

	/* Sanity check */
	if (unlikely(!pctx || !pctx->dev_list[0].dmdev ||
		     !pctx->dev_list[0].dmdev->bdev))
		return -EIO;

	bdev = pctx->dev_list[0].dmdev->bdev;
	mode = pctx->dev_list[0].dmdev->mode;
	return __blkdev_driver_ioctl(bdev, mode, cmd, arg);
}

static struct target_type __g_switch_target = {
	.name = "switch",
	.version = {1, 0, 0},
	.module = THIS_MODULE,
	.ctr = switch_ctr,
	.dtr = switch_dtr,
	.map = switch_map,
	.status = switch_status,
	.ioctl = switch_ioctl,
};

/* Generic Netlink attribute policy (single attribute, NETLINK_ATTR_MSG) */
static struct nla_policy __g_attr_policy[NETLINK_ATTR_MAX + 1] = {
	[NETLINK_ATTR_MSG] = {.type = NLA_BINARY,.len = MAX_IPC_MSG_LEN},
};

/* Define the Generic Netlink family */
static struct genl_family __g_family = {
	.id = GENL_ID_GENERATE,	/* Assign channel when family is registered */
	.hdrsize = 0,
	.name = "DM_SWITCH",
	.version = 1,
	.maxattr = NETLINK_ATTR_MAX,
};

#ifdef DEBUG_HEXDUMP
#define DEBUG_HEXDUMP_WORDS 8
#define DEBUG_HEXDUMP_BYTES (DEBUG_HEXDUMP_WORDS * sizeof(uint32_t))

static inline void debug_hexdump_line(void *ibuff, size_t offset, size_t isize,
				      const char *func)
{
	static const char *hex = "0123456789abcdef";
	unsigned char *iptr = &((unsigned char *)ibuff)[offset];
	char *optr, obuff[DEBUG_HEXDUMP_BYTES * 3];
	int osize;

	while (isize > 0) {
		optr = obuff;
		for (osize = 0; osize < DEBUG_HEXDUMP_BYTES; osize++) {
			if (((osize & 3) == 0) && (osize != 0))
				*optr++ = ' ';
			*optr++ = hex[(*iptr) >> 4];
			*optr++ = hex[(*iptr++) & 15];
			if (--isize <= 0)
				break;
		}
		*optr = '\0';
		DBGPRINT("%s %04x %s\n", func, (unsigned int)offset, obuff);
		offset += DEBUG_HEXDUMP_BYTES;
	}
}

static inline void debug_hexdump(void *ibuff, size_t isize, const char *func)
{
	size_t iline = isize / DEBUG_HEXDUMP_BYTES;
	size_t irem = isize % DEBUG_HEXDUMP_BYTES;
	size_t offset = isize;

	if (iline < 6) {
		debug_hexdump_line(ibuff, 0, isize, func);
		return;
	}
	debug_hexdump_line(ibuff, 0, (3 * DEBUG_HEXDUMP_BYTES), func);
	isize = (irem == 0) ? (3 * DEBUG_HEXDUMP_BYTES)
	    : ((2 * DEBUG_HEXDUMP_BYTES) + irem);
	offset -= isize;
	debug_hexdump_line(ibuff, offset, isize, func);
}
#else
static inline void debug_hexdump(void *ibuff, size_t isize, const char *func)
{
}
#endif

/*
 * Generic Netlink socket read function that handles communication from the
 * userland for downloading the page table.
 */
static int get_page_tbl(struct sk_buff *skb_2, struct genl_info *info)
{
	uint32_t rc, pte_mask, pte_fields, ptbl_bytes, offset, size;
	uint32_t status = 0;
	unsigned long flags;
	char *mydata;
	void *msg_head;
	struct nlattr *na;
	struct sk_buff *skb;
	struct switch_ctx *pctx, *next;
	struct switch_ptbl *ptbl, *pnew;
	struct IpcPgTable *pgp;
	struct IpcResponse resp;
	dev_t dev;
	static const char *invmsg = "Invalid Page Table message";

	/*
	 * For each attribute there is an index in info->attrs which points to
	 * a nlattr structure in this structure the data is given
	 */
	if (info == NULL) {
		printk(KERN_WARNING "%s missing genl_info parameter\n",
		       __func__);
		return 0;
	}
	na = info->attrs[NETLINK_ATTR_MSG];
	if (na == NULL) {
		printk(KERN_WARNING "%s no info->attrs %i\n", __func__,
		       NETLINK_ATTR_MSG);
		return 0;
	}
	mydata = (char *)nla_data(na);
	if (mydata == NULL) {
		printk(KERN_WARNING "%s error while receiving data\n",
		       __func__);
		return 0;
	}
	DBGPRINTV("%s seq=%d, pid=%d, type=%d, flags=0x%x, data=0x%p "
		  "(0x%x, %d)\n",
		  __func__, info->snd_seq, info->snd_pid,
		  info->nlhdr->nlmsg_type, info->nlhdr->nlmsg_flags,
		  mydata, na->nla_len, na->nla_len);
	debug_hexdump(mydata,
		      ((offsetof(struct IpcPgTable, ptbl_buff)<na->nla_len)
		       ? offsetof(struct IpcPgTable, ptbl_buff)
		       : na->nla_len), __func__);
	/*
	 * Format the reply message.  Return positve error codes to userland.
	 */
	skb = nlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL);
	if (skb == NULL) {
		printk(KERN_WARNING "%s cannot allocate reply message\n",
		       __func__);
		return 0;
	}
	msg_head = genlmsg_put(skb, 0, info->snd_seq, &__g_family, 0,
			       NETLINK_CMD_GET_PAGE_TBL);
	if (skb == NULL) {
		printk(KERN_WARNING "%s cannot format reply message header\n",
		       __func__);
		return 0;
	}
	pgp = (struct IpcPgTable *)mydata;
	if (na->nla_len < sizeof(struct IpcPgTable)) {
		snprintf(resp.err_str, sizeof(resp.err_str),
			 "%s: too short (%d)", invmsg, na->nla_len);
		status = EINVAL;
		goto failed_respond;
	}
	if ((pgp->page_offset + pgp->page_count) > pgp->page_total) {
		snprintf(resp.err_str, sizeof(resp.err_str),
			 "%s: too many page table entries (%d > %d)",
			 invmsg, (pgp->page_offset + pgp->page_count),
			 pgp->page_total);
		status = EINVAL;
		goto failed_respond;
	}
	pte_mask = (1 << pgp->pte_bits) - 1;
	if (((pgp->dev_count - 1) & (~pte_mask)) != 0) {
		snprintf(resp.err_str, sizeof(resp.err_str),
			 "%s: invalid mask 0x%x for %d devices",
			 invmsg, pte_mask, pgp->dev_count);
		status = EINVAL;
		goto failed_respond;
	}
	pte_fields = 32 / pgp->pte_bits;
	size = ((pgp->page_count + pte_fields - 1) / pte_fields) *
	    sizeof(uint32_t);
	if ((sizeof(*pgp) - 1 + size) > na->nla_len) {
		snprintf(resp.err_str, sizeof(resp.err_str),
			 "Invalid Page Table message: incomplete messsage");
		status = EINVAL;
		goto failed_respond;
	}
	debug_hexdump(&pgp->ptbl_buff, size, __func__);

	/*
	 * Look for the corresponding switch context block to create or update
	 * the page table.
	 */
	rc = 0;
	dev = MKDEV(pgp->dev_major, pgp->dev_minor);
	spin_lock_irqsave(&__g_spinlock, flags);
	list_for_each_entry_safe(pctx, next, &__g_context_list, list) {
		if (dev == pctx->dev_this) {
			rc = 1;
			break;
		}
	}
	if (rc == 0) {
		snprintf(resp.err_str, sizeof(resp.err_str),
			 "%s: invalid target device %d:%d",
			 invmsg, pgp->dev_major, pgp->dev_minor);
		status = EINVAL;
		goto failed_unlock;
	}
	DBGPRINTV("%s ctx=0x%p (%d:%d)\n", __func__, pctx, pgp->dev_major,
		  pgp->dev_minor);

	ptbl = pctx->ptbl;
	if (((ptbl != NULL) && (pgp->page_offset > (ptbl->ptbl_num + 1))) ||
	    ((ptbl == NULL) && (pgp->page_offset != 0))) {
		snprintf(resp.err_str, sizeof(resp.err_str),
			 "%s: missing entries", invmsg);
		status = EINVAL;
		goto failed_unlock;
	}
	/*
	 * Don't allow userland to change context parameters unless the page
	 * table is being rebuilt.
	 */
	if (pgp->page_offset != 0) {
		if ((pgp->dev_count) != pctx->dev_count) {
			snprintf(resp.err_str, sizeof(resp.err_str),
				 "%s: invalid device count %d",
				 invmsg, pgp->dev_count);
			status = EINVAL;
			goto failed_respond;
		}
		if (ptbl != NULL) {
			if (pgp->pte_bits != ptbl->pte_bits) {
				snprintf(resp.err_str, sizeof(resp.err_str),
					 "%s: number of bits changed", invmsg);
				status = EINVAL;
				goto failed_unlock;
			}
			if (pgp->page_total != ptbl->ptbl_max) {
				snprintf(resp.err_str, sizeof(resp.err_str),
					 "%s: total number of entries changed",
					 invmsg);
				status = EINVAL;
				goto failed_unlock;
			}
		}
	}

	/*
	 * Create a Page Table if needed.  Most of the time, the size of the
	 * table doesn't change.  In that case, re-use the existing table.
	 */
	ptbl_bytes = ((pgp->page_total + pte_fields - 1) / pte_fields) *
	    sizeof(uint32_t);
	if ((ptbl != NULL) && (ptbl_bytes == ptbl->ptbl_bytes)) {
		pnew = ptbl;
	} else {
		pnew = kmalloc((sizeof(*pnew) + ptbl_bytes), GFP_KERNEL);
		if (pnew == NULL) {
			snprintf(resp.err_str, sizeof(resp.err_str),
				 "Cannot allocate Page Table");
			status = EINVAL;
			goto failed_unlock;
		}
		pnew->ptbl_bytes = ptbl_bytes;
		DBGPRINT("%s ctx=0x%p (%d:%d) pnew=0x%p, buff=0x%p (%d), OK\n",
			 __func__, pctx, MAJOR(pctx->dev_this),
			 MINOR(pctx->dev_this), pnew, pnew->ptbl_buff,
			 ptbl_bytes);
	}
	pnew->pte_bits = pgp->pte_bits;
	pnew->pte_mask = pte_mask;
	pnew->pte_fields = pte_fields;
	pnew->ptbl_max = pgp->page_total;
	pnew->ptbl_num = pgp->page_offset + pgp->page_count;
	DBGPRINT("%s ctx=0x%p (%d:%d): bits=%d, mask=0x%x, num=%d, max=%d\n",
		 __func__, pctx, MAJOR(pctx->dev_this),
		 MINOR(pctx->dev_this), pnew->pte_bits, pnew->pte_mask,
		 pnew->ptbl_num, pnew->ptbl_max);
	offset = (pgp->page_offset + pte_fields - 1) / pte_fields;
	memcpy(&pnew->ptbl_buff[offset], pgp->ptbl_buff, size);
	pctx->userland[0] = pgp->userland[0];
	pctx->userland[1] = pgp->userland[1];

	if (pnew != ptbl) {
		rcu_assign_pointer(pctx->ptbl, pnew);
		kfree(ptbl);
	}

failed_unlock:
	spin_unlock_irqrestore(&__g_spinlock, flags);

failed_respond:
	if (status)
		printk(KERN_WARNING "%s WARNING: %s\n", __func__, resp.err_str);
	else
		resp.err_str[0] = '\0';

	/* Format the response message */
	resp.total_len = sizeof(struct IpcResponse);
	resp.opcode = OPCODE_PAGE_TABLE_UPLOAD;
	resp.userland[0] = pgp->userland[0];
	resp.userland[1] = pgp->userland[1];
	resp.dev_major = pgp->dev_major;
	resp.dev_minor = pgp->dev_minor;
	resp.status = status;
	rc = nla_put(skb, NLA_BINARY, sizeof(struct IpcResponse), &resp);
	if (rc != 0) {
		printk(KERN_WARNING
		       "%s WARNING: Cannot format reply message\n", __func__);
		return 0;
	}
	genlmsg_end(skb, msg_head);
	rc = genlmsg_unicast(&init_net, skb, info->snd_pid);
	if (rc != 0)
		printk(KERN_WARNING "%s WARNING: Cannot send reply message\n",
		       __func__);
	return 0;
}

/* Operation for getting the page table */
static struct genl_ops __g_op_get_page_tbl = {
	.cmd = NETLINK_CMD_GET_PAGE_TBL,
	.flags = 0,
	.policy = __g_attr_policy,
	.doit = get_page_tbl,
	.dumpit = NULL,
};

/*
 * Use the sysfs interface to inform the userland process of the family id to
 * be used by the Generic Netlink socket.
 */
static ssize_t sysfs_familyid_show(struct kobject *kobj,
				   struct attribute *attr, char *buff)
{
	return snprintf(buff, PAGE_SIZE, "%d", __g_family.id);
}

static ssize_t sysfs_familyid_store(struct kobject *kobj,
				    struct attribute *attr, const char *buff,
				    size_t size)
{
	return size;
}

struct _sysfs_attr_ops {
	const struct attribute attr;
	const struct sysfs_ops ops;
};
static const struct _sysfs_attr_ops __g_sysfs_familyid = {
	.attr = {"familyid", 0644},
	.ops = {&sysfs_familyid_show, &sysfs_familyid_store}
};

int __init dm_switch_init(void)
{
	int r;

	DBGPRINTV("%s\n", __func__);
	spin_lock_init(&__g_spinlock);
	r = dm_register_target(&__g_switch_target);
	if (r) {
		DMERR("dm_register_target() failed %d", r);
		return r;
	}

	/* Initialize Generic Netlink communications */
	r = genl_register_family(&__g_family);
	if (r) {
		DMERR("genl_register_family() failed");
		goto failed;
	}
	r = genl_register_ops(&__g_family, &__g_op_get_page_tbl);
	if (r) {
		DMERR("genl_register_ops(get_page_tbl) failed %d", r);
		goto failed;
	}
	DBGPRINTV("%s Registered Generic Netlink group %d\n", __func__,
		  __g_family.id);
	r = sysfs_create_file(&__g_switch_target.module->mkobj.kobj,
			      &__g_sysfs_familyid.attr);
	if (r) {
		DMERR("/sys/module/familyid create failed %d", r);
		goto failed;
	}
	return 0;

failed:
	dm_unregister_target(&__g_switch_target);
	return r;
}

void dm_switch_exit(void)
{
	int r;

	DBGPRINTV("%s\n", __func__);
	dm_unregister_target(&__g_switch_target);
	r = genl_unregister_family(&__g_family);
	if (r)
		DMWARN("genl_unregister_family() failed %d", r);
	return;
}

module_init(dm_switch_init);
module_exit(dm_switch_exit);

--
dm-devel mailing list
dm-devel@xxxxxxxxxx
https://www.redhat.com/mailman/listinfo/dm-devel



[Index of Archives]     [DM Crypt]     [Fedora Desktop]     [ATA RAID]     [Fedora Marketing]     [Fedora Packaging]     [Fedora SELinux]     [Yosemite Discussion]     [KDE Users]     [Fedora Docs]

  Powered by Linux