On Mon, Aug 07, 2023 at 11:45:28PM -0500, Hari Nagalla wrote: > From: Martyn Welch <martyn.welch@xxxxxxxxxxxxx> > > In the next commit we will be adding the M4F driver which shares a lot of > commonality with the DSP driver. Split this shared functionality out so > that it can be used by both drivers. > > Signed-off-by: Martyn Welch <martyn.welch@xxxxxxxxxxxxx> > Signed-off-by: Hari Nagalla <hnagalla@xxxxxx> > --- > Changes since v2: > - New patch (reordered refactored from v2) > > Changes since v3: > - Removed "ipc_only" element from k3_rproc structure > - Refactored to bring 3 more common functions > > Changes since v4: > - None > > drivers/remoteproc/Makefile | 2 +- > drivers/remoteproc/ti_k3_common.c | 513 +++++++++++++++++++ > drivers/remoteproc/ti_k3_common.h | 103 ++++ > drivers/remoteproc/ti_k3_dsp_remoteproc.c | 598 ++-------------------- > 4 files changed, 646 insertions(+), 570 deletions(-) > create mode 100644 drivers/remoteproc/ti_k3_common.c > create mode 100644 drivers/remoteproc/ti_k3_common.h This patch is hard to follow because of all the things it does. Please do the structures in one patch and the functions in another. > > diff --git a/drivers/remoteproc/Makefile b/drivers/remoteproc/Makefile > index 91314a9b43ce..55c552e27a45 100644 > --- a/drivers/remoteproc/Makefile > +++ b/drivers/remoteproc/Makefile > @@ -36,6 +36,6 @@ obj-$(CONFIG_RCAR_REMOTEPROC) += rcar_rproc.o > obj-$(CONFIG_ST_REMOTEPROC) += st_remoteproc.o > obj-$(CONFIG_ST_SLIM_REMOTEPROC) += st_slim_rproc.o > obj-$(CONFIG_STM32_RPROC) += stm32_rproc.o > -obj-$(CONFIG_TI_K3_DSP_REMOTEPROC) += ti_k3_dsp_remoteproc.o > +obj-$(CONFIG_TI_K3_DSP_REMOTEPROC) += ti_k3_dsp_remoteproc.o ti_k3_common.o > obj-$(CONFIG_TI_K3_R5_REMOTEPROC) += ti_k3_r5_remoteproc.o > obj-$(CONFIG_XLNX_R5_REMOTEPROC) += xlnx_r5_remoteproc.o > diff --git a/drivers/remoteproc/ti_k3_common.c b/drivers/remoteproc/ti_k3_common.c > new file mode 100644 > index 000000000000..3dbf71296950 > --- /dev/null > +++ b/drivers/remoteproc/ti_k3_common.c > @@ -0,0 +1,513 @@ > +// SPDX-License-Identifier: GPL-2.0-only > +/* > + * TI K3 Remote Processor(s) driver common code > + * > + * Refactored from ti_k3_dsp_remoteproc.c. > + * > + * ti_k3_dsp_remoteproc.c: > + * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/ > + * Suman Anna <s-anna@xxxxxx> > + */ > + > +#include <linux/io.h> > +#include <linux/mailbox_client.h> > +#include <linux/module.h> > +#include <linux/of_device.h> > +#include <linux/of_reserved_mem.h> > +#include <linux/omap-mailbox.h> > +#include <linux/platform_device.h> > +#include <linux/remoteproc.h> > +#include <linux/reset.h> > +#include <linux/slab.h> > + > +#include "omap_remoteproc.h" > +#include "remoteproc_internal.h" > +#include "ti_sci_proc.h" > +#include "ti_k3_common.h" > + > +/* > + * Kick the remote processor to notify about pending unprocessed messages. > + * The vqid usage is not used and is inconsequential, as the kick is performed > + * through a simulated GPIO (a bit in an IPC interrupt-triggering register), > + * the remote processor is expected to process both its Tx and Rx virtqueues. > + */ > +void k3_rproc_kick(struct rproc *rproc, int vqid) > +{ > + struct k3_rproc *kproc = rproc->priv; > + struct device *dev = rproc->dev.parent; > + mbox_msg_t msg = (mbox_msg_t)vqid; > + int ret; > + > + /* send the index of the triggered virtqueue in the mailbox payload */ > + ret = mbox_send_message(kproc->mbox, (void *)msg); > + if (ret < 0) > + dev_err(dev, "failed to send mailbox message, status = %d\n", > + ret); > +} > +EXPORT_SYMBOL_GPL(k3_rproc_kick); In ti_k3_dsp_remoteproc.c function k3_dsp_rproc_mbox_callback() is the first one whereas here it is way down in the file. When doing a refactoring such as this one please keep the function order as close as possible to the original file so that it is easier to digest the material. Right now I have to fish out each function from the original file and it is very time consuming. > + > +/* Put the remote processor into reset */ > +int k3_rproc_reset(struct k3_rproc *kproc) > +{ > + struct device *dev = kproc->dev; > + int ret; > + > + ret = reset_control_assert(kproc->reset); > + if (ret) { > + dev_err(dev, "local-reset assert failed, ret = %d\n", ret); > + return ret; > + } > + > + if (kproc->data->uses_lreset) > + return ret; > + > + ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, > + kproc->ti_sci_id); > + if (ret) { > + dev_err(dev, "module-reset assert failed, ret = %d\n", ret); > + if (reset_control_deassert(kproc->reset)) > + dev_warn(dev, "local-reset deassert back failed\n"); > + } > + > + return ret; > +} > +EXPORT_SYMBOL_GPL(k3_rproc_reset); > + > +/* Release the remote processor from reset */ > +int k3_rproc_release(struct k3_rproc *kproc) > +{ > + struct device *dev = kproc->dev; > + int ret; > + > + if (kproc->data->uses_lreset) > + goto lreset; > + > + ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, > + kproc->ti_sci_id); > + if (ret) { > + dev_err(dev, "module-reset deassert failed, ret = %d\n", ret); > + return ret; > + } > + > +lreset: > + ret = reset_control_deassert(kproc->reset); > + if (ret) { > + dev_err(dev, "local-reset deassert failed, ret = %d\n", ret); > + if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, > + kproc->ti_sci_id)) > + dev_warn(dev, "module-reset assert back failed\n"); > + } > + > + return ret; > +} > +EXPORT_SYMBOL_GPL(k3_rproc_release); > + > +/* > + * This function implements the .get_loaded_rsc_table() callback and is used > + * to provide the resource table for a booted remote processor in IPC-only > + * mode. The remote processor firmwares follow a design-by-contract approach > + * and are expected to have the resource table at the base of the DDR region > + * reserved for firmware usage. This provides flexibility for the remote > + * processor to be booted by different bootloaders that may or may not have the > + * ability to publish the resource table address and size through a DT > + * property. > + */ > +struct resource_table *k3_get_loaded_rsc_table(struct rproc *rproc, > + size_t *rsc_table_sz) > +{ > + struct k3_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + > + if (!kproc->rmem[0].cpu_addr) { > + dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); > + return ERR_PTR(-ENOMEM); > + } > + > + /* > + * NOTE: The resource table size is currently hard-coded to a maximum > + * of 256 bytes. The most common resource table usage for K3 firmwares > + * is to only have the vdev resource entry and an optional trace entry. > + * The exact size could be computed based on resource table address, but > + * the hard-coded value suffices to support the IPC-only mode. > + */ > + *rsc_table_sz = 256; > + return (struct resource_table *)kproc->rmem[0].cpu_addr; > +} > +EXPORT_SYMBOL_GPL(k3_get_loaded_rsc_table); > + > +/* > + * Custom function to translate a remote processor device address (internal > + * RAMs only) to a kernel virtual address. The remote processors can access > + * their RAMs at either an internal address visible only from a remote > + * processor, or at the SoC-level bus address. Both these addresses need to be > + * looked through for translation. The translated addresses can be used either > + * by the remoteproc core for loading (when using kernel remoteproc loader), or > + * by any rpmsg bus drivers. > + */ > +void *k3_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) > +{ > + struct k3_rproc *kproc = rproc->priv; > + void __iomem *va = NULL; > + phys_addr_t bus_addr; > + u32 dev_addr, offset; > + size_t size; > + int i; > + > + if (len == 0) > + return NULL; > + > + for (i = 0; i < kproc->num_mems; i++) { > + bus_addr = kproc->mem[i].bus_addr; > + dev_addr = kproc->mem[i].dev_addr; > + size = kproc->mem[i].size; > + > + if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) { > + /* handle remote-view addresses */ > + if (da >= dev_addr && > + ((da + len) <= (dev_addr + size))) { > + offset = da - dev_addr; > + va = kproc->mem[i].cpu_addr + offset; > + return (__force void *)va; > + } > + } else { > + /* handle SoC-view addresses */ > + if (da >= bus_addr && > + (da + len) <= (bus_addr + size)) { > + offset = da - bus_addr; > + va = kproc->mem[i].cpu_addr + offset; > + return (__force void *)va; > + } > + } > + } > + > + /* handle static DDR reserved memory regions */ > + for (i = 0; i < kproc->num_rmems; i++) { > + dev_addr = kproc->rmem[i].dev_addr; > + size = kproc->rmem[i].size; > + > + if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { > + offset = da - dev_addr; > + va = kproc->rmem[i].cpu_addr + offset; > + return (__force void *)va; > + } > + } > + > + return NULL; > +} > +EXPORT_SYMBOL_GPL(k3_rproc_da_to_va); > + > +int k3_rproc_of_get_memories(struct platform_device *pdev, > + struct k3_rproc *kproc) > +{ > + const struct k3_rproc_dev_data *data = kproc->data; > + struct device *dev = &pdev->dev; > + struct resource *res; > + int num_mems = 0; > + int i; > + > + num_mems = kproc->data->num_mems; > + kproc->mem = devm_kcalloc(kproc->dev, num_mems, > + sizeof(*kproc->mem), GFP_KERNEL); > + if (!kproc->mem) > + return -ENOMEM; > + > + for (i = 0; i < num_mems; i++) { > + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, > + data->mems[i].name); > + if (!res) { > + dev_err(dev, "found no memory resource for %s\n", > + data->mems[i].name); > + return -EINVAL; > + } > + if (!devm_request_mem_region(dev, res->start, > + resource_size(res), > + dev_name(dev))) { > + dev_err(dev, "could not request %s region for resource\n", > + data->mems[i].name); > + return -EBUSY; > + } > + > + kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, > + resource_size(res)); > + if (!kproc->mem[i].cpu_addr) { > + dev_err(dev, "failed to map %s memory\n", > + data->mems[i].name); > + return -ENOMEM; > + } > + kproc->mem[i].bus_addr = res->start; > + kproc->mem[i].dev_addr = data->mems[i].dev_addr; > + kproc->mem[i].size = resource_size(res); > + > + dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n", > + data->mems[i].name, &kproc->mem[i].bus_addr, > + kproc->mem[i].size, kproc->mem[i].cpu_addr, > + kproc->mem[i].dev_addr); > + } > + kproc->num_mems = num_mems; > + > + return 0; > +} > +EXPORT_SYMBOL_GPL(k3_rproc_of_get_memories); > + > +int k3_reserved_mem_init(struct k3_rproc *kproc) > +{ > + struct device *dev = kproc->dev; > + struct device_node *np = dev->of_node; > + struct device_node *rmem_np; > + struct reserved_mem *rmem; > + int num_rmems; > + int ret, i; > + > + num_rmems = of_property_count_elems_of_size(np, "memory-region", > + sizeof(phandle)); > + if (num_rmems <= 0) { > + dev_err(dev, "device does not reserved memory regions, ret = %d\n", > + num_rmems); > + return -EINVAL; > + } > + if (num_rmems < 2) { > + dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", > + num_rmems); > + return -EINVAL; > + } > + > + /* use reserved memory region 0 for vring DMA allocations */ > + ret = of_reserved_mem_device_init_by_idx(dev, np, 0); > + if (ret) { > + dev_err(dev, "device cannot initialize DMA pool, ret = %d\n", > + ret); > + return ret; > + } > + > + num_rmems--; > + kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); > + if (!kproc->rmem) { > + ret = -ENOMEM; > + goto release_rmem; > + } > + > + /* use remaining reserved memory regions for static carveouts */ > + for (i = 0; i < num_rmems; i++) { > + rmem_np = of_parse_phandle(np, "memory-region", i + 1); > + if (!rmem_np) { > + ret = -EINVAL; > + goto unmap_rmem; > + } > + > + rmem = of_reserved_mem_lookup(rmem_np); > + if (!rmem) { > + of_node_put(rmem_np); > + ret = -EINVAL; > + goto unmap_rmem; > + } > + of_node_put(rmem_np); > + > + kproc->rmem[i].bus_addr = rmem->base; > + /* 64-bit address regions currently not supported */ > + kproc->rmem[i].dev_addr = (u32)rmem->base; > + kproc->rmem[i].size = rmem->size; > + kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); > + if (!kproc->rmem[i].cpu_addr) { > + dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", > + i + 1, &rmem->base, &rmem->size); > + ret = -ENOMEM; > + goto unmap_rmem; > + } > + > + dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", > + i + 1, &kproc->rmem[i].bus_addr, > + kproc->rmem[i].size, kproc->rmem[i].cpu_addr, > + kproc->rmem[i].dev_addr); > + } > + kproc->num_rmems = num_rmems; > + > + return 0; > + > +unmap_rmem: > + for (i--; i >= 0; i--) > + iounmap(kproc->rmem[i].cpu_addr); > + kfree(kproc->rmem); > +release_rmem: > + of_reserved_mem_device_release(kproc->dev); > + return ret; > +} > +EXPORT_SYMBOL_GPL(k3_reserved_mem_init); > + > +void k3_reserved_mem_exit(struct k3_rproc *kproc) > +{ > + int i; > + > + for (i = 0; i < kproc->num_rmems; i++) > + iounmap(kproc->rmem[i].cpu_addr); > + kfree(kproc->rmem); > + > + of_reserved_mem_device_release(kproc->dev); > +} > +EXPORT_SYMBOL_GPL(k3_reserved_mem_exit); > + > +struct ti_sci_proc *k3_rproc_of_get_tsp(struct device *dev, > + const struct ti_sci_handle *sci) > +{ > + struct ti_sci_proc *tsp; > + u32 temp[2]; > + int ret; > + > + ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids", > + temp, 2); > + if (ret < 0) > + return ERR_PTR(ret); > + > + tsp = kzalloc(sizeof(*tsp), GFP_KERNEL); > + if (!tsp) > + return ERR_PTR(-ENOMEM); > + > + tsp->dev = dev; > + tsp->sci = sci; > + tsp->ops = &sci->ops.proc_ops; > + tsp->proc_id = temp[0]; > + tsp->host_id = temp[1]; > + > + return tsp; > +} > +EXPORT_SYMBOL_GPL(k3_rproc_of_get_tsp); > + > +/** > + * k3_rproc_mbox_callback() - inbound mailbox message handler > + * @client: mailbox client pointer used for requesting the mailbox channel > + * @data: mailbox payload > + * > + * This handler is invoked by the K3 mailbox driver whenever a mailbox > + * message is received. Usually, the mailbox payload simply contains > + * the index of the virtqueue that is kicked by the remote processor, > + * and we let remoteproc core handle it. > + * > + * In addition to virtqueue indices, we also have some out-of-band values > + * that indicate different events. Those values are deliberately very > + * large so they don't coincide with virtqueue indices. > + */ > +static void k3_rproc_mbox_callback(struct mbox_client *client, void *data) > +{ > + struct k3_rproc *kproc = container_of(client, struct k3_rproc, > + client); > + struct device *dev = kproc->rproc->dev.parent; > + const char *name = kproc->rproc->name; > + u32 msg = omap_mbox_message(data); > + > + dev_dbg(dev, "mbox msg: 0x%x\n", msg); > + > + switch (msg) { > + case RP_MBOX_CRASH: > + /* > + * remoteproc detected an exception, but error recovery is not > + * supported. So, just log this for now > + */ > + dev_err(dev, "K3 rproc %s crashed\n", name); > + break; > + case RP_MBOX_ECHO_REPLY: > + dev_info(dev, "received echo reply from %s\n", name); > + break; > + default: > + /* silently handle all other valid messages */ > + if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) > + return; > + if (msg > kproc->rproc->max_notifyid) { > + dev_dbg(dev, "dropping unknown message 0x%x", msg); > + return; > + } > + /* msg contains the index of the triggered vring */ > + if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) > + dev_dbg(dev, "no message was found in vqid %d\n", msg); > + } > +} > + > +int k3_rproc_request_mbox(struct rproc *rproc) > +{ > + struct k3_rproc *kproc = rproc->priv; > + struct mbox_client *client = &kproc->client; > + struct device *dev = kproc->dev; > + int ret; > + > + client->dev = dev; > + client->tx_done = NULL; > + client->rx_callback = k3_rproc_mbox_callback; > + client->tx_block = false; > + client->knows_txdone = false; > + > + kproc->mbox = mbox_request_channel(client, 0); > + if (IS_ERR(kproc->mbox)) { > + ret = -EBUSY; > + dev_err(dev, "mbox_request_channel failed: %ld\n", > + PTR_ERR(kproc->mbox)); > + return ret; > + } > + > + /* > + * Ping the remote processor, this is only for sanity-sake for now; > + * there is no functional effect whatsoever. > + * > + * Note that the reply will _not_ arrive immediately: this message > + * will wait in the mailbox fifo until the remote processor is booted. > + */ > + ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); > + if (ret < 0) { > + dev_err(dev, "mbox_send_message failed: %d\n", ret); > + mbox_free_channel(kproc->mbox); > + return ret; > + } > + > + return 0; > +} > +EXPORT_SYMBOL_GPL(k3_rproc_request_mbox); > + > +/* > + * The DSP and MCU cores have a local reset that affects only the CPU, and a > + * generic module reset that powers on the device and allows the internal > + * memories to be accessed while the local reset is asserted. This function is > + * used to release the global reset on remote cores to allow loading into the > + * internal RAMs. The .prepare() ops is invoked by remoteproc core before any > + * firmware loading, and is followed by the .start() ops after loading to > + * actually let the remote cores to run. This callback is invoked only in > + * remoteproc mode. > + */ > +int k3_rproc_prepare(struct rproc *rproc) > +{ > + struct k3_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + int ret; > + > + ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, > + kproc->ti_sci_id); > + if (ret) > + dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n", > + ret); > + > + return ret; > +} > +EXPORT_SYMBOL_GPL(k3_rproc_prepare); > + > +/* > + * This function implements the .unprepare() ops and performs the complimentary > + * operations to that of the .prepare() ops. The function is used to assert the > + * global reset on applicable DSP, MCU cores. This completes the second portion of > + * powering down the remote core. The cores themselves are only halted in the > + * .stop() callback through the local reset, and the .unprepare() ops is invoked > + * by the remoteproc core after the remoteproc is stopped to balance the global > + * reset. This callback is invoked only in remoteproc mode. > + */ > +int k3_rproc_unprepare(struct rproc *rproc) > +{ > + struct k3_rproc *kproc = rproc->priv; > + struct device *dev = kproc->dev; > + int ret; > + > + ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, > + kproc->ti_sci_id); > + if (ret) > + dev_err(dev, "module-reset assert failed, ret = %d\n", ret); > + > + return ret; > +} > +EXPORT_SYMBOL_GPL(k3_rproc_unprepare); > + > +MODULE_LICENSE("GPL v2"); > +MODULE_DESCRIPTION("TI K3 common Remoteproc support"); > diff --git a/drivers/remoteproc/ti_k3_common.h b/drivers/remoteproc/ti_k3_common.h > new file mode 100644 > index 000000000000..917a9c82b4cf > --- /dev/null > +++ b/drivers/remoteproc/ti_k3_common.h > @@ -0,0 +1,103 @@ > +/* SPDX-License-Identifier: GPL-2.0-only */ > +/* > + * TI K3 Remote Processor(s) driver common code > + * > + * Refactored from ti_k3_dsp_remoteproc.c. > + * > + * ti_k3_dsp_remoteproc.c: > + * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/ > + * Suman Anna <s-anna@xxxxxx> > + */ > + > +#ifndef REMOTEPROC_TI_K3_COMMON_H > +#define REMOTEPROC_TI_K3_COMMON_H > + > +#define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) > + > +/** > + * struct k3_rproc_mem - internal memory structure > + * @cpu_addr: MPU virtual address of the memory region > + * @bus_addr: Bus address used to access the memory region > + * @dev_addr: Device address of the memory region from DSP view > + * @size: Size of the memory region > + */ > +struct k3_rproc_mem { > + void __iomem *cpu_addr; > + phys_addr_t bus_addr; > + u32 dev_addr; > + size_t size; > +}; > + > +/** > + * struct k3_rproc_mem_data - memory definitions for a DSP > + * @name: name for this memory entry > + * @dev_addr: device address for the memory entry > + */ > +struct k3_rproc_mem_data { > + const char *name; > + const u32 dev_addr; > +}; > + > +/** > + * struct k3_rproc_dev_data - device data structure for a DSP > + * @mems: pointer to memory definitions for a DSP > + * @num_mems: number of memory regions in @mems > + * @boot_align_addr: boot vector address alignment granularity > + * @uses_lreset: flag to denote the need for local reset management > + */ > +struct k3_rproc_dev_data { > + const struct k3_rproc_mem_data *mems; > + u32 num_mems; > + u32 boot_align_addr; > + bool uses_lreset; > +}; > + > +/** > + * struct k3_rproc - k3 remote processor driver structure > + * @dev: cached device pointer > + * @rproc: remoteproc device handle > + * @mem: internal memory regions data > + * @num_mems: number of internal memory regions > + * @rmem: reserved memory regions data > + * @num_rmems: number of reserved memory regions > + * @reset: reset control handle > + * @data: pointer to device data > + * @tsp: TI-SCI processor control handle > + * @ti_sci: TI-SCI handle > + * @ti_sci_id: TI-SCI device identifier > + * @mbox: mailbox channel handle > + * @client: mailbox client to request the mailbox channel > + */ > +struct k3_rproc { > + struct device *dev; > + struct rproc *rproc; > + struct k3_rproc_mem *mem; > + int num_mems; > + struct k3_rproc_mem *rmem; > + int num_rmems; > + struct reset_control *reset; > + const struct k3_rproc_dev_data *data; > + struct ti_sci_proc *tsp; > + const struct ti_sci_handle *ti_sci; > + u32 ti_sci_id; > + struct mbox_chan *mbox; > + struct mbox_client client; > +}; > + > +void k3_rproc_kick(struct rproc *rproc, int vqid); > +int k3_rproc_reset(struct k3_rproc *kproc); > +int k3_rproc_release(struct k3_rproc *kproc); > +struct resource_table *k3_get_loaded_rsc_table(struct rproc *rproc, > + size_t *rsc_table_sz); > +void *k3_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, > + bool *is_iomem); > +int k3_rproc_of_get_memories(struct platform_device *pdev, > + struct k3_rproc *kproc); > +int k3_reserved_mem_init(struct k3_rproc *kproc); > +void k3_reserved_mem_exit(struct k3_rproc *kproc); > +struct ti_sci_proc *k3_rproc_of_get_tsp(struct device *dev, > + const struct ti_sci_handle *sci); > +int k3_rproc_request_mbox(struct rproc *rproc); > +int k3_rproc_prepare(struct rproc *rproc); > +int k3_rproc_unprepare(struct rproc *rproc); > +#endif /* REMOTEPROC_TI_K3_COMMON_H */ > diff --git a/drivers/remoteproc/ti_k3_dsp_remoteproc.c b/drivers/remoteproc/ti_k3_dsp_remoteproc.c > index ef8415a7cd54..48f9b37a77eb 100644 > --- a/drivers/remoteproc/ti_k3_dsp_remoteproc.c > +++ b/drivers/remoteproc/ti_k3_dsp_remoteproc.c > @@ -20,286 +20,8 @@ > #include "omap_remoteproc.h" > #include "remoteproc_internal.h" > #include "ti_sci_proc.h" > +#include "ti_k3_common.h" > > -#define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) > - > -/** > - * struct k3_dsp_mem - internal memory structure > - * @cpu_addr: MPU virtual address of the memory region > - * @bus_addr: Bus address used to access the memory region > - * @dev_addr: Device address of the memory region from DSP view > - * @size: Size of the memory region > - */ > -struct k3_dsp_mem { > - void __iomem *cpu_addr; > - phys_addr_t bus_addr; > - u32 dev_addr; > - size_t size; > -}; > - > -/** > - * struct k3_dsp_mem_data - memory definitions for a DSP > - * @name: name for this memory entry > - * @dev_addr: device address for the memory entry > - */ > -struct k3_dsp_mem_data { > - const char *name; > - const u32 dev_addr; > -}; > - > -/** > - * struct k3_dsp_dev_data - device data structure for a DSP > - * @mems: pointer to memory definitions for a DSP > - * @num_mems: number of memory regions in @mems > - * @boot_align_addr: boot vector address alignment granularity > - * @uses_lreset: flag to denote the need for local reset management > - */ > -struct k3_dsp_dev_data { > - const struct k3_dsp_mem_data *mems; > - u32 num_mems; > - u32 boot_align_addr; > - bool uses_lreset; > -}; > - > -/** > - * struct k3_dsp_rproc - k3 DSP remote processor driver structure > - * @dev: cached device pointer > - * @rproc: remoteproc device handle > - * @mem: internal memory regions data > - * @num_mems: number of internal memory regions > - * @rmem: reserved memory regions data > - * @num_rmems: number of reserved memory regions > - * @reset: reset control handle > - * @data: pointer to DSP-specific device data > - * @tsp: TI-SCI processor control handle > - * @ti_sci: TI-SCI handle > - * @ti_sci_id: TI-SCI device identifier > - * @mbox: mailbox channel handle > - * @client: mailbox client to request the mailbox channel > - */ > -struct k3_dsp_rproc { > - struct device *dev; > - struct rproc *rproc; > - struct k3_dsp_mem *mem; > - int num_mems; > - struct k3_dsp_mem *rmem; > - int num_rmems; > - struct reset_control *reset; > - const struct k3_dsp_dev_data *data; > - struct ti_sci_proc *tsp; > - const struct ti_sci_handle *ti_sci; > - u32 ti_sci_id; > - struct mbox_chan *mbox; > - struct mbox_client client; > -}; > - > -/** > - * k3_dsp_rproc_mbox_callback() - inbound mailbox message handler > - * @client: mailbox client pointer used for requesting the mailbox channel > - * @data: mailbox payload > - * > - * This handler is invoked by the OMAP mailbox driver whenever a mailbox > - * message is received. Usually, the mailbox payload simply contains > - * the index of the virtqueue that is kicked by the remote processor, > - * and we let remoteproc core handle it. > - * > - * In addition to virtqueue indices, we also have some out-of-band values > - * that indicate different events. Those values are deliberately very > - * large so they don't coincide with virtqueue indices. > - */ > -static void k3_dsp_rproc_mbox_callback(struct mbox_client *client, void *data) > -{ > - struct k3_dsp_rproc *kproc = container_of(client, struct k3_dsp_rproc, > - client); > - struct device *dev = kproc->rproc->dev.parent; > - const char *name = kproc->rproc->name; > - u32 msg = omap_mbox_message(data); > - > - dev_dbg(dev, "mbox msg: 0x%x\n", msg); > - > - switch (msg) { > - case RP_MBOX_CRASH: > - /* > - * remoteproc detected an exception, but error recovery is not > - * supported. So, just log this for now > - */ > - dev_err(dev, "K3 DSP rproc %s crashed\n", name); > - break; > - case RP_MBOX_ECHO_REPLY: > - dev_info(dev, "received echo reply from %s\n", name); > - break; > - default: > - /* silently handle all other valid messages */ > - if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) > - return; > - if (msg > kproc->rproc->max_notifyid) { > - dev_dbg(dev, "dropping unknown message 0x%x", msg); > - return; > - } > - /* msg contains the index of the triggered vring */ > - if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) > - dev_dbg(dev, "no message was found in vqid %d\n", msg); > - } > -} > - > -/* > - * Kick the remote processor to notify about pending unprocessed messages. > - * The vqid usage is not used and is inconsequential, as the kick is performed > - * through a simulated GPIO (a bit in an IPC interrupt-triggering register), > - * the remote processor is expected to process both its Tx and Rx virtqueues. > - */ > -static void k3_dsp_rproc_kick(struct rproc *rproc, int vqid) > -{ > - struct k3_dsp_rproc *kproc = rproc->priv; > - struct device *dev = rproc->dev.parent; > - mbox_msg_t msg = (mbox_msg_t)vqid; > - int ret; > - > - /* send the index of the triggered virtqueue in the mailbox payload */ > - ret = mbox_send_message(kproc->mbox, (void *)msg); > - if (ret < 0) > - dev_err(dev, "failed to send mailbox message, status = %d\n", > - ret); > -} > - > -/* Put the DSP processor into reset */ > -static int k3_dsp_rproc_reset(struct k3_dsp_rproc *kproc) > -{ > - struct device *dev = kproc->dev; > - int ret; > - > - ret = reset_control_assert(kproc->reset); > - if (ret) { > - dev_err(dev, "local-reset assert failed, ret = %d\n", ret); > - return ret; > - } > - > - if (kproc->data->uses_lreset) > - return ret; > - > - ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, > - kproc->ti_sci_id); > - if (ret) { > - dev_err(dev, "module-reset assert failed, ret = %d\n", ret); > - if (reset_control_deassert(kproc->reset)) > - dev_warn(dev, "local-reset deassert back failed\n"); > - } > - > - return ret; > -} > - > -/* Release the DSP processor from reset */ > -static int k3_dsp_rproc_release(struct k3_dsp_rproc *kproc) > -{ > - struct device *dev = kproc->dev; > - int ret; > - > - if (kproc->data->uses_lreset) > - goto lreset; > - > - ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, > - kproc->ti_sci_id); > - if (ret) { > - dev_err(dev, "module-reset deassert failed, ret = %d\n", ret); > - return ret; > - } > - > -lreset: > - ret = reset_control_deassert(kproc->reset); > - if (ret) { > - dev_err(dev, "local-reset deassert failed, ret = %d\n", ret); > - if (kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, > - kproc->ti_sci_id)) > - dev_warn(dev, "module-reset assert back failed\n"); > - } > - > - return ret; > -} > - > -static int k3_dsp_rproc_request_mbox(struct rproc *rproc) > -{ > - struct k3_dsp_rproc *kproc = rproc->priv; > - struct mbox_client *client = &kproc->client; > - struct device *dev = kproc->dev; > - int ret; > - > - client->dev = dev; > - client->tx_done = NULL; > - client->rx_callback = k3_dsp_rproc_mbox_callback; > - client->tx_block = false; > - client->knows_txdone = false; > - > - kproc->mbox = mbox_request_channel(client, 0); > - if (IS_ERR(kproc->mbox)) { > - ret = -EBUSY; > - dev_err(dev, "mbox_request_channel failed: %ld\n", > - PTR_ERR(kproc->mbox)); > - return ret; > - } > - > - /* > - * Ping the remote processor, this is only for sanity-sake for now; > - * there is no functional effect whatsoever. > - * > - * Note that the reply will _not_ arrive immediately: this message > - * will wait in the mailbox fifo until the remote processor is booted. > - */ > - ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); > - if (ret < 0) { > - dev_err(dev, "mbox_send_message failed: %d\n", ret); > - mbox_free_channel(kproc->mbox); > - return ret; > - } > - > - return 0; > -} > -/* > - * The C66x DSP cores have a local reset that affects only the CPU, and a > - * generic module reset that powers on the device and allows the DSP internal > - * memories to be accessed while the local reset is asserted. This function is > - * used to release the global reset on C66x DSPs to allow loading into the DSP > - * internal RAMs. The .prepare() ops is invoked by remoteproc core before any > - * firmware loading, and is followed by the .start() ops after loading to > - * actually let the C66x DSP cores run. This callback is invoked only in > - * remoteproc mode. > - */ > -static int k3_dsp_rproc_prepare(struct rproc *rproc) > -{ > - struct k3_dsp_rproc *kproc = rproc->priv; > - struct device *dev = kproc->dev; > - int ret; > - > - ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, > - kproc->ti_sci_id); > - if (ret) > - dev_err(dev, "module-reset deassert failed, cannot enable internal RAM loading, ret = %d\n", > - ret); > - > - return ret; > -} > - > -/* > - * This function implements the .unprepare() ops and performs the complimentary > - * operations to that of the .prepare() ops. The function is used to assert the > - * global reset on applicable C66x cores. This completes the second portion of > - * powering down the C66x DSP cores. The cores themselves are only halted in the > - * .stop() callback through the local reset, and the .unprepare() ops is invoked > - * by the remoteproc core after the remoteproc is stopped to balance the global > - * reset. This callback is invoked only in remoteproc mode. > - */ > -static int k3_dsp_rproc_unprepare(struct rproc *rproc) > -{ > - struct k3_dsp_rproc *kproc = rproc->priv; > - struct device *dev = kproc->dev; > - int ret; > - > - ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, > - kproc->ti_sci_id); > - if (ret) > - dev_err(dev, "module-reset assert failed, ret = %d\n", ret); > - > - return ret; > -} > > /* > * Power up the DSP remote processor. > @@ -310,12 +32,12 @@ static int k3_dsp_rproc_unprepare(struct rproc *rproc) > */ > static int k3_dsp_rproc_start(struct rproc *rproc) > { > - struct k3_dsp_rproc *kproc = rproc->priv; > + struct k3_rproc *kproc = rproc->priv; > struct device *dev = kproc->dev; > u32 boot_addr; > int ret; > > - ret = k3_dsp_rproc_request_mbox(rproc); > + ret = k3_rproc_request_mbox(rproc); > if (ret) > return ret; > > @@ -332,7 +54,7 @@ static int k3_dsp_rproc_start(struct rproc *rproc) > if (ret) > goto put_mbox; > > - ret = k3_dsp_rproc_release(kproc); > + ret = k3_rproc_release(kproc); > if (ret) > goto put_mbox; > > @@ -351,11 +73,11 @@ static int k3_dsp_rproc_start(struct rproc *rproc) > */ > static int k3_dsp_rproc_stop(struct rproc *rproc) > { > - struct k3_dsp_rproc *kproc = rproc->priv; > + struct k3_rproc *kproc = rproc->priv; > > mbox_free_channel(kproc->mbox); > > - k3_dsp_rproc_reset(kproc); > + k3_rproc_reset(kproc); > > return 0; > } > @@ -370,11 +92,11 @@ static int k3_dsp_rproc_stop(struct rproc *rproc) > */ > static int k3_dsp_rproc_attach(struct rproc *rproc) > { > - struct k3_dsp_rproc *kproc = rproc->priv; > + struct k3_rproc *kproc = rproc->priv; > struct device *dev = kproc->dev; > int ret; > > - ret = k3_dsp_rproc_request_mbox(rproc); > + ret = k3_rproc_request_mbox(rproc); > if (ret) > return ret; > > @@ -392,7 +114,7 @@ static int k3_dsp_rproc_attach(struct rproc *rproc) > */ > static int k3_dsp_rproc_detach(struct rproc *rproc) > { > - struct k3_dsp_rproc *kproc = rproc->priv; > + struct k3_rproc *kproc = rproc->priv; > struct device *dev = kproc->dev; > > mbox_free_channel(kproc->mbox); > @@ -400,282 +122,20 @@ static int k3_dsp_rproc_detach(struct rproc *rproc) > return 0; > } > > -/* > - * This function implements the .get_loaded_rsc_table() callback and is used > - * to provide the resource table for a booted DSP in IPC-only mode. The K3 DSP > - * firmwares follow a design-by-contract approach and are expected to have the > - * resource table at the base of the DDR region reserved for firmware usage. > - * This provides flexibility for the remote processor to be booted by different > - * bootloaders that may or may not have the ability to publish the resource table > - * address and size through a DT property. This callback is invoked only in > - * IPC-only mode. > - */ > -static struct resource_table *k3_dsp_get_loaded_rsc_table(struct rproc *rproc, > - size_t *rsc_table_sz) > -{ > - struct k3_dsp_rproc *kproc = rproc->priv; > - struct device *dev = kproc->dev; > - > - if (!kproc->rmem[0].cpu_addr) { > - dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); > - return ERR_PTR(-ENOMEM); > - } > - > - /* > - * NOTE: The resource table size is currently hard-coded to a maximum > - * of 256 bytes. The most common resource table usage for K3 firmwares > - * is to only have the vdev resource entry and an optional trace entry. > - * The exact size could be computed based on resource table address, but > - * the hard-coded value suffices to support the IPC-only mode. > - */ > - *rsc_table_sz = 256; > - return (struct resource_table *)kproc->rmem[0].cpu_addr; > -} > - > -/* > - * Custom function to translate a DSP device address (internal RAMs only) to a > - * kernel virtual address. The DSPs can access their RAMs at either an internal > - * address visible only from a DSP, or at the SoC-level bus address. Both these > - * addresses need to be looked through for translation. The translated addresses > - * can be used either by the remoteproc core for loading (when using kernel > - * remoteproc loader), or by any rpmsg bus drivers. > - */ > -static void *k3_dsp_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) > -{ > - struct k3_dsp_rproc *kproc = rproc->priv; > - void __iomem *va = NULL; > - phys_addr_t bus_addr; > - u32 dev_addr, offset; > - size_t size; > - int i; > - > - if (len == 0) > - return NULL; > - > - for (i = 0; i < kproc->num_mems; i++) { > - bus_addr = kproc->mem[i].bus_addr; > - dev_addr = kproc->mem[i].dev_addr; > - size = kproc->mem[i].size; > - > - if (da < KEYSTONE_RPROC_LOCAL_ADDRESS_MASK) { > - /* handle DSP-view addresses */ > - if (da >= dev_addr && > - ((da + len) <= (dev_addr + size))) { > - offset = da - dev_addr; > - va = kproc->mem[i].cpu_addr + offset; > - return (__force void *)va; > - } > - } else { > - /* handle SoC-view addresses */ > - if (da >= bus_addr && > - (da + len) <= (bus_addr + size)) { > - offset = da - bus_addr; > - va = kproc->mem[i].cpu_addr + offset; > - return (__force void *)va; > - } > - } > - } > - > - /* handle static DDR reserved memory regions */ > - for (i = 0; i < kproc->num_rmems; i++) { > - dev_addr = kproc->rmem[i].dev_addr; > - size = kproc->rmem[i].size; > - > - if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { > - offset = da - dev_addr; > - va = kproc->rmem[i].cpu_addr + offset; > - return (__force void *)va; > - } > - } > - > - return NULL; > -} > > static const struct rproc_ops k3_dsp_rproc_ops = { > .start = k3_dsp_rproc_start, > .stop = k3_dsp_rproc_stop, > - .kick = k3_dsp_rproc_kick, > - .da_to_va = k3_dsp_rproc_da_to_va, > + .kick = k3_rproc_kick, > + .da_to_va = k3_rproc_da_to_va, > }; > > -static int k3_dsp_rproc_of_get_memories(struct platform_device *pdev, > - struct k3_dsp_rproc *kproc) > -{ > - const struct k3_dsp_dev_data *data = kproc->data; > - struct device *dev = &pdev->dev; > - struct resource *res; > - int num_mems = 0; > - int i; > - > - num_mems = kproc->data->num_mems; > - kproc->mem = devm_kcalloc(kproc->dev, num_mems, > - sizeof(*kproc->mem), GFP_KERNEL); > - if (!kproc->mem) > - return -ENOMEM; > - > - for (i = 0; i < num_mems; i++) { > - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, > - data->mems[i].name); > - if (!res) { > - dev_err(dev, "found no memory resource for %s\n", > - data->mems[i].name); > - return -EINVAL; > - } > - if (!devm_request_mem_region(dev, res->start, > - resource_size(res), > - dev_name(dev))) { > - dev_err(dev, "could not request %s region for resource\n", > - data->mems[i].name); > - return -EBUSY; > - } > - > - kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, > - resource_size(res)); > - if (!kproc->mem[i].cpu_addr) { > - dev_err(dev, "failed to map %s memory\n", > - data->mems[i].name); > - return -ENOMEM; > - } > - kproc->mem[i].bus_addr = res->start; > - kproc->mem[i].dev_addr = data->mems[i].dev_addr; > - kproc->mem[i].size = resource_size(res); > - > - dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n", > - data->mems[i].name, &kproc->mem[i].bus_addr, > - kproc->mem[i].size, kproc->mem[i].cpu_addr, > - kproc->mem[i].dev_addr); > - } > - kproc->num_mems = num_mems; > - > - return 0; > -} > - > -static int k3_dsp_reserved_mem_init(struct k3_dsp_rproc *kproc) > -{ > - struct device *dev = kproc->dev; > - struct device_node *np = dev->of_node; > - struct device_node *rmem_np; > - struct reserved_mem *rmem; > - int num_rmems; > - int ret, i; > - > - num_rmems = of_property_count_elems_of_size(np, "memory-region", > - sizeof(phandle)); > - if (num_rmems <= 0) { > - dev_err(dev, "device does not reserved memory regions, ret = %d\n", > - num_rmems); > - return -EINVAL; > - } > - if (num_rmems < 2) { > - dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", > - num_rmems); > - return -EINVAL; > - } > - > - /* use reserved memory region 0 for vring DMA allocations */ > - ret = of_reserved_mem_device_init_by_idx(dev, np, 0); > - if (ret) { > - dev_err(dev, "device cannot initialize DMA pool, ret = %d\n", > - ret); > - return ret; > - } > - > - num_rmems--; > - kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); > - if (!kproc->rmem) { > - ret = -ENOMEM; > - goto release_rmem; > - } > - > - /* use remaining reserved memory regions for static carveouts */ > - for (i = 0; i < num_rmems; i++) { > - rmem_np = of_parse_phandle(np, "memory-region", i + 1); > - if (!rmem_np) { > - ret = -EINVAL; > - goto unmap_rmem; > - } > - > - rmem = of_reserved_mem_lookup(rmem_np); > - if (!rmem) { > - of_node_put(rmem_np); > - ret = -EINVAL; > - goto unmap_rmem; > - } > - of_node_put(rmem_np); > - > - kproc->rmem[i].bus_addr = rmem->base; > - /* 64-bit address regions currently not supported */ > - kproc->rmem[i].dev_addr = (u32)rmem->base; > - kproc->rmem[i].size = rmem->size; > - kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); > - if (!kproc->rmem[i].cpu_addr) { > - dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", > - i + 1, &rmem->base, &rmem->size); > - ret = -ENOMEM; > - goto unmap_rmem; > - } > - > - dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", > - i + 1, &kproc->rmem[i].bus_addr, > - kproc->rmem[i].size, kproc->rmem[i].cpu_addr, > - kproc->rmem[i].dev_addr); > - } > - kproc->num_rmems = num_rmems; > - > - return 0; > - > -unmap_rmem: > - for (i--; i >= 0; i--) > - iounmap(kproc->rmem[i].cpu_addr); > - kfree(kproc->rmem); > -release_rmem: > - of_reserved_mem_device_release(kproc->dev); > - return ret; > -} > - > -static void k3_dsp_reserved_mem_exit(struct k3_dsp_rproc *kproc) > -{ > - int i; > - > - for (i = 0; i < kproc->num_rmems; i++) > - iounmap(kproc->rmem[i].cpu_addr); > - kfree(kproc->rmem); > - > - of_reserved_mem_device_release(kproc->dev); > -} > - > -static > -struct ti_sci_proc *k3_dsp_rproc_of_get_tsp(struct device *dev, > - const struct ti_sci_handle *sci) > -{ > - struct ti_sci_proc *tsp; > - u32 temp[2]; > - int ret; > - > - ret = of_property_read_u32_array(dev->of_node, "ti,sci-proc-ids", > - temp, 2); > - if (ret < 0) > - return ERR_PTR(ret); > - > - tsp = kzalloc(sizeof(*tsp), GFP_KERNEL); > - if (!tsp) > - return ERR_PTR(-ENOMEM); > - > - tsp->dev = dev; > - tsp->sci = sci; > - tsp->ops = &sci->ops.proc_ops; > - tsp->proc_id = temp[0]; > - tsp->host_id = temp[1]; > - > - return tsp; > -} > - > static int k3_dsp_rproc_probe(struct platform_device *pdev) > { > struct device *dev = &pdev->dev; > struct device_node *np = dev->of_node; > - const struct k3_dsp_dev_data *data; > - struct k3_dsp_rproc *kproc; > + const struct k3_rproc_dev_data *data; > + struct k3_rproc *kproc; > struct rproc *rproc; > const char *fw_name; > bool p_state = false; > @@ -701,8 +161,8 @@ static int k3_dsp_rproc_probe(struct platform_device *pdev) > rproc->has_iommu = false; > rproc->recovery_disabled = true; > if (data->uses_lreset) { > - rproc->ops->prepare = k3_dsp_rproc_prepare; > - rproc->ops->unprepare = k3_dsp_rproc_unprepare; > + rproc->ops->prepare = k3_rproc_prepare; > + rproc->ops->unprepare = k3_rproc_unprepare; > } > kproc = rproc->priv; > kproc->rproc = rproc; > @@ -733,7 +193,7 @@ static int k3_dsp_rproc_probe(struct platform_device *pdev) > goto put_sci; > } > > - kproc->tsp = k3_dsp_rproc_of_get_tsp(dev, kproc->ti_sci); > + kproc->tsp = k3_rproc_of_get_tsp(dev, kproc->ti_sci); > if (IS_ERR(kproc->tsp)) { > dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n", > ret); > @@ -747,11 +207,11 @@ static int k3_dsp_rproc_probe(struct platform_device *pdev) > goto free_tsp; > } > > - ret = k3_dsp_rproc_of_get_memories(pdev, kproc); > + ret = k3_rproc_of_get_memories(pdev, kproc); > if (ret) > goto release_tsp; > > - ret = k3_dsp_reserved_mem_init(kproc); > + ret = k3_reserved_mem_init(kproc); > if (ret) { > dev_err(dev, "reserved memory init failed, ret = %d\n", ret); > goto release_tsp; > @@ -776,7 +236,7 @@ static int k3_dsp_rproc_probe(struct platform_device *pdev) > rproc->ops->stop = NULL; > rproc->ops->attach = k3_dsp_rproc_attach; > rproc->ops->detach = k3_dsp_rproc_detach; > - rproc->ops->get_loaded_rsc_table = k3_dsp_get_loaded_rsc_table; > + rproc->ops->get_loaded_rsc_table = k3_get_loaded_rsc_table; > } else { > dev_info(dev, "configured DSP for remoteproc mode\n"); > /* > @@ -792,7 +252,7 @@ static int k3_dsp_rproc_probe(struct platform_device *pdev) > goto release_mem; > } else if (ret == 0) { > dev_warn(dev, "local reset is deasserted for device\n"); > - k3_dsp_rproc_reset(kproc); > + k3_rproc_reset(kproc); > } > } > } > @@ -809,7 +269,7 @@ static int k3_dsp_rproc_probe(struct platform_device *pdev) > return 0; > > release_mem: > - k3_dsp_reserved_mem_exit(kproc); > + k3_reserved_mem_exit(kproc); > release_tsp: > ret1 = ti_sci_proc_release(kproc->tsp); > if (ret1) > @@ -827,7 +287,7 @@ static int k3_dsp_rproc_probe(struct platform_device *pdev) > > static int k3_dsp_rproc_remove(struct platform_device *pdev) > { > - struct k3_dsp_rproc *kproc = platform_get_drvdata(pdev); > + struct k3_rproc *kproc = platform_get_drvdata(pdev); > struct rproc *rproc = kproc->rproc; > struct device *dev = &pdev->dev; > int ret; > @@ -852,43 +312,43 @@ static int k3_dsp_rproc_remove(struct platform_device *pdev) > if (ret) > dev_err(dev, "failed to put ti_sci handle, ret = %d\n", ret); > > - k3_dsp_reserved_mem_exit(kproc); > + k3_reserved_mem_exit(kproc); > rproc_free(kproc->rproc); > > return 0; > } > > -static const struct k3_dsp_mem_data c66_mems[] = { > +static const struct k3_rproc_mem_data c66_mems[] = { > { .name = "l2sram", .dev_addr = 0x800000 }, > { .name = "l1pram", .dev_addr = 0xe00000 }, > { .name = "l1dram", .dev_addr = 0xf00000 }, > }; > > /* C71x cores only have a L1P Cache, there are no L1P SRAMs */ > -static const struct k3_dsp_mem_data c71_mems[] = { > +static const struct k3_rproc_mem_data c71_mems[] = { > { .name = "l2sram", .dev_addr = 0x800000 }, > { .name = "l1dram", .dev_addr = 0xe00000 }, > }; > > -static const struct k3_dsp_mem_data c7xv_mems[] = { > +static const struct k3_rproc_mem_data c7xv_mems[] = { > { .name = "l2sram", .dev_addr = 0x800000 }, > }; > > -static const struct k3_dsp_dev_data c66_data = { > +static const struct k3_rproc_dev_data c66_data = { > .mems = c66_mems, > .num_mems = ARRAY_SIZE(c66_mems), > .boot_align_addr = SZ_1K, > .uses_lreset = true, > }; > > -static const struct k3_dsp_dev_data c71_data = { > +static const struct k3_rproc_dev_data c71_data = { > .mems = c71_mems, > .num_mems = ARRAY_SIZE(c71_mems), > .boot_align_addr = SZ_2M, > .uses_lreset = false, > }; > > -static const struct k3_dsp_dev_data c7xv_data = { > +static const struct k3_rproc_dev_data c7xv_data = { > .mems = c7xv_mems, > .num_mems = ARRAY_SIZE(c7xv_mems), > .boot_align_addr = SZ_2M, > -- > 2.34.1 >