Hello Dimitri, On Fri, Jan 10, 2025 at 08:37:55AM +0100, Dimitri Fedrau wrote: > The MC33XS2410 is a four channel high-side switch. Featuring advanced > monitoring and control function, the device is operational from 3.0 V to > 60 V. The device is controlled by SPI port for configuration. > > Signed-off-by: Dimitri Fedrau <dima.fedrau@xxxxxxxxx> > --- > drivers/pwm/Kconfig | 12 ++ > drivers/pwm/Makefile | 1 + > drivers/pwm/pwm-mc33xs2410.c | 378 +++++++++++++++++++++++++++++++++++ > 3 files changed, 391 insertions(+) > create mode 100644 drivers/pwm/pwm-mc33xs2410.c > > diff --git a/drivers/pwm/Kconfig b/drivers/pwm/Kconfig > index 0915c1e7df16..f513513f9b2f 100644 > --- a/drivers/pwm/Kconfig > +++ b/drivers/pwm/Kconfig > @@ -411,6 +411,18 @@ config PWM_LPSS_PLATFORM > To compile this driver as a module, choose M here: the module > will be called pwm-lpss-platform. > > +config PWM_MC33XS2410 > + tristate "MC33XS2410 PWM support" > + depends on OF > + depends on SPI > + help > + NXP MC33XS2410 high-side switch driver. The MC33XS2410 is a four > + channel high-side switch. The device is operational from 3.0 V > + to 60 V. The device is controlled by SPI port for configuration. > + > + To compile this driver as a module, choose M here: the module > + will be called pwm-mc33xs2410. > + > config PWM_MESON > tristate "Amlogic Meson PWM driver" > depends on ARCH_MESON || COMPILE_TEST > diff --git a/drivers/pwm/Makefile b/drivers/pwm/Makefile > index 9081e0c0e9e0..c75deeeace40 100644 > --- a/drivers/pwm/Makefile > +++ b/drivers/pwm/Makefile > @@ -36,6 +36,7 @@ obj-$(CONFIG_PWM_LPC32XX) += pwm-lpc32xx.o > obj-$(CONFIG_PWM_LPSS) += pwm-lpss.o > obj-$(CONFIG_PWM_LPSS_PCI) += pwm-lpss-pci.o > obj-$(CONFIG_PWM_LPSS_PLATFORM) += pwm-lpss-platform.o > +obj-$(CONFIG_PWM_MC33XS2410) += pwm-mc33xs2410.o > obj-$(CONFIG_PWM_MESON) += pwm-meson.o > obj-$(CONFIG_PWM_MEDIATEK) += pwm-mediatek.o > obj-$(CONFIG_PWM_MICROCHIP_CORE) += pwm-microchip-core.o > diff --git a/drivers/pwm/pwm-mc33xs2410.c b/drivers/pwm/pwm-mc33xs2410.c > new file mode 100644 > index 000000000000..432693b4f8eb > --- /dev/null > +++ b/drivers/pwm/pwm-mc33xs2410.c > @@ -0,0 +1,378 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * Copyright (C) 2024 Liebherr-Electronics and Drives GmbH > + * > + * Reference Manual : https://www.nxp.com/docs/en/data-sheet/MC33XS2410.pdf > + * > + * Limitations: > + * - Supports frequencies between 0.5Hz and 2048Hz with following steps: > + * - 0.5 Hz steps from 0.5 Hz to 32 Hz > + * - 2 Hz steps from 2 Hz to 128 Hz > + * - 8 Hz steps from 8 Hz to 512 Hz > + * - 32 Hz steps from 32 Hz to 2048 Hz > + * - Cannot generate a 0 % duty cycle. > + * - Always produces low output if disabled. > + * - Configuration isn't atomic. When changing polarity, duty cycle or period > + * the data is taken immediately, counters not being affected, resulting in a > + * behavior of the output pin that is neither the old nor the new state, > + * rather something in between. > + */ > + > +#include <linux/bitfield.h> > +#include <linux/delay.h> > +#include <linux/err.h> > +#include <linux/math64.h> > +#include <linux/minmax.h> > +#include <linux/module.h> > +#include <linux/of.h> > +#include <linux/pwm.h> > + > +#include <linux/spi/spi.h> > + > +#define MC33XS2410_GLB_CTRL 0x00 > +#define MC33XS2410_GLB_CTRL_MODE GENMASK(7, 6) > +#define MC33XS2410_GLB_CTRL_MODE_NORMAL FIELD_PREP(MC33XS2410_GLB_CTRL_MODE, 1) > + > +#define MC33XS2410_PWM_CTRL1 0x05 > +/* x in { 1 ... 4 } */ s/x/chan/ > +#define MC33XS2410_PWM_CTRL1_POL_INV(chan) BIT((chan) + 1) > + > +#define MC33XS2410_PWM_CTRL3 0x07 > +/* x in { 1 ... 4 } */ > +#define MC33XS2410_PWM_CTRL3_EN(chan) BIT(4 + (chan) - 1) > + > +/* x in { 1 ... 4 } */ > +#define MC33XS2410_PWM_FREQ(chan) (0x08 + (chan) - 1) > +#define MC33XS2410_PWM_FREQ_STEP GENMASK(7, 6) > +#define MC33XS2410_PWM_FREQ_COUNT GENMASK(5, 0) > + > +/* x in { 1 ... 4 } */ > +#define MC33XS2410_PWM_DC(chan) (0x0c + (chan) - 1) > + > +#define MC33XS2410_WDT 0x14 > + > +#define MC33XS2410_PWM_MIN_PERIOD 488282 > +/* x in { 0 ... 3 } */ s/x/step/ > +#define MC33XS2410_PWM_MAX_PERIOD(step) (2000000000 >> (2 * (step))) > + > +#define MC33XS2410_FRAME_IN_ADDR GENMASK(15, 8) > +#define MC33XS2410_FRAME_IN_DATA GENMASK(7, 0) > +#define MC33XS2410_FRAME_IN_ADDR_WR BIT(7) > +#define MC33XS2410_FRAME_IN_DATA_RD BIT(7) > +#define MC33XS2410_FRAME_OUT_DATA GENMASK(13, 0) > + > +#define MC33XS2410_MAX_TRANSFERS 5 > + > +static int mc33xs2410_write_regs(struct spi_device *spi, u8 *reg, u8 *val, > + unsigned int len) > +{ > + u16 tx[MC33XS2410_MAX_TRANSFERS]; > + int i; > + > + if (len > MC33XS2410_MAX_TRANSFERS) > + return -EINVAL; > + > + for (i = 0; i < len; i++) > + tx[i] = FIELD_PREP(MC33XS2410_FRAME_IN_DATA, val[i]) | > + FIELD_PREP(MC33XS2410_FRAME_IN_ADDR, > + MC33XS2410_FRAME_IN_ADDR_WR | reg[i]); > + > + return spi_write(spi, tx, len * 2); > +} > + > +static int mc33xs2410_read_regs(struct spi_device *spi, u8 *reg, u8 flag, > + u16 *val, unsigned int len) > +{ > + u16 tx[MC33XS2410_MAX_TRANSFERS]; > + u16 rx[MC33XS2410_MAX_TRANSFERS]; > + struct spi_transfer t = { > + .tx_buf = tx, > + .rx_buf = rx, > + }; > + int i, ret; > + > + len++; > + if (len > MC33XS2410_MAX_TRANSFERS) > + return -EINVAL; > + > + t.len = len * 2; > + for (i = 0; i < len - 1; i++) > + tx[i] = FIELD_PREP(MC33XS2410_FRAME_IN_DATA, flag) | > + FIELD_PREP(MC33XS2410_FRAME_IN_ADDR, reg[i]); > + > + ret = spi_sync_transfer(spi, &t, 1); > + if (ret < 0) > + return ret; > + > + for (i = 1; i < len; i++) > + val[i - 1] = FIELD_GET(MC33XS2410_FRAME_OUT_DATA, rx[i]); > + > + return 0; > +} > + > +static int mc33xs2410_write_reg(struct spi_device *spi, u8 reg, u8 val) > +{ > + return mc33xs2410_write_regs(spi, ®, &val, 1); > +} > + > +static int mc33xs2410_read_reg(struct spi_device *spi, u8 reg, u16 *val, u8 flag) > +{ > + return mc33xs2410_read_regs(spi, ®, flag, val, 1); > +} > + > +static int mc33xs2410_read_reg_ctrl(struct spi_device *spi, u8 reg, u16 *val) > +{ > + return mc33xs2410_read_reg(spi, reg, val, MC33XS2410_FRAME_IN_DATA_RD); > +} > + > +static int mc33xs2410_modify_reg(struct spi_device *spi, u8 reg, u8 mask, u8 val) > +{ > + u16 tmp; > + int ret; > + > + ret = mc33xs2410_read_reg_ctrl(spi, reg, &tmp); > + if (ret < 0) > + return ret; > + > + tmp &= ~mask; > + tmp |= val & mask; > + > + return mc33xs2410_write_reg(spi, reg, tmp); > +} > + > +static u8 mc33xs2410_pwm_get_freq(u64 period) > +{ > + u8 step, count; > + > + /* > + * Check which step is appropriate for the given period, starting with > + * the highest frequency(lowest period). Higher frequencies are > + * represented with better resolution by the device. Therefore favor > + * frequency range with the better resolution to minimize error > + * introduced by the frequency steps. This is hard to understand as the argument is presented in several steps: algo starts with high step values (that's not in the comment, you have to take that from the switch statement) high step represents high freq = low period high freq yield better resolution better resolution is what is favoured. After investing some time to reunderstand the rational here I suggest: /* * Check which step [0 .. 3] is appropriate for the given * period. The period ranges for the different step values * overlap. Prefer big step values as these allow more * finegrained duty cycle selection. */ > + */ > + > + switch (period) { > + case MC33XS2410_PWM_MIN_PERIOD ... MC33XS2410_PWM_MAX_PERIOD(3): > + step = 3; > + break; > + case MC33XS2410_PWM_MAX_PERIOD(3) + 1 ... MC33XS2410_PWM_MAX_PERIOD(2): > + step = 2; > + break; > + case MC33XS2410_PWM_MAX_PERIOD(2) + 1 ... MC33XS2410_PWM_MAX_PERIOD(1): > + step = 1; > + break; > + case MC33XS2410_PWM_MAX_PERIOD(1) + 1 ... MC33XS2410_PWM_MAX_PERIOD(0): > + step = 0; > + break; > + } > + > + /* > + * Round up here because a higher count results in a higher frequency > + * and so a smaller period. > + */ > + count = DIV_ROUND_UP((u32)MC33XS2410_PWM_MAX_PERIOD(step), (u32)period); > + return FIELD_PREP(MC33XS2410_PWM_FREQ_STEP, step) | > + FIELD_PREP(MC33XS2410_PWM_FREQ_COUNT, count - 1); > +} > + > +static u64 mc33xs2410_pwm_get_period(u8 reg) > +{ > + u32 freq, code, doubled_steps; > + > + /* > + * steps: > + * - 0 = 0.5Hz > + * - 1 = 2Hz > + * - 2 = 8Hz > + * - 3 = 32Hz > + * frequency = (code + 1) x steps. > + * > + * To avoid losing precision in case steps value is zero, scale the > + * steps value for now by two and keep it in mind when calculating the > + * period that the frequency had been doubled. > + */ > + doubled_steps = 1 << (FIELD_GET(MC33XS2410_PWM_FREQ_STEP, reg) * 2); > + code = FIELD_GET(MC33XS2410_PWM_FREQ_COUNT, reg); > + freq = (code + 1) * doubled_steps; doubled_freq? > + /* Convert frequency to period, considering the doubled frequency. */ > + return DIV_ROUND_UP(2 * NSEC_PER_SEC, freq); > +} > + > +static int mc33xs2410_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, > + const struct pwm_state *state) > +{ > + struct spi_device *spi = pwmchip_get_drvdata(chip); > + u8 reg[4] = { > + MC33XS2410_PWM_FREQ(pwm->hwpwm + 1), > + MC33XS2410_PWM_DC(pwm->hwpwm + 1), > + MC33XS2410_PWM_CTRL1, > + MC33XS2410_PWM_CTRL3 > + }; > + u64 period, duty_cycle; > + int ret, rel_dc; > + u16 rd_val[2]; > + u8 wr_val[4]; > + u8 mask; > + > + period = min(state->period, MC33XS2410_PWM_MAX_PERIOD(0)); > + if (period < MC33XS2410_PWM_MIN_PERIOD) > + return -EINVAL; > + > + ret = mc33xs2410_read_regs(spi, ®[2], MC33XS2410_FRAME_IN_DATA_RD, rd_val, 2); > + if (ret < 0) > + return ret; > + > + /* frequency */ > + wr_val[0] = mc33xs2410_pwm_get_freq(period); > + /* Continue calculations with the possibly truncated period */ > + period = mc33xs2410_pwm_get_period(wr_val[0]); > + > + /* duty cycle */ > + duty_cycle = min(period, state->duty_cycle); > + rel_dc = div64_u64(duty_cycle * 256, period) - 1; > + if (rel_dc < 0) > + wr_val[1] = 0; > + else > + wr_val[1] = rel_dc; > + > + /* polarity */ > + mask = MC33XS2410_PWM_CTRL1_POL_INV(pwm->hwpwm + 1); > + wr_val[2] = (state->polarity == PWM_POLARITY_INVERSED) ? > + (rd_val[0] | mask) : (rd_val[0] & ~mask); > + > + /* > + * As the hardware cannot generate a 0% relative duty cycle but emits a > + * constant low signal when disabled, also disable in the duty_cycle = 0 > + * case. > + */ > + mask = MC33XS2410_PWM_CTRL3_EN(pwm->hwpwm + 1); > + wr_val[3] = (state->enabled && rel_dc >= 0) ? (rd_val[1] | mask) : > + (rd_val[1] & ~mask); This is wrong for inversed polarity I think. > + return mc33xs2410_write_regs(spi, reg, wr_val, 4); > +} > + > [..] > +static int mc33xs2410_probe(struct spi_device *spi) > +{ > + struct device *dev = &spi->dev; > + struct pwm_chip *chip; > + int ret; > + > + chip = devm_pwmchip_alloc(dev, 4, 0); > + if (IS_ERR(chip)) > + return PTR_ERR(chip); > + > + spi->bits_per_word = 16; > + spi->mode |= SPI_CS_WORD; > + ret = spi_setup(spi); > + if (ret < 0) > + return ret; > + > + pwmchip_set_drvdata(chip, spi); > + chip->ops = &mc33xs2410_pwm_ops; > + ret = mc33xs2410_reset(dev); What does this reset? Does it change the output signal if the bootloader already setup the hardware? The answer to that has to go into a comment. (And if it interupts the output, better skip the reset part.) > + if (ret) > + return ret; Best regards Uwe
Attachment:
signature.asc
Description: PGP signature