Ping. Regards, Punnaiah On Mon, Jun 8, 2015 at 11:38 PM, Punnaiah Choudary Kalluri <punnaiah.choudary.kalluri@xxxxxxxxxx> wrote: > Add driver for arm pl353 static memory controller nand interface with > HW ECC support. This controller is used in xilinx zynq soc for interfacing > the nand flash memory. > > Signed-off-by: Punnaiah Choudary Kalluri <punnaia@xxxxxxxxxx> > --- > Changes in v7: > - Currently not implemented the memclk rate adjustments. I will > look into this later and once the basic driver is accepted. > - Fixed GPL licence ident > Changes in v6: > - Fixed the checkpatch.pl reported warnings > - Using the address cycles information from the onfi param page > earlier it is hardcoded to 5 in driver > Changes in v5: > - Configure the nand timing parameters as per the onfi spec > Changes in v4: > - Updated the driver to sync with pl353_smc driver APIs > Changes in v3: > - implemented the proper error codes > - further breakdown this patch to multiple sets > - added the controller and driver details to Documentation section > - updated the licenece to GPLv2 > - reorganized the pl353_nand_ecc_init function > Changes in v2: > - use "depends on" rather than "select" option in kconfig > - remove unused variable parts > - remove dummy helper and use writel_relaxed directly > --- > drivers/mtd/nand/Kconfig | 7 + > drivers/mtd/nand/Makefile | 1 + > drivers/mtd/nand/pl353_nand.c | 909 +++++++++++++++++++++++++++++++++++++++++ > 3 files changed, 917 insertions(+), 0 deletions(-) > create mode 100644 drivers/mtd/nand/pl353_nand.c > > diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig > index 5897d8d..c14a955 100644 > --- a/drivers/mtd/nand/Kconfig > +++ b/drivers/mtd/nand/Kconfig > @@ -497,6 +497,13 @@ config MTD_NAND_NUC900 > This enables the driver for the NAND Flash on evaluation board based > on w90p910 / NUC9xx. > > +config MTD_NAND_PL353 > + tristate "ARM Pl353 NAND flash driver" > + depends on MTD_NAND && ARM > + depends on PL353_SMC > + help > + This enables access to the NAND flash device on PL353 SMC controller. > + > config MTD_NAND_JZ4740 > tristate "Support for JZ4740 SoC NAND controller" > depends on MACH_JZ4740 > diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile > index 582bbd05..c68fd7c 100644 > --- a/drivers/mtd/nand/Makefile > +++ b/drivers/mtd/nand/Makefile > @@ -52,5 +52,6 @@ obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o > obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/ > obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o > obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o > +obj-$(CONFIG_MTD_NAND_PL353) += pl353_nand.o > > nand-objs := nand_base.o nand_bbt.o nand_timings.o > diff --git a/drivers/mtd/nand/pl353_nand.c b/drivers/mtd/nand/pl353_nand.c > new file mode 100644 > index 0000000..ff6cf3e > --- /dev/null > +++ b/drivers/mtd/nand/pl353_nand.c > @@ -0,0 +1,909 @@ > +/* > + * ARM PL353 NAND Flash Controller Driver > + * > + * Copyright (C) 2009 - 2014 Xilinx, Inc. > + * > + * This driver is based on plat_nand.c and mxc_nand.c drivers > + * > + * This program is free software; you can redistribute it and/or modify it under > + * the terms of the GNU General Public License version 2 as published by the > + * Free Software Foundation; either version 2 of the License, or (at your > + * option) any later version. > + */ > + > +#include <linux/err.h> > +#include <linux/delay.h> > +#include <linux/interrupt.h> > +#include <linux/io.h> > +#include <linux/ioport.h> > +#include <linux/irq.h> > +#include <linux/memory/pl353-smc.h> > +#include <linux/module.h> > +#include <linux/moduleparam.h> > +#include <linux/mtd/mtd.h> > +#include <linux/mtd/nand.h> > +#include <linux/mtd/nand_ecc.h> > +#include <linux/mtd/partitions.h> > +#include <linux/of_address.h> > +#include <linux/of_device.h> > +#include <linux/of_mtd.h> > +#include <linux/of_platform.h> > +#include <linux/platform_device.h> > +#include <linux/slab.h> > + > +#define PL353_NAND_DRIVER_NAME "pl353-nand" > + > +/* NAND flash driver defines */ > +#define PL353_NAND_CMD_PHASE 1 /* End command valid in command phase */ > +#define PL353_NAND_DATA_PHASE 2 /* End command valid in data phase */ > +#define PL353_NAND_ECC_SIZE 512 /* Size of data for ECC operation */ > + > +/* Flash memory controller operating parameters */ > + > +#define PL353_NAND_ECC_CONFIG (BIT(4) | /* ECC read at end of page */ \ > + (0 << 5)) /* No Jumping */ > + > +/* AXI Address definitions */ > +#define START_CMD_SHIFT 3 > +#define END_CMD_SHIFT 11 > +#define END_CMD_VALID_SHIFT 20 > +#define ADDR_CYCLES_SHIFT 21 > +#define CLEAR_CS_SHIFT 21 > +#define ECC_LAST_SHIFT 10 > +#define COMMAND_PHASE (0 << 19) > +#define DATA_PHASE BIT(19) > + > +#define PL353_NAND_ECC_LAST BIT(ECC_LAST_SHIFT) /* Set ECC_Last */ > +#define PL353_NAND_CLEAR_CS BIT(CLEAR_CS_SHIFT) /* Clear chip select */ > + > +#define ONDIE_ECC_FEATURE_ADDR 0x90 > +#define PL353_NAND_ECC_BUSY_TIMEOUT (1 * HZ) > +#define PL353_NAND_DEV_BUSY_TIMEOUT (1 * HZ) > +#define PL353_NAND_LAST_TRANSFER_LENGTH 4 > + > +/** > + * struct pl353_nand_command_format - Defines NAND flash command format > + * @start_cmd: First cycle command (Start command) > + * @end_cmd: Second cycle command (Last command) > + * @addr_cycles: Number of address cycles required to send the address > + * @end_cmd_valid: The second cycle command is valid for cmd or data phase > + */ > +struct pl353_nand_command_format { > + int start_cmd; > + int end_cmd; > + u8 addr_cycles; > + u8 end_cmd_valid; > +}; > + > +/** > + * struct pl353_nand_info - Defines the NAND flash driver instance > + * @chip: NAND chip information structure > + * @mtd: MTD information structure > + * @nand_base: Virtual address of the NAND flash device > + * @end_cmd_pending: End command is pending > + * @end_cmd: End command > + * @ecc_mode: ECC mode > + * @raddr_cycles: Row address cycles > + * @caddr_cycles: Column address cycles > + */ > +struct pl353_nand_info { > + struct nand_chip chip; > + struct mtd_info mtd; > + void __iomem *nand_base; > + unsigned long end_cmd_pending; > + unsigned long end_cmd; > + int ecc_mode; > + u8 raddr_cycles; > + u8 caddr_cycles; > +}; > + > +/* > + * The NAND flash operations command format > + */ > +static const struct pl353_nand_command_format pl353_nand_commands[] = { > + {NAND_CMD_READ0, NAND_CMD_READSTART, 5, PL353_NAND_CMD_PHASE}, > + {NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART, 2, PL353_NAND_CMD_PHASE}, > + {NAND_CMD_READID, NAND_CMD_NONE, 1, NAND_CMD_NONE}, > + {NAND_CMD_STATUS, NAND_CMD_NONE, 0, NAND_CMD_NONE}, > + {NAND_CMD_SEQIN, NAND_CMD_PAGEPROG, 5, PL353_NAND_DATA_PHASE}, > + {NAND_CMD_RNDIN, NAND_CMD_NONE, 2, NAND_CMD_NONE}, > + {NAND_CMD_ERASE1, NAND_CMD_ERASE2, 3, PL353_NAND_CMD_PHASE}, > + {NAND_CMD_RESET, NAND_CMD_NONE, 0, NAND_CMD_NONE}, > + {NAND_CMD_PARAM, NAND_CMD_NONE, 1, NAND_CMD_NONE}, > + {NAND_CMD_GET_FEATURES, NAND_CMD_NONE, 1, NAND_CMD_NONE}, > + {NAND_CMD_SET_FEATURES, NAND_CMD_NONE, 1, NAND_CMD_NONE}, > + {NAND_CMD_NONE, NAND_CMD_NONE, 0, 0}, > + /* Add all the flash commands supported by the flash device and Linux */ > + /* > + * The cache program command is not supported by driver because driver > + * cant differentiate between page program and cached page program from > + * start command, these commands can be differentiated through end > + * command, which doesn't fit in to the driver design. The cache program > + * command is not supported by NAND subsystem also, look at 1612 line > + * number (in nand_write_page function) of nand_base.c file. > + * {NAND_CMD_SEQIN, NAND_CMD_CACHEDPROG, 5, PL353_NAND_YES}, > + */ > +}; > + > +/* Define default oob placement schemes for large and small page devices */ > +static struct nand_ecclayout nand_oob_16 = { > + .eccbytes = 3, > + .eccpos = {0, 1, 2}, > + .oobfree = { > + {.offset = 8, > + . length = 8} } > +}; > + > +static struct nand_ecclayout nand_oob_64 = { > + .eccbytes = 12, > + .eccpos = { > + 52, 53, 54, 55, 56, 57, > + 58, 59, 60, 61, 62, 63}, > + .oobfree = { > + {.offset = 2, > + .length = 50} } > +}; > + > +static unsigned int get_cyc_from_ns(u32 clkrate, u32 ns) > +{ > + unsigned int cycle; > + > + cycle = NSEC_PER_SEC / clkrate; > + return DIV_ROUND_CLOSEST(ns, cycle); > +} > + > +/** > + * pl353_nand_calculate_hwecc - Calculate Hardware ECC > + * @mtd: Pointer to the mtd_info structure > + * @data: Pointer to the page data > + * @ecc_code: Pointer to the ECC buffer where ECC data needs to be stored > + * > + * This function retrieves the Hardware ECC data from the controller and returns > + * ECC data back to the MTD subsystem. > + * > + * Return: 0 on success or error value on failure > + */ > +static int pl353_nand_calculate_hwecc(struct mtd_info *mtd, > + const u8 *data, u8 *ecc_code) > +{ > + u32 ecc_value, ecc_status; > + u8 ecc_reg, ecc_byte; > + unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT; > + > + /* Wait till the ECC operation is complete or timeout */ > + do { > + if (pl353_smc_ecc_is_busy(mtd->dev.parent)) > + cpu_relax(); > + else > + break; > + } while (!time_after_eq(jiffies, timeout)); > + > + if (time_after_eq(jiffies, timeout)) { > + pr_err("%s timed out\n", __func__); > + return -ETIMEDOUT; > + } > + > + for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) { > + /* Read ECC value for each block */ > + ecc_value = pl353_smc_get_ecc_val(mtd->dev.parent, ecc_reg); > + ecc_status = (ecc_value >> 24) & 0xFF; > + /* ECC value valid */ > + if (ecc_status & 0x40) { > + for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) { > + /* Copy ECC bytes to MTD buffer */ > + *ecc_code = ecc_value & 0xFF; > + ecc_value = ecc_value >> 8; > + ecc_code++; > + } > + } else { > + pr_warn("%s status failed\n", __func__); > + return -EINVAL; > + } > + } > + return 0; > +} > + > +/** > + * onehot - onehot function > + * @value: Value to check for onehot > + * > + * This function checks whether a value is onehot or not. > + * onehot is if and only if onebit is set. > + * > + * Return: 1 if it is onehot else 0 > + */ > +static int onehot(unsigned short value) > +{ > + return (value & (value - 1)) == 0; > +} > + > +/** > + * pl353_nand_correct_data - ECC correction function > + * @mtd: Pointer to the mtd_info structure > + * @buf: Pointer to the page data > + * @read_ecc: Pointer to the ECC value read from spare data area > + * @calc_ecc: Pointer to the calculated ECC value > + * > + * This function corrects the ECC single bit errors & detects 2-bit errors. > + * > + * Return: 0 if no ECC errors found > + * 1 if single bit error found and corrected. > + * -1 if multiple ECC errors found. > + */ > +static int pl353_nand_correct_data(struct mtd_info *mtd, unsigned char *buf, > + unsigned char *read_ecc, > + unsigned char *calc_ecc) > +{ > + unsigned char bit_addr; > + unsigned int byte_addr; > + unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper; > + unsigned short calc_ecc_lower, calc_ecc_upper; > + > + read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff; > + read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff; > + > + calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff; > + calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff; > + > + ecc_odd = read_ecc_lower ^ calc_ecc_lower; > + ecc_even = read_ecc_upper ^ calc_ecc_upper; > + > + if ((ecc_odd == 0) && (ecc_even == 0)) > + return 0; /* no error */ > + > + if (ecc_odd == (~ecc_even & 0xfff)) { > + /* bits [11:3] of error code is byte offset */ > + byte_addr = (ecc_odd >> 3) & 0x1ff; > + /* bits [2:0] of error code is bit offset */ > + bit_addr = ecc_odd & 0x7; > + /* Toggling error bit */ > + buf[byte_addr] ^= (1 << bit_addr); > + return 1; > + } > + > + if (onehot(ecc_odd | ecc_even) == 1) > + return 1; /* one error in parity */ > + > + return -EBADMSG; /* Uncorrectable error */ > +} > + > +/** > + * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read function > + * @mtd: Pointer to the mtd info structure > + * @chip: Pointer to the NAND chip info structure > + * @page: Page number to read > + * > + * Return: Always return zero > + */ > +static int pl353_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, > + int page) > +{ > + unsigned long data_phase_addr; > + uint8_t *p; > + > + chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); > + > + p = chip->oob_poi; > + chip->read_buf(mtd, p, > + (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH)); > + p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; > + data_phase_addr |= PL353_NAND_CLEAR_CS; > + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; > + chip->read_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH); > + > + return 0; > +} > + > +/** > + * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write function > + * @mtd: Pointer to the mtd info structure > + * @chip: Pointer to the NAND chip info structure > + * @page: Page number to write > + * > + * Return: Zero on success and EIO on failure > + */ > +static int pl353_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, > + int page) > +{ > + int status = 0; > + const uint8_t *buf = chip->oob_poi; > + unsigned long data_phase_addr; > + > + chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); > + > + chip->write_buf(mtd, buf, > + (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH)); > + buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; > + data_phase_addr |= PL353_NAND_CLEAR_CS; > + data_phase_addr |= (1 << END_CMD_VALID_SHIFT); > + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; > + chip->write_buf(mtd, buf, PL353_NAND_LAST_TRANSFER_LENGTH); > + > + /* Send command to program the OOB data */ > + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); > + status = chip->waitfunc(mtd, chip); > + > + return status & NAND_STATUS_FAIL ? -EIO : 0; > +} > + > +/** > + * nand_write_page_hwecc - Hardware ECC based page write function > + * @mtd: Pointer to the mtd info structure > + * @chip: Pointer to the NAND chip info structure > + * @buf: Pointer to the data buffer > + * @oob_required: Caller requires OOB data read to chip->oob_poi > + * > + * This functions writes data and hardware generated ECC values in to the page. > + * > + * Return: Zero on success and error on failure. > + */ > +static int pl353_nand_write_page_hwecc(struct mtd_info *mtd, > + struct nand_chip *chip, const uint8_t *buf, > + int oob_required) > +{ > + int i, status, eccsize = chip->ecc.size; > + int eccsteps = chip->ecc.steps; > + uint8_t *ecc_calc = chip->buffers->ecccalc; > + const uint8_t *p = buf; > + uint32_t *eccpos = chip->ecc.layout->eccpos; > + unsigned long data_phase_addr; > + uint8_t *oob_ptr; > + > + for ( ; (eccsteps - 1); eccsteps--) { > + chip->write_buf(mtd, p, eccsize); > + p += eccsize; > + } > + chip->write_buf(mtd, p, (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH)); > + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + > + /* Set ECC Last bit to 1 */ > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; > + data_phase_addr |= PL353_NAND_ECC_LAST; > + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; > + chip->write_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH); > + > + /* Wait for ECC to be calculated and read the error values */ > + p = buf; > + status = chip->ecc.calculate(mtd, p, &ecc_calc[0]); > + if (status) > + return status; > + > + for (i = 0; i < chip->ecc.total; i++) > + chip->oob_poi[eccpos[i]] = ~(ecc_calc[i]); > + > + /* Clear ECC last bit */ > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; > + data_phase_addr &= ~PL353_NAND_ECC_LAST; > + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; > + > + /* Write the spare area with ECC bytes */ > + oob_ptr = chip->oob_poi; > + chip->write_buf(mtd, oob_ptr, > + (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH)); > + > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_W; > + data_phase_addr |= PL353_NAND_CLEAR_CS; > + data_phase_addr |= (1 << END_CMD_VALID_SHIFT); > + chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr; > + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + chip->write_buf(mtd, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH); > + > + return 0; > +} > + > +/** > + * pl353_nand_read_page_hwecc - Hardware ECC based page read function > + * @mtd: Pointer to the mtd info structure > + * @chip: Pointer to the NAND chip info structure > + * @buf: Pointer to the buffer to store read data > + * @oob_required: Caller requires OOB data read to chip->oob_poi > + * @page: Page number to read > + * > + * This functions reads data and checks the data integrity by comparing hardware > + * generated ECC values and read ECC values from spare area. > + * > + * Return: 0 always and updates ECC operation status in to MTD structure > + */ > +static int pl353_nand_read_page_hwecc(struct mtd_info *mtd, > + struct nand_chip *chip, > + uint8_t *buf, int oob_required, int page) > +{ > + int i, stat, eccsize = chip->ecc.size; > + int eccbytes = chip->ecc.bytes; > + int eccsteps = chip->ecc.steps; > + uint8_t *p = buf; > + uint8_t *ecc_calc = chip->buffers->ecccalc; > + uint8_t *ecc_code = chip->buffers->ecccode; > + uint32_t *eccpos = chip->ecc.layout->eccpos; > + unsigned long data_phase_addr; > + uint8_t *oob_ptr; > + > + for ( ; (eccsteps - 1); eccsteps--) { > + chip->read_buf(mtd, p, eccsize); > + p += eccsize; > + } > + chip->read_buf(mtd, p, (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH)); > + p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + > + /* Set ECC Last bit to 1 */ > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; > + data_phase_addr |= PL353_NAND_ECC_LAST; > + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; > + chip->read_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH); > + > + /* Read the calculated ECC value */ > + p = buf; > + stat = chip->ecc.calculate(mtd, p, &ecc_calc[0]); > + if (stat < 0) > + return stat; > + > + /* Clear ECC last bit */ > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; > + data_phase_addr &= ~PL353_NAND_ECC_LAST; > + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; > + > + /* Read the stored ECC value */ > + oob_ptr = chip->oob_poi; > + chip->read_buf(mtd, oob_ptr, > + (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH)); > + > + /* de-assert chip select */ > + data_phase_addr = (unsigned long __force)chip->IO_ADDR_R; > + data_phase_addr |= PL353_NAND_CLEAR_CS; > + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; > + > + oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH); > + chip->read_buf(mtd, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH); > + > + for (i = 0; i < chip->ecc.total; i++) > + ecc_code[i] = ~(chip->oob_poi[eccpos[i]]); > + > + eccsteps = chip->ecc.steps; > + p = buf; > + > + /* Check ECC error for all blocks and correct if it is correctable */ > + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { > + stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); > + if (stat < 0) > + mtd->ecc_stats.failed++; > + else > + mtd->ecc_stats.corrected += stat; > + } > + return 0; > +} > + > +/** > + * pl353_nand_select_chip - Select the flash device > + * @mtd: Pointer to the mtd info structure > + * @chip: Pointer to the NAND chip info structure > + * > + * This function is empty as the NAND controller handles chip select line > + * internally based on the chip address passed in command and data phase. > + */ > +static void pl353_nand_select_chip(struct mtd_info *mtd, int chip) > +{ > + > +} > + > +/** > + * pl353_nand_cmd_function - Send command to NAND device > + * @mtd: Pointer to the mtd_info structure > + * @command: The command to be sent to the flash device > + * @column: The column address for this command, -1 if none > + * @page_addr: The page address for this command, -1 if none > + */ > +static void pl353_nand_cmd_function(struct mtd_info *mtd, unsigned int command, > + int column, int page_addr) > +{ > + struct nand_chip *chip = mtd->priv; > + const struct pl353_nand_command_format *curr_cmd = NULL; > + struct pl353_nand_info *xnand = > + container_of(mtd, struct pl353_nand_info, mtd); > + void __iomem *cmd_addr; > + unsigned long cmd_data = 0, end_cmd_valid = 0; > + unsigned long cmd_phase_addr, data_phase_addr, end_cmd, i; > + unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT; > + u32 addrcycles; > + > + if (xnand->end_cmd_pending) { > + /* > + * Check for end command if this command request is same as the > + * pending command then return > + */ > + if (xnand->end_cmd == command) { > + xnand->end_cmd = 0; > + xnand->end_cmd_pending = 0; > + return; > + } > + } > + > + /* Emulate NAND_CMD_READOOB for large page device */ > + if ((mtd->writesize > PL353_NAND_ECC_SIZE) && > + (command == NAND_CMD_READOOB)) { > + column += mtd->writesize; > + command = NAND_CMD_READ0; > + } > + > + /* Get the command format */ > + for (i = 0; (pl353_nand_commands[i].start_cmd != NAND_CMD_NONE || > + pl353_nand_commands[i].end_cmd != NAND_CMD_NONE); i++) > + if (command == pl353_nand_commands[i].start_cmd) > + curr_cmd = &pl353_nand_commands[i]; > + > + if (curr_cmd == NULL) > + return; > + > + /* Clear interrupt */ > + pl353_smc_clr_nand_int(mtd->dev.parent); > + > + /* Get the command phase address */ > + if (curr_cmd->end_cmd_valid == PL353_NAND_CMD_PHASE) > + end_cmd_valid = 1; > + > + if (curr_cmd->end_cmd == NAND_CMD_NONE) > + end_cmd = 0x0; > + else > + end_cmd = curr_cmd->end_cmd; > + > + if ((command == NAND_CMD_READ0) && (command == NAND_CMD_SEQIN)) > + addrcycles = xnand->raddr_cycles + xnand->caddr_cycles; > + else if (command == NAND_CMD_ERASE1) > + addrcycles = xnand->raddr_cycles; > + else > + addrcycles = curr_cmd->addr_cycles; > + > + cmd_phase_addr = (unsigned long __force)xnand->nand_base | > + (addrcycles << ADDR_CYCLES_SHIFT) | > + (end_cmd_valid << END_CMD_VALID_SHIFT) | > + (COMMAND_PHASE) | > + (end_cmd << END_CMD_SHIFT) | > + (curr_cmd->start_cmd << START_CMD_SHIFT); > + > + cmd_addr = (void __iomem * __force)cmd_phase_addr; > + > + /* Get the data phase address */ > + end_cmd_valid = 0; > + > + data_phase_addr = (unsigned long __force)xnand->nand_base | > + (0x0 << CLEAR_CS_SHIFT) | > + (end_cmd_valid << END_CMD_VALID_SHIFT) | > + (DATA_PHASE) | > + (end_cmd << END_CMD_SHIFT) | > + (0x0 << ECC_LAST_SHIFT); > + > + chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr; > + chip->IO_ADDR_W = chip->IO_ADDR_R; > + > + /* Command phase AXI write */ > + /* Read & Write */ > + if (column != -1 && page_addr != -1) { > + /* Adjust columns for 16 bit bus width */ > + if (chip->options & NAND_BUSWIDTH_16) > + column >>= 1; > + cmd_data = column; > + if (mtd->writesize > PL353_NAND_ECC_SIZE) { > + cmd_data |= page_addr << 16; > + /* Another address cycle for devices > 128MiB */ > + if (chip->chipsize > (128 << 20)) { > + writel_relaxed(cmd_data, cmd_addr); > + cmd_data = (page_addr >> 16); > + } > + } else { > + cmd_data |= page_addr << 8; > + } > + } else if (page_addr != -1) { > + /* Erase */ > + cmd_data = page_addr; > + } else if (column != -1) { > + /* > + * Change read/write column, read id etc > + * Adjust columns for 16 bit bus width > + */ > + if ((chip->options & NAND_BUSWIDTH_16) && > + ((command == NAND_CMD_READ0) || > + (command == NAND_CMD_SEQIN) || > + (command == NAND_CMD_RNDOUT) || > + (command == NAND_CMD_RNDIN))) > + column >>= 1; > + cmd_data = column; > + } > + > + writel_relaxed(cmd_data, cmd_addr); > + > + if (curr_cmd->end_cmd_valid) { > + xnand->end_cmd = curr_cmd->end_cmd; > + xnand->end_cmd_pending = 1; > + } > + > + ndelay(100); > + > + if ((command == NAND_CMD_READ0) || > + (command == NAND_CMD_RESET) || > + (command == NAND_CMD_PARAM) || > + (command == NAND_CMD_GET_FEATURES)) { > + > + /* Wait till the device is ready or timeout */ > + do { > + if (chip->dev_ready(mtd)) > + break; > + cpu_relax(); > + } while (!time_after_eq(jiffies, timeout)); > + > + if (time_after_eq(jiffies, timeout)) > + pr_err("%s timed out\n", __func__); > + return; > + } > +} > + > +/** > + * pl353_nand_read_buf - read chip data into buffer > + * @mtd: Pointer to the mtd info structure > + * @buf: Pointer to the buffer to store read data > + * @len: Number of bytes to read > + */ > +static void pl353_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) > +{ > + int i; > + struct nand_chip *chip = mtd->priv; > + unsigned long *ptr = (unsigned long *)buf; > + > + len >>= 2; > + for (i = 0; i < len; i++) > + ptr[i] = readl(chip->IO_ADDR_R); > +} > + > +/** > + * pl353_nand_write_buf - write buffer to chip > + * @mtd: Pointer to the mtd info structure > + * @buf: Pointer to the buffer to store read data > + * @len: Number of bytes to write > + */ > +static void pl353_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, > + int len) > +{ > + int i; > + struct nand_chip *chip = mtd->priv; > + unsigned long *ptr = (unsigned long *)buf; > + > + len >>= 2; > + > + for (i = 0; i < len; i++) > + writel(ptr[i], chip->IO_ADDR_W); > +} > + > +/** > + * pl353_nand_device_ready - Check device ready/busy line > + * @mtd: Pointer to the mtd_info structure > + * > + * Return: 0 on busy or 1 on ready state > + */ > +static int pl353_nand_device_ready(struct mtd_info *mtd) > +{ > + if (pl353_smc_get_nand_int_status_raw(mtd->dev.parent)) { > + pl353_smc_clr_nand_int(mtd->dev.parent); > + return 1; > + } > + return 0; > +} > + > +/** > + * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode > + * @mtd: Pointer to the mtd_info structure > + * > + * This function initializes the ecc block and functional pointers as per the > + * ecc mode > + * > + * Return: Zero on success and error on failure. > + */ > +static int pl353_nand_ecc_init(struct mtd_info *mtd) > +{ > + struct nand_chip *nand_chip = mtd->priv; > + struct pl353_nand_info *xnand = > + container_of(mtd, struct pl353_nand_info, mtd); > + > + nand_chip->ecc.read_oob = pl353_nand_read_oob; > + nand_chip->ecc.write_oob = pl353_nand_write_oob; > + nand_chip->ecc.strength = 1; > + > + switch (xnand->ecc_mode) { > + case NAND_ECC_HW: > + if (mtd->writesize > 2048) { > + pr_warn("hardware ECC not possible\n"); > + return -ENOTSUPP; > + } > + > + nand_chip->ecc.mode = NAND_ECC_HW; > + nand_chip->ecc.calculate = pl353_nand_calculate_hwecc; > + nand_chip->ecc.correct = pl353_nand_correct_data; > + nand_chip->ecc.hwctl = NULL; > + nand_chip->ecc.read_page = pl353_nand_read_page_hwecc; > + nand_chip->ecc.size = PL353_NAND_ECC_SIZE; > + nand_chip->ecc.write_page = pl353_nand_write_page_hwecc; > + pl353_smc_set_ecc_pg_size(mtd->dev.parent, mtd->writesize); > + pl353_smc_set_ecc_mode(mtd->dev.parent, PL353_SMC_ECCMODE_APB); > + /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */ > + nand_chip->ecc.bytes = 3; > + > + if (mtd->oobsize == 16) > + nand_chip->ecc.layout = &nand_oob_16; > + else > + nand_chip->ecc.layout = &nand_oob_64; > + > + break; > + default: > + return -ENOTSUPP; > + } > + > + return 0; > +} > + > +static int pl353_nand_init_timing(struct device *dev, int mode) > +{ > + const struct nand_sdr_timings *time; > + u32 t_rc, t_wc, t_rea, t_wp, t_clr, t_ar, t_rr; > + ulong clkrate; > + > + time = onfi_async_timing_mode_to_sdr_timings(mode); > + if (IS_ERR(time)) > + return PTR_ERR(time); > + > + clkrate = pl353_smc_get_clkrate(dev); > + t_rc = get_cyc_from_ns(clkrate, time->tRC_min / 1000); > + t_wc = get_cyc_from_ns(clkrate, time->tWC_min / 1000); > + t_rea = get_cyc_from_ns(clkrate, time->tREA_max / 1000); > + t_wp = get_cyc_from_ns(clkrate, time->tWP_min / 1000); > + t_clr = get_cyc_from_ns(clkrate, time->tCLR_min / 1000); > + t_ar = get_cyc_from_ns(clkrate, time->tAR_min / 1000); > + t_rr = get_cyc_from_ns(clkrate, time->tRR_min / 1000); > + > + pl353_smc_set_cycles(dev, t_rc, t_wc, t_rea, t_wp, t_clr, t_ar, t_rr); > + > + return 0; > +} > + > +/** > + * pl353_nand_probe - Probe method for the NAND driver > + * @pdev: Pointer to the platform_device structure > + * > + * This function initializes the driver data structures and the hardware. > + * > + * Return: 0 on success or error value on failure > + */ > +static int pl353_nand_probe(struct platform_device *pdev) > +{ > + struct pl353_nand_info *xnand; > + struct mtd_info *mtd; > + struct nand_chip *nand_chip; > + struct resource *res; > + struct mtd_part_parser_data ppdata; > + > + xnand = devm_kzalloc(&pdev->dev, sizeof(*xnand), GFP_KERNEL); > + if (!xnand) > + return -ENOMEM; > + > + /* Map physical address of NAND flash */ > + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); > + xnand->nand_base = devm_ioremap_resource(&pdev->dev, res); > + if (IS_ERR(xnand->nand_base)) > + return PTR_ERR(xnand->nand_base); > + > + /* Link the private data with the MTD structure */ > + mtd = &xnand->mtd; > + nand_chip = &xnand->chip; > + > + nand_chip->priv = xnand; > + mtd->priv = nand_chip; > + mtd->dev.parent = pdev->dev.parent; > + mtd->owner = THIS_MODULE; > + mtd->name = PL353_NAND_DRIVER_NAME; > + > + /* Set address of NAND IO lines */ > + nand_chip->IO_ADDR_R = xnand->nand_base; > + nand_chip->IO_ADDR_W = xnand->nand_base; > + > + /* Set the driver entry points for MTD */ > + nand_chip->cmdfunc = pl353_nand_cmd_function; > + nand_chip->dev_ready = pl353_nand_device_ready; > + nand_chip->select_chip = pl353_nand_select_chip; > + > + /* If we don't set this delay driver sets 20us by default */ > + nand_chip->chip_delay = 30; > + > + /* Buffer read/write routines */ > + nand_chip->read_buf = pl353_nand_read_buf; > + nand_chip->write_buf = pl353_nand_write_buf; > + > + /* Set the device option and flash width */ > + nand_chip->options = NAND_BUSWIDTH_AUTO; > + nand_chip->bbt_options = NAND_BBT_USE_FLASH; > + > + platform_set_drvdata(pdev, xnand); > + if (pl353_nand_init_timing(pdev->dev.parent, 0)) > + return -ENOTSUPP; > + /* First scan to find the device and get the page size */ > + if (nand_scan_ident(mtd, 1, NULL)) { > + dev_err(&pdev->dev, "nand_scan_ident for NAND failed\n"); > + return -ENXIO; > + } > + > + xnand->ecc_mode = of_get_nand_ecc_mode(pdev->dev.of_node); > + if (xnand->ecc_mode < 0) > + xnand->ecc_mode = NAND_ECC_HW; > + > + if (nand_chip->onfi_version) { > + xnand->raddr_cycles = nand_chip->onfi_params.addr_cycles & 0xF; > + xnand->caddr_cycles = > + (nand_chip->onfi_params.addr_cycles >> 4) & 0xF; > + } else { > + /*For non-ONFI devices, configuring the address cyles as 5 */ > + xnand->raddr_cycles = xnand->caddr_cycles = 5; > + } > + > + if (pl353_nand_ecc_init(mtd)) > + return -ENOTSUPP; > + > + if (nand_chip->options & NAND_BUSWIDTH_16) > + pl353_smc_set_buswidth(pdev->dev.parent, > + PL353_SMC_MEM_WIDTH_16); > + > + /* TODO: Based on the parameter page info, change the timing mode */ > + > + if (nand_scan_tail(mtd)) { > + dev_err(&pdev->dev, "nand_scan_tail for NAND failed\n"); > + return -ENXIO; > + } > + > + ppdata.of_node = pdev->dev.of_node; > + > + mtd_device_parse_register(&xnand->mtd, NULL, &ppdata, NULL, 0); > + > + return 0; > +} > + > +/** > + * pl353_nand_remove - Remove method for the NAND driver > + * @pdev: Pointer to the platform_device structure > + * > + * This function is called if the driver module is being unloaded. It frees all > + * resources allocated to the device. > + * > + * Return: 0 on success or error value on failure > + */ > +static int pl353_nand_remove(struct platform_device *pdev) > +{ > + struct pl353_nand_info *xnand = platform_get_drvdata(pdev); > + > + /* Release resources, unregister device */ > + nand_release(&xnand->mtd); > + > + return 0; > +} > + > +/* Match table for device tree binding */ > +static const struct of_device_id pl353_nand_of_match[] = { > + { .compatible = "arm,pl353-nand-r2p1" }, > + {}, > +}; > +MODULE_DEVICE_TABLE(of, pl353_nand_of_match); > + > +/* > + * pl353_nand_driver - This structure defines the NAND subsystem platform driver > + */ > +static struct platform_driver pl353_nand_driver = { > + .probe = pl353_nand_probe, > + .remove = pl353_nand_remove, > + .driver = { > + .name = PL353_NAND_DRIVER_NAME, > + .of_match_table = pl353_nand_of_match, > + }, > +}; > + > +module_platform_driver(pl353_nand_driver); > + > +MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xxxxxxxxxx>"); > +MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver"); > +MODULE_LICENSE("GPL"); > -- > 1.7.4 > -- To unsubscribe from this list: send the line "unsubscribe devicetree" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html