Current OPP (Operating performance point) DT bindings are proven to be insufficient at multiple instances. There had been multiple band-aid approaches to get them fixed (The latest one being: http://www.mail-archive.com/devicetree@xxxxxxxxxxxxxxx/msg53398.html). For obvious reasons Rob rejected them and shown the right path forward. The shortcomings we are trying to solve here: - How to select which driver to probe for a platform, when multiple drivers are available. For example: how to choose between cpufreq-dt and arm_big_little drivers. - Getting clock sharing information between CPUs. Single shared clock vs independent clock per core vs shared clock per cluster. - Support for turbo modes - Support for intermediate frequencies or OPPs we can switch to. - Other per OPP settings: transition latencies, disabled status, etc.? Please see the below bindings for further details. Signed-off-by: Viresh Kumar <viresh.kumar@xxxxxxxxxx> --- V2-V3: - drop list-nodes - opp-microvolt is an array now, also is optional. - New shared-opp property - compatible property clearly defined - opp-next instead of intermediate-property I will circulate code as well, once this is accepted/applied. Documentation/devicetree/bindings/power/opp.txt | 407 +++++++++++++++++++++++- 1 file changed, 403 insertions(+), 4 deletions(-) diff --git a/Documentation/devicetree/bindings/power/opp.txt b/Documentation/devicetree/bindings/power/opp.txt index 74499e5033fc..a64621819d7c 100644 --- a/Documentation/devicetree/bindings/power/opp.txt +++ b/Documentation/devicetree/bindings/power/opp.txt @@ -1,8 +1,407 @@ -* Generic OPP Interface +Generic OPP (Operating Performance Points) Bindings +---------------------------------------------------- -SoCs have a standard set of tuples consisting of frequency and -voltage pairs that the device will support per voltage domain. These -are called Operating Performance Points or OPPs. +Devices work at voltage-frequency pairs and some implementations have the +liberty of choosing these pairs. These pairs are called Operating Performance +Points aka OPPs. This document defines bindings for these OPPs applicable across +wide range of devices. For illustration purpose, this document uses CPU as a +device. + + +* Property: operating-points-v2 + +Devices supporting OPPs must set their "operating-points-v2" property with +phandle to a OPP descriptor in their DT node. The OPP core will use this phandle +to find the operating points for the device. + + +* OPP Descriptor Node + +This describes the OPPs belonging to a device. This node can have following +properties: + +Required properties: +- compatible: Allow OPPs to express their compatibility. It should be: + "operating-points-v2". +- OPP nodes: One or more OPP nodes describing frequency-voltage pairs. Their + name isn't significant but their phandles can be used to reference an OPP. + +Optional properties: +- shared-opp: Indicates that device nodes using this OPP descriptor's phandle + switch their DVFS state together, i.e. they share clock lines. Missing + property means devices have independent clock lines, but they share OPPs. + + +* OPP Node + +This defines frequency-voltage pairs along with other related properties. + +Required properties: +- opp-khz: Frequency in kHz + +Optional properties: +- opp-microvolt: voltage in micro Volts. Its an array with size one or three. + Single entry is for target voltage and three entries are for (in the specified + order) <target min max> voltage. +- clock-latency-ns: Specifies the maximum possible transition latency (in + nanoseconds) for switching to this OPP from any other OPP. +- opp-next: It contains a list of phandles of other OPPs, to which we can switch + directly from this OPP (Explained later with examples). Missing property means + no restriction on switching to other OPPs. +- turbo-mode: Marks the OPP to be used only for turbo modes. +- status: Marks the node enabled/disabled. + +Example 1: Single cluster Dual-core ARM cortex A9, switch DVFS states together. + +/ { + cpus { + #address-cells = <1>; + #size-cells = <0>; + + cpu@0 { + compatible = "arm,cortex-a9"; + reg = <0>; + next-level-cache = <&L2>; + clocks = <&clk_controller 0>; + clock-names = "cpu"; + opp-supply = <&cpu_supply0>; + operating-points-v2 = <&cpu0_opp>; + }; + + cpu@1 { + compatible = "arm,cortex-a9"; + reg = <1>; + next-level-cache = <&L2>; + clocks = <&clk_controller 0>; + clock-names = "cpu"; + opp-supply = <&cpu_supply0>; + operating-points-v2 = <&cpu0_opp>; + }; + }; + + cpu0_opp: opp0 { + compatible = "operating-points-v2"; + shared-opp; + + entry00 { + opp-khz = <1000000>; + opp-microvolt = <970000 975000 985000>; + clock-latency-ns = <300000>; + }; + entry01 { + opp-khz = <1100000>; + opp-microvolt = <980000 1000000 1010000>; + clock-latency-ns = <310000>; + }; + entry02 { + opp-khz = <1200000>; + opp-microvolt = <1025000>; + clock-latency-ns = <290000>; + turbo-mode; + }; + }; +}; + +Example 2: Single cluster, Quad-core Qualcom-krait, switches DVFS states +independently. + +/ { + cpus { + #address-cells = <1>; + #size-cells = <0>; + + cpu@0 { + compatible = "qcom,krait"; + reg = <0>; + next-level-cache = <&L2>; + clocks = <&clk_controller 0>; + clock-names = "cpu"; + opp-supply = <&cpu_supply0>; + operating-points-v2 = <&cpu0_opp>; + }; + + cpu@1 { + compatible = "qcom,krait"; + reg = <1>; + next-level-cache = <&L2>; + clocks = <&clk_controller 1>; + clock-names = "cpu"; + opp-supply = <&cpu_supply1>; + operating-points-v2 = <&cpu0_opp>; + }; + + cpu@2 { + compatible = "qcom,krait"; + reg = <2>; + next-level-cache = <&L2>; + clocks = <&clk_controller 2>; + clock-names = "cpu"; + opp-supply = <&cpu_supply2>; + operating-points-v2 = <&cpu0_opp>; + }; + + cpu@3 { + compatible = "qcom,krait"; + reg = <3>; + next-level-cache = <&L2>; + clocks = <&clk_controller 3>; + clock-names = "cpu"; + opp-supply = <&cpu_supply3>; + operating-points-v2 = <&cpu0_opp>; + }; + }; + + cpu0_opp: opp0 { + compatible = "operating-points-v2"; + + /* + * Missing shared-opp property means CPUs switch DVFS states + * independently. + */ + + entry00 { + opp-khz = <1000000>; + opp-microvolt = <970000 975000 985000>; + clock-latency-ns = <300000>; + }; + entry01 { + opp-khz = <1100000>; + opp-microvolt = <980000 1000000 1010000>; + clock-latency-ns = <310000>; + }; + entry02 { + opp-khz = <1200000>; + opp-microvolt = <1025000>; + clock-latency-ns = <290000>; + turbo-mode; + }; + }; +}; + +Example 3: Dual-cluster, Dual-core per cluster. CPUs within a cluster switch +DVFS state together. + +/ { + cpus { + #address-cells = <1>; + #size-cells = <0>; + + cpu@0 { + compatible = "arm,cortex-a7"; + reg = <0>; + next-level-cache = <&L2>; + clocks = <&clk_controller 0>; + clock-names = "cpu"; + opp-supply = <&cpu_supply0>; + operating-points-v2 = <&cluster0_opp>; + }; + + cpu@1 { + compatible = "arm,cortex-a7"; + reg = <1>; + next-level-cache = <&L2>; + clocks = <&clk_controller 0>; + clock-names = "cpu"; + opp-supply = <&cpu_supply0>; + operating-points-v2 = <&cluster0_opp>; + }; + + cpu@100 { + compatible = "arm,cortex-a15"; + reg = <100>; + next-level-cache = <&L2>; + clocks = <&clk_controller 1>; + clock-names = "cpu"; + opp-supply = <&cpu_supply1>; + operating-points-v2 = <&cluster1_opp>; + }; + + cpu@101 { + compatible = "arm,cortex-a15"; + reg = <101>; + next-level-cache = <&L2>; + clocks = <&clk_controller 1>; + clock-names = "cpu"; + opp-supply = <&cpu_supply1>; + operating-points-v2 = <&cluster1_opp>; + }; + }; + + cluster0_opp: opp0 { + compatible = "operating-points-v2"; + shared-opp; + + entry00 { + opp-khz = <1000000>; + opp-microvolt = <970000 975000 985000>; + clock-latency-ns = <300000>; + }; + entry01 { + opp-khz = <1100000>; + opp-microvolt = <980000 1000000 1010000>; + clock-latency-ns = <310000>; + }; + entry02 { + opp-khz = <1200000>; + opp-microvolt = <1025000>; + clock-latency-ns = <290000>; + turbo-mode; + }; + }; + + cluster1_opp: opp1 { + compatible = "operating-points-v2"; + shared-opp; + + entry10 { + opp-khz = <1300000>; + opp-microvolt = <1045000 1050000 1055000>; + clock-latency-ns = <400000>; + }; + entry11 { + opp-khz = <1400000>; + opp-microvolt = <1075000>; + clock-latency-ns = <400000>; + }; + entry12 { + opp-khz = <1500000>; + opp-microvolt = <1010000 1100000 1110000>; + clock-latency-ns = <400000>; + turbo-mode; + }; + }; +}; + +Example 4: How to use "opp-next" property ? + +1.) Switch to a intermediate OPP (entry00) before switching to any other OPP. + +/ { + cpus { + #address-cells = <1>; + #size-cells = <0>; + + cpu@0 { + compatible = "arm,cortex-a7"; + reg = <0>; + next-level-cache = <&L2>; + clocks = <&clk_controller 0>; + clock-names = "cpu"; + opp-supply = <&cpu_supply0>; + operating-points-v2 = <&cpu0_opp>; + }; + }; + + cpu0_opp: opp0 { + compatible = "operating-points-v2"; + shared-opp; + + opp_next: entry00 { + opp-khz = <500000>; + opp-microvolt = <800000>; + clock-latency-ns = <300000>; + /* Can switch to any OPP from here */ + }; + entry01 { + opp-khz = <600000>; + opp-microvolt = <800000>; + clock-latency-ns = <300000>; + opp-next = <&opp_next>; + }; + entry02 { + opp-khz = <900000>; + opp-microvolt = <970000 975000 985000>; + clock-latency-ns = <300000>; + opp-next = <&opp_next>; + }; + entry03 { + opp-khz = <1000000>; + opp-microvolt = <970000 975000 985000>; + clock-latency-ns = <300000>; + opp-next = <&opp_next>; + }; + entry04 { + opp-khz = <1100000>; + opp-microvolt = <980000 1000000 1010000>; + clock-latency-ns = <310000>; + opp-next = <&opp_next>; + }; + entry05 { + opp-khz = <1200000>; + opp-microvolt = <1025000>; + clock-latency-ns = <290000>; + opp-next = <&opp_next>; + turbo-mode; + }; + }; +}; + +2.) Can only switch to the next or previous OPP directly. + +/ { + cpus { + #address-cells = <1>; + #size-cells = <0>; + + cpu@0 { + compatible = "arm,cortex-a7"; + reg = <0>; + next-level-cache = <&L2>; + clocks = <&clk_controller 0>; + clock-names = "cpu"; + opp-supply = <&cpu_supply0>; + operating-points-v2 = <&cpu0_opp>; + }; + }; + + cpu0_opp: opp0 { + compatible = "operating-points-v2"; + shared-opp; + + opp_next0: entry00 { + opp-khz = <500000>; + opp-microvolt = <800000>; + clock-latency-ns = <300000>; + opp-next = <&opp_next1>; + }; + opp_next1: entry01 { + opp-khz = <600000>; + opp-microvolt = <800000>; + clock-latency-ns = <300000>; + opp-next = <&opp_next0>, <&opp_next2>; + }; + opp_next2: entry02 { + opp-khz = <900000>; + opp-microvolt = <970000 975000 985000>; + clock-latency-ns = <300000>; + opp-next = <&opp_next1>, <&opp_next3>; + }; + opp_next3: entry03 { + opp-khz = <1000000>; + opp-microvolt = <970000 975000 985000>; + clock-latency-ns = <300000>; + opp-next = <&opp_next2>, <&opp_next4>; + }; + opp_next4: entry04 { + opp-khz = <1100000>; + opp-microvolt = <980000 1000000 1010000>; + clock-latency-ns = <310000>; + opp-next = <&opp_next3>, <&opp_next5>; + }; + opp_next5: entry05 { + opp-khz = <1200000>; + opp-microvolt = <1025000>; + clock-latency-ns = <290000>; + opp-next = <&opp_next4>; + turbo-mode; + }; + }; +}; + + + +Deprecated Bindings +------------------- Properties: - operating-points: An array of 2-tuples items, and each item consists -- 2.3.0.rc0.44.ga94655d -- To unsubscribe from this list: send the line "unsubscribe devicetree" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html