On 06/12/2024 09:09:53+0200, Ciprian Costea wrote: > +/* > + * S32G2 and S32G3 SoCs have RTC clock source1 reserved and > + * should not be used. > + */ > +#define RTC_CLK_SRC1_RESERVED BIT(1) > + > +enum { > + DIV1 = 1, > + DIV32 = 32, > + DIV512 = 512, > + DIV512_32 = 16384 > +}; > + > +static const char *rtc_clk_src[RTC_CLK_MUX_SIZE] = { > + "source0", > + "source1", > + "source2", > + "source3" > +}; > + > +struct rtc_time_base { > + s64 sec; > + u64 cycles; > + struct rtc_time tm; I don't think storing an rtc_time is necessary. I don't even think cycles is necessary. > +}; > + > +struct rtc_priv { > + struct rtc_device *rdev; > + void __iomem *rtc_base; > + struct clk *ipg; > + struct clk *clk_src; > + const struct rtc_soc_data *rtc_data; > + struct rtc_time_base base; > + u64 rtc_hz; > + int irq; > + int clk_src_idx; > +}; > + > +struct rtc_soc_data { > + u32 clk_div; > + u32 reserved_clk_mask; > +}; > + > +static const struct rtc_soc_data rtc_s32g2_data = { > + .clk_div = DIV512, If you input clock rate is higher that 16kHz, why don't you divide by 16384? > + .reserved_clk_mask = RTC_CLK_SRC1_RESERVED, > +}; > + > +static u64 cycles_to_sec(u64 hz, u64 cycles) > +{ > + return div_u64(cycles, hz); > +} > + > +/** > + * sec_to_rtcval - Convert a number of seconds to a value suitable for > + * RTCVAL in our clock's > + * current configuration. > + * @priv: Pointer to the 'rtc_priv' structure > + * @seconds: Number of seconds to convert > + * @rtcval: The value to go into RTCVAL[RTCVAL] > + * > + * Return: 0 for success, -EINVAL if @seconds push the counter past the > + * 32bit register range > + */ > +static int sec_to_rtcval(const struct rtc_priv *priv, > + unsigned long seconds, u32 *rtcval) > +{ > + u32 delta_cnt; > + > + if (!seconds || seconds > cycles_to_sec(priv->rtc_hz, RTCCNT_MAX_VAL)) > + return -EINVAL; > + > + /* > + * RTCCNT is read-only; we must return a value relative to the > + * current value of the counter (and hope we don't linger around > + * too much before we get to enable the interrupt) > + */ > + delta_cnt = seconds * priv->rtc_hz; > + *rtcval = delta_cnt + ioread32(priv->rtc_base + RTCCNT_OFFSET); > + > + return 0; > +} > + > +static irqreturn_t s32g_rtc_handler(int irq, void *dev) > +{ > + struct rtc_priv *priv = platform_get_drvdata(dev); > + u32 status; > + > + status = ioread32(priv->rtc_base + RTCS_OFFSET); > + > + if (status & RTCS_RTCF) { > + iowrite32(0x0, priv->rtc_base + RTCVAL_OFFSET); > + iowrite32(status | RTCS_RTCF, priv->rtc_base + RTCS_OFFSET); > + rtc_update_irq(priv->rdev, 1, RTC_AF); > + } > + > + if (status & RTCS_APIF) { > + iowrite32(status | RTCS_APIF, priv->rtc_base + RTCS_OFFSET); > + rtc_update_irq(priv->rdev, 1, RTC_PF); I don't think you use APIF as a periodic interrupt so it doesn't really make sense to use RTC_PF instead of RTC_AF. > + } > + > + return IRQ_HANDLED; > +} > + > +static s64 s32g_rtc_get_time_or_alrm(struct rtc_priv *priv, > + u32 offset) > +{ > + u32 counter; > + > + counter = ioread32(priv->rtc_base + offset); > + > + if (counter < priv->base.cycles) > + return -EINVAL; > + > + counter -= priv->base.cycles; > + > + return priv->base.sec + cycles_to_sec(priv->rtc_hz, counter); > +} > + > +static int s32g_rtc_read_time(struct device *dev, > + struct rtc_time *tm) > +{ > + struct rtc_priv *priv = dev_get_drvdata(dev); > + s64 sec; > + > + sec = s32g_rtc_get_time_or_alrm(priv, RTCCNT_OFFSET); > + if (sec < 0) > + return -EINVAL; > + > + rtc_time64_to_tm(sec, tm); > + > + return 0; > +} > + > +static int s32g_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) > +{ > + struct rtc_priv *priv = dev_get_drvdata(dev); > + u32 rtcc, rtccnt, rtcval; > + s64 sec; > + > + sec = s32g_rtc_get_time_or_alrm(priv, RTCVAL_OFFSET); > + if (sec < 0) > + return -EINVAL; > + > + rtc_time64_to_tm(sec, &alrm->time); > + > + rtcc = ioread32(priv->rtc_base + RTCC_OFFSET); > + alrm->enabled = sec && (rtcc & RTCC_RTCIE); > + > + alrm->pending = 0; > + if (alrm->enabled) { > + rtccnt = ioread32(priv->rtc_base + RTCCNT_OFFSET); > + rtcval = ioread32(priv->rtc_base + RTCVAL_OFFSET); > + > + if (rtccnt < rtcval) > + alrm->pending = 1; This limits the range of your alarm, why don't you simply check whether RTCF is set? > + } > + > + return 0; > +} > + > +static int s32g_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) > +{ > + struct rtc_priv *priv = dev_get_drvdata(dev); > + u32 rtcc; > + > + if (!priv->irq) > + return -EIO; This will never happen as you are not letting probe finish when you can't request the irq. > + > + rtcc = ioread32(priv->rtc_base + RTCC_OFFSET); > + if (enabled) > + rtcc |= RTCC_RTCIE; > + > + iowrite32(rtcc, priv->rtc_base + RTCC_OFFSET); > + > + return 0; > +} > + > +static int s32g_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) > +{ > + struct rtc_priv *priv = dev_get_drvdata(dev); > + struct rtc_time time_crt; > + long long t_crt, t_alrm; > + u32 rtcval, rtcs; > + int ret = 0; > + > + iowrite32(0x0, priv->rtc_base + RTCVAL_OFFSET); > + > + t_alrm = rtc_tm_to_time64(&alrm->time); > + > + /* > + * Assuming the alarm is being set relative to the same time > + * returned by our s32g_rtc_read_time callback > + */ > + ret = s32g_rtc_read_time(dev, &time_crt); > + if (ret) > + return ret; > + > + t_crt = rtc_tm_to_time64(&time_crt); > + ret = sec_to_rtcval(priv, t_alrm - t_crt, &rtcval); > + if (ret) { > + dev_warn(dev, "Alarm is set too far in the future\n"); > + return -ERANGE; > + } > + > + ret = read_poll_timeout(ioread32, rtcs, !(rtcs & RTCS_INV_RTC), > + 0, RTC_SYNCH_TIMEOUT, false, priv->rtc_base + RTCS_OFFSET); > + if (ret) > + return ret; > + > + iowrite32(rtcval, priv->rtc_base + RTCVAL_OFFSET); > + > + return 0; > +} > + > +static int s32g_rtc_set_time(struct device *dev, > + struct rtc_time *time) > +{ > + struct rtc_priv *priv = dev_get_drvdata(dev); > + > + priv->base.cycles = ioread32(priv->rtc_base + RTCCNT_OFFSET); > + priv->base.sec = rtc_tm_to_time64(time); > + To simplify all the calculations you are doing, I suggest you reset RTCCNT here and store the epoch of the rtc as a number of seconds. This wll allow you to avoid having to read the counter in set_alarm also, you then get a direct conversion for RTCVAL as this will simply be rtc_tm_to_time64(&alrm->time) - epoch that you have to convert in cycles You will also then know right away whether this is too large to fit in a 32bit register. > + return 0; > +} > + > +/* > + * Disable the 32-bit free running counter. > + * This allows Clock Source and Divisors selection > + * to be performed without causing synchronization issues. > + */ > +static void s32g_rtc_disable(struct rtc_priv *priv) > +{ > + u32 rtcc = ioread32(priv->rtc_base + RTCC_OFFSET); > + > + rtcc &= ~RTCC_CNTEN; > + iowrite32(rtcc, priv->rtc_base + RTCC_OFFSET); > +} > + > +static void s32g_rtc_enable(struct rtc_priv *priv) > +{ > + u32 rtcc = ioread32(priv->rtc_base + RTCC_OFFSET); > + > + rtcc |= RTCC_CNTEN; > + iowrite32(rtcc, priv->rtc_base + RTCC_OFFSET); > +} > + > +static int rtc_clk_src_setup(struct rtc_priv *priv) > +{ > + u32 rtcc = 0; > + > + if (priv->rtc_data->reserved_clk_mask & (1 << priv->clk_src_idx)) > + return -EOPNOTSUPP; > + > + rtcc = FIELD_PREP(RTCC_CLKSEL_MASK, priv->clk_src_idx); > + > + switch (priv->rtc_data->clk_div) { > + case DIV512_32: > + rtcc |= RTCC_DIV512EN; > + rtcc |= RTCC_DIV32EN; > + break; > + case DIV512: > + rtcc |= RTCC_DIV512EN; > + break; > + case DIV32: > + rtcc |= RTCC_DIV32EN; > + break; > + case DIV1: > + break; > + default: > + return -EINVAL; > + } > + > + rtcc |= RTCC_RTCIE; > + /* > + * Make sure the CNTEN is 0 before we configure > + * the clock source and dividers. > + */ > + s32g_rtc_disable(priv); > + iowrite32(rtcc, priv->rtc_base + RTCC_OFFSET); > + s32g_rtc_enable(priv); > + > + return 0; > +} > + > +static const struct rtc_class_ops rtc_ops = { > + .read_time = s32g_rtc_read_time, > + .set_time = s32g_rtc_set_time, > + .read_alarm = s32g_rtc_read_alarm, > + .set_alarm = s32g_rtc_set_alarm, > + .alarm_irq_enable = s32g_rtc_alarm_irq_enable, > +}; > + > +static int rtc_clk_dts_setup(struct rtc_priv *priv, > + struct device *dev) > +{ > + int i; > + > + priv->ipg = devm_clk_get_enabled(dev, "ipg"); > + if (IS_ERR(priv->ipg)) > + return dev_err_probe(dev, PTR_ERR(priv->ipg), > + "Failed to get 'ipg' clock\n"); > + > + for (i = 0; i < RTC_CLK_MUX_SIZE; i++) { > + priv->clk_src = devm_clk_get_enabled(dev, rtc_clk_src[i]); > + if (!IS_ERR(priv->clk_src)) { > + priv->clk_src_idx = i; > + break; > + } > + } > + > + if (IS_ERR(priv->clk_src)) > + return dev_err_probe(dev, PTR_ERR(priv->clk_src), > + "Failed to get rtc module clock source\n"); > + > + return 0; > +} > + > +static int s32g_rtc_probe(struct platform_device *pdev) > +{ > + struct device *dev = &pdev->dev; > + struct rtc_priv *priv; > + int ret = 0; > + > + priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); > + if (!priv) > + return -ENOMEM; > + > + priv->rtc_data = of_device_get_match_data(dev); > + if (!priv->rtc_data) > + return -ENODEV; > + > + priv->rtc_base = devm_platform_ioremap_resource(pdev, 0); > + if (IS_ERR(priv->rtc_base)) > + return PTR_ERR(priv->rtc_base); > + > + device_init_wakeup(dev, true); > + > + ret = rtc_clk_dts_setup(priv, dev); > + if (ret) > + return ret; > + > + priv->rdev = devm_rtc_allocate_device(dev); > + if (IS_ERR(priv->rdev)) > + return PTR_ERR(priv->rdev); > + > + ret = rtc_clk_src_setup(priv); > + if (ret) > + return ret; > + > + priv->rtc_hz = clk_get_rate(priv->clk_src); > + if (!priv->rtc_hz) { > + dev_err(dev, "Failed to get RTC frequency\n"); > + ret = -EINVAL; > + goto disable_rtc; > + } > + > + priv->rtc_hz /= priv->rtc_data->clk_div; > + > + platform_set_drvdata(pdev, priv); > + priv->rdev->ops = &rtc_ops; > + > + priv->irq = platform_get_irq(pdev, 0); > + if (priv->irq < 0) { > + ret = priv->irq; > + goto disable_rtc; > + } > + > + ret = devm_request_irq(dev, priv->irq, > + s32g_rtc_handler, 0, dev_name(dev), pdev); > + if (ret) { > + dev_err(dev, "Request interrupt %d failed, error: %d\n", > + priv->irq, ret); > + goto disable_rtc; > + } > + > + ret = devm_rtc_register_device(priv->rdev); > + if (ret) > + goto disable_rtc; > + > + return 0; > + > +disable_rtc: > + s32g_rtc_disable(priv); > + return ret; > +} > + > +static void s32g_enable_api_irq(struct device *dev, unsigned int enabled) > +{ > + struct rtc_priv *priv = dev_get_drvdata(dev); > + u32 api_irq = RTCC_APIEN | RTCC_APIIE; > + u32 rtcc; > + > + rtcc = ioread32(priv->rtc_base + RTCC_OFFSET); > + if (enabled) > + rtcc |= api_irq; > + else > + rtcc &= ~api_irq; > + iowrite32(rtcc, priv->rtc_base + RTCC_OFFSET); > +} > + > +static int s32g_rtc_suspend(struct device *dev) > +{ > + struct rtc_priv *init_priv = dev_get_drvdata(dev); > + struct rtc_priv priv; > + long long base_sec; > + u32 rtcval, rtccnt, offset; > + int ret = 0; > + u32 sec; > + > + if (!device_may_wakeup(dev)) > + return 0; > + > + /* Save last known timestamp */ > + ret = s32g_rtc_read_time(dev, &init_priv->base.tm); > + if (ret) > + return ret; I don't think that whole calculation is necessary as you are never actually resetting RTCCNT in suspend > + > + /* > + * Use a local copy of the RTC control block to > + * avoid restoring it on resume path. > + */ > + memcpy(&priv, init_priv, sizeof(priv)); > + > + rtccnt = ioread32(init_priv->rtc_base + RTCCNT_OFFSET); > + rtcval = ioread32(init_priv->rtc_base + RTCVAL_OFFSET); > + offset = rtcval - rtccnt; > + sec = cycles_to_sec(init_priv->rtc_hz, offset); > + > + /* Adjust for the number of seconds we'll be asleep */ > + base_sec = rtc_tm_to_time64(&init_priv->base.tm); > + base_sec += sec; > + rtc_time64_to_tm(base_sec, &init_priv->base.tm); > + > + ret = sec_to_rtcval(&priv, sec, &rtcval); > + if (ret) { > + dev_warn(dev, "Alarm is too far in the future\n"); > + return -ERANGE; > + } > + > + s32g_enable_api_irq(dev, 1); > + iowrite32(offset, priv.rtc_base + APIVAL_OFFSET); What about always using APIVAL instead of RTCVAL so you don't have anything to do in s32g_rtc_suspend. > + > + return ret; > +} > + > +static int s32g_rtc_resume(struct device *dev) > +{ > + struct rtc_priv *priv = dev_get_drvdata(dev); > + int ret; > + > + if (!device_may_wakeup(dev)) > + return 0; > + > + /* Disable wake-up interrupts */ > + s32g_enable_api_irq(dev, 0); > + > + ret = rtc_clk_src_setup(priv); > + if (ret) > + return ret; I don't think this is necessary. > + > + /* > + * Now RTCCNT has just been reset, and is out of sync with priv->base; > + * reapply the saved time settings. > + */ > + return s32g_rtc_set_time(dev, &priv->base.tm); And so this is useless too so yo udon't actually have anything to do in s32g_rtc_resume. > +} > + > +static const struct of_device_id rtc_dt_ids[] = { > + { .compatible = "nxp,s32g2-rtc", .data = &rtc_s32g2_data}, > + { /* sentinel */ }, > +}; > + > +static DEFINE_SIMPLE_DEV_PM_OPS(s32g_rtc_pm_ops, > + s32g_rtc_suspend, s32g_rtc_resume); > + > +static struct platform_driver s32g_rtc_driver = { > + .driver = { > + .name = "s32g-rtc", > + .pm = pm_sleep_ptr(&s32g_rtc_pm_ops), > + .of_match_table = rtc_dt_ids, > + }, > + .probe = s32g_rtc_probe, > +}; > +module_platform_driver(s32g_rtc_driver); > + > +MODULE_AUTHOR("NXP"); > +MODULE_DESCRIPTION("NXP RTC driver for S32G2/S32G3"); > +MODULE_LICENSE("GPL"); > -- > 2.45.2 > -- Alexandre Belloni, co-owner and COO, Bootlin Embedded Linux and Kernel engineering https://bootlin.com