On 12/16/2022 7:36 AM, Alex Elder wrote:
On 11/16/22 5:13 AM, Souradeep Chowdhury wrote:
The DCC is a DMA Engine designed to capture and store data
during system crash or software triggers. The DCC operates
based on user inputs via the debugfs interface. The user gives
addresses as inputs and these addresses are stored in the
dcc sram. In case of a system crash or a manual software
trigger by the user through the debugfs interface,
the dcc captures and stores the values at these addresses.
This patch contains the driver which has all the methods
pertaining to the debugfs interface, auxiliary functions to
support all the four fundamental operations of dcc namely
read, write, read/modify/write and loop. The probe method
here instantiates all the resources necessary for dcc to
operate mainly the dedicated dcc sram where it stores the
values. The DCC driver can be used for debugging purposes
without going for a reboot since it can perform software
triggers as well based on user inputs.
Also added the documentation for debugfs entries and explained
the functionalities of each debugfs file that has been created
for dcc.
The following is the justification of using debugfs interface
over the other alternatives like sysfs/ioctls
i) As can be seen from the debugfs attribute descriptions,
some of the debugfs attribute files here contains multiple
arguments which needs to be accepted from the user. This goes
against the design style of sysfs.
ii) The user input patterns have been made simple and convenient
in this case with the use of debugfs interface as user doesn't
need to shuffle between different files to execute one instruction
as was the case on using other alternatives.
I have more comments here, but nothing is a bug. I think
you can pretty easily address everything I mention here
in a quick re-spin of your series.
If you choose to ignore any of my suggestions, so be it.
But please follow up with a message explaining your
reasoning. You've been at this a long time and I want to
see your code get accepted.
At one point during my first review I suggested making a
more substantive change to the way you displayed the list
configurations. The idea was to use the same syntax for
both input and output. I still think that's worthwhile
but I won't insist you do it. You use a debugfs interface
here, so technically you can change it in the future.
I'm going to assume you'll make most of the corrections
I suggest, and on that assumption:
Reviewed-by: Alex Elder <elder@xxxxxxxxxx>
Thanks for the review. Will be sending out the next version
implementing the comments along with the review tag.
Signed-off-by: Souradeep Chowdhury <quic_schowdhu@xxxxxxxxxxx>
---
Documentation/ABI/testing/debugfs-driver-dcc | 98 ++
drivers/soc/qcom/Kconfig | 8 +
drivers/soc/qcom/Makefile | 1 +
drivers/soc/qcom/dcc.c | 1322
++++++++++++++++++++++++++
4 files changed, 1429 insertions(+)
create mode 100644 Documentation/ABI/testing/debugfs-driver-dcc
create mode 100644 drivers/soc/qcom/dcc.c
diff --git a/Documentation/ABI/testing/debugfs-driver-dcc
b/Documentation/ABI/testing/debugfs-driver-dcc
new file mode 100644
index 0000000..0d508d9
--- /dev/null
+++ b/Documentation/ABI/testing/debugfs-driver-dcc
@@ -0,0 +1,98 @@
+What: /sys/kernel/debug/dcc/.../ready
+Date: November 2022
+Contact: Souradeep Chowdhury <quic_schowdhu@xxxxxxxxxxx>
+Description:
+ This file is used to check the status of the dcc
+ hardware if it's ready to take the inputs. A 'Y'
+ here indicates dcc is in a ready condition.
+ Example:
+ cat /sys/kernel/debug/dcc/.../ready
+
+What: /sys/kernel/debug/dcc/.../trigger
+Date: November 2022
+Contact: Souradeep Chowdhury <quic_schowdhu@xxxxxxxxxxx>
+Description:
+ This is the debugfs interface for manual software
+ triggers. The user can simply enter a 1 against
+ the debugfs file and enable a manual trigger.
+ Example:
+ echo 1 > /sys/kernel/debug/dcc/.../trigger
+
+What: /sys/kernel/debug/dcc/.../config_reset
+Date: November 2022
+Contact: Souradeep Chowdhury <quic_schowdhu@xxxxxxxxxxx>
+Description:
+ This file is used to reset the configuration of
+ a dcc driver to the default configuration. This
+ means that all the previous addresses stored in
+ the driver gets removed and user needs to enter
+ the address values from the start.
+ Example:
+ echo 1 > /sys/kernel/debug/dcc/../config_reset
+
+What: /sys/kernel/debug/dcc/.../[list-number]/config
+Date: November 2022
+Contact: Souradeep Chowdhury <quic_schowdhu@xxxxxxxxxxx>
+Description:
+ This stores the addresses of the registers which
+ should be read in case of a hardware crash or
+ manual software triggers. The addresses entered here
+ are considered under all the 4 types of dcc
+ instructions Read type, Write type, Read Modify Write
+ type and Loop type. The lists need to be configured
+ sequentially and not in a overlapping manner. As an
+ example user can jump to list x only after list y is
+ configured and enabled. The format for entering all
+ types of instructions are explained in examples as
+ follows.
+ Example:
+ i)Read Type Instruction
+ echo R <1> <2> <3>
>/sys/kernel/debug/dcc/../[list-number]/config
+ 1->Address to be considered for reading the value.
+ 2->The word count of the addresses, read n words
+ starting from address <1>. Each word is of 32 bits.
+ If not entered 1 is considered.
+ 3->Can be 'apb' or 'ahb' which indicates if it is apb or ahb
+ bus respectively. If not entered ahb is considered.
+ ii)Write Type Instruction
+ echo W <1> <2> <3> >
/sys/kernel/debug/dcc/../[list-number]/config
+ 1->Address to be considered for writing the value.
+ 2->The value that needs to be written at the location.
+ 3->Can be a 'apb' or 'ahb' which indicates if it is apb or
ahb
+ but respectively.
+ iii)Read Modify Write type instruction
+ echo RW <1> <2> <3> >
/sys/kernel/debug/dcc/../[list-number]/config
+ 1->The address which needs to be considered for read then
write.
+ 2->The value that needs to be written on the address.
+ 3->The mask of the value to be written.
+ iv)Loop Type Instruction
+ echo L <1> <2> <3> >
/sys/kernel/debug/dcc/../[list-number]/config
+ 1->The loop count, the number of times the value of the
addresses will be
+ captured.
+ 2->The address count, total number of addresses to be
entered in this
+ instruction.
+ 3->The series of addresses to be entered separated by a
space like <addr1>
+ <addr2>... and so on.
+
+What: /sys/kernel/debug/dcc/.../[list-number]/enable
+Date: November 2022
+Contact: Souradeep Chowdhury <quic_schowdhu@xxxxxxxxxxx>
+Description:
+ This debugfs interface is used for enabling the
+ the dcc hardware. Enable file is kept under the
+ directory list number for which the user wants
+ to enable it. For example if the user wants to
+ enable list 1, then he should go for
+ echo 1 > /sys/kernel/debug/dcc/.../1/enable.
+ On enabling the dcc, all the addresses entered
+ by the user for the corresponding list is written
+ into dcc sram which is read by the dcc hardware
+ on manual or crash induced triggers. Lists should
+ be enabled sequentially.For example after configuring
+ addresses for list 1 and enabling it, a user can
+ proceed to enable list 2 or vice versa.
+ Example:
+ echo 0 > /sys/kernel/debug/dcc/.../[list-number]/enable
+ (disable dcc for the corresponding list number)
+ echo 1 > /sys/kernel/debug/dcc/.../[list-number]/enable
+ (enable dcc for the corresponding list number)
diff --git a/drivers/soc/qcom/Kconfig b/drivers/soc/qcom/Kconfig
index 024e420..d5730bf 100644
--- a/drivers/soc/qcom/Kconfig
+++ b/drivers/soc/qcom/Kconfig
@@ -69,6 +69,14 @@ config QCOM_LLCC
SDM845. This provides interfaces to clients that use the LLCC.
Say yes here to enable LLCC slice driver.
+config QCOM_DCC
+ tristate "Qualcomm Technologies, Inc. Data Capture and
Compare(DCC) engine driver"
+ depends on ARCH_QCOM || COMPILE_TEST
+ help
+ This option enables driver for Data Capture and Compare engine.
DCC
+ driver provides interface to configure DCC block and read back
+ captured data from DCC's internal SRAM.
+
config QCOM_KRYO_L2_ACCESSORS
bool
depends on ARCH_QCOM && ARM64 || COMPILE_TEST
diff --git a/drivers/soc/qcom/Makefile b/drivers/soc/qcom/Makefile
index d66604a..b1fe812 100644
--- a/drivers/soc/qcom/Makefile
+++ b/drivers/soc/qcom/Makefile
@@ -4,6 +4,7 @@ obj-$(CONFIG_QCOM_AOSS_QMP) += qcom_aoss.o
obj-$(CONFIG_QCOM_GENI_SE) += qcom-geni-se.o
obj-$(CONFIG_QCOM_COMMAND_DB) += cmd-db.o
obj-$(CONFIG_QCOM_CPR) += cpr.o
+obj-$(CONFIG_QCOM_DCC) += dcc.o
obj-$(CONFIG_QCOM_GSBI) += qcom_gsbi.o
obj-$(CONFIG_QCOM_MDT_LOADER) += mdt_loader.o
obj-$(CONFIG_QCOM_OCMEM) += ocmem.o
diff --git a/drivers/soc/qcom/dcc.c b/drivers/soc/qcom/dcc.c
new file mode 100644
index 0000000..41f69fb
--- /dev/null
+++ b/drivers/soc/qcom/dcc.c
@@ -0,0 +1,1322 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (c) 2015-2021, The Linux Foundation. All rights reserved.
+ * Copyright (c) 2022, Qualcomm Innovation Center, Inc. All rights
reserved.
+ */
+
+#include <linux/bitfield.h>
+#include <linux/bitops.h>
+#include <linux/debugfs.h>
+#include <linux/delay.h>
+#include <linux/fs.h>
+#include <linux/io.h>
+#include <linux/iopoll.h>
+#include <linux/miscdevice.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/uaccess.h>
+
+#define STATUS_READY_TIMEOUT 5000 /* microseconds */
+
+#define DCC_SRAM_NODE "dcc_sram"
+
+/* DCC registers */
+#define DCC_HW_INFO 0x04
+#define DCC_LL_NUM_INFO 0x10
+#define DCC_STATUS(vers) ((vers) == 1 ? 0x0c : 0x1c)
+#define DCC_LL_LOCK 0x00
+#define DCC_LL_CFG 0x04
+#define DCC_LL_BASE 0x08
+#define DCC_FD_BASE 0x0c
+#define DCC_LL_TIMEOUT 0x10
+#define DCC_LL_INT_ENABLE 0x18
+#define DCC_LL_INT_STATUS 0x1c
+#define DCC_LL_SW_TRIGGER 0x2c
+#define DCC_LL_BUS_ACCESS_STATUS 0x30
+
+#define DCC_MAP_LEVEL1 0x18
+#define DCC_MAP_LEVEL2 0x34
+#define DCC_MAP_LEVEL3 0x4C
The three DCC_MAP_LEVEL symbols defined above are no longer
used, so get rid of them.
Ack
+#define DCC_MAP_OFFSET1 0x10
+#define DCC_MAP_OFFSET2 0x18
+#define DCC_MAP_OFFSET3 0x1C
+#define DCC_MAP_OFFSET4 0x8
The four DCC_MAP_OFFSET symbols defined here are also no
longer used,m so get rid of them.
Ack
+
+/* Default value used if a bit 6 in the HW_INFO register is set. */
+#define DCC_FIX_LOOP_OFFSET 16
+
+/* Mask to find version info from HW_Info register */
+#define DCC_VER_INFO_MASK BIT(9)
+
+#define DCC_READ 0
+#define DCC_WRITE 1
+#define DCC_LOOP 2
+#define DCC_READ_WRITE 3
The four symbols above are no longer used, so get rid
of them. I believe you use the dcc_descriptor_type
values now instead.
Ack
+
+#define MAX_DCC_OFFSET GENMASK(9, 2)
+#define MAX_DCC_LEN GENMASK(6, 0)
+#define MAX_LOOP_CNT GENMASK(7, 0)
+#define MAX_LOOP_ADDR 10
+
+#define DCC_ADDR_DESCRIPTOR 0x00
+#define DCC_ADDR_LIMIT 27
+#define DCC_WORD_SIZE sizeof(u32)
+#define DCC_ADDR_RANGE_MASK GENMASK(31, 4)
+#define DCC_LOOP_DESCRIPTOR BIT(30)
+#define DCC_RD_MOD_WR_DESCRIPTOR BIT(31)
+#define DCC_LINK_DESCRIPTOR GENMASK(31, 30)
+#define DCC_STATUS_MASK GENMASK(1, 0)
The line above needs another tab before the GENMASK()
Ack
+#define DCC_LOCK_MASK BIT(0)
+#define DCC_LOOP_OFFSET_MASK BIT(6)
+#define DCC_TRIGGER_MASK BIT(9)
+
+#define DCC_WRITE_MASK BIT(15)
+#define DCC_WRITE_OFF_MASK GENMASK(7, 0)
+#define DCC_WRITE_LEN_MASK GENMASK(14, 8)
+
+#define DCC_READ_IND 0x00
+#define DCC_WRITE_IND (BIT(28))
+
+#define DCC_AHB_IND 0x00
+#define DCC_APB_IND BIT(29)
+
+#define DCC_MAX_LINK_LIST 8
+#define DCC_INVALID_LINK_LIST GENMASK(7, 0)
DCC_INVALID_LINK_LIST is not used, so get rid of it.
Ack
+
+#define DCC_VER_MASK1 GENMASK(6, 0)
Note that DCC_VER_MASK1, which might be well-defined for the
hardware, is never used (or required) in this driver. So you
could just get rid of it.
Ack
+#define DCC_VER_MASK2 GENMASK(5, 0)
+
+#define DCC_SRAM_WORD_LENGTH 4
DCC_SRAM_WORD_LENGTH is not used, so get rid of it. (You
use DCC_WORD_SIZE now.)
Ack
+
+#define DCC_RD_MOD_WR_ADDR 0xC105E
+
+enum dcc_descriptor_type {
+ DCC_READ_TYPE,
+ DCC_LOOP_TYPE,
+ DCC_READ_WRITE_TYPE,
+ DCC_WRITE_TYPE
+};
+
+struct dcc_config_entry {
+ u32 base;
+ u32 offset;
+ u32 len;
+ u32 loop_cnt;
+ u32 write_val;
+ u32 mask;
+ bool apb_bus;
+ enum dcc_descriptor_type desc_type;
+ struct list_head list;
+};
+
+/**
+ * struct dcc_drvdata - configuration information related to a dcc
device
+ * @base: Base Address of the dcc device
+ * @dev: The device attached to the driver data
+ * @mutex: Lock to protect access and manipulation of dcc_drvdata
+ * @ram_base: Base address for the SRAM dedicated for the dcc
device
+ * @ram_size: Total size of the SRAM dedicated for the dcc device
+ * @ram_offset: Offset to the SRAM dedicated for dcc device
Insert a tab before "Offset" above.
Ack
+ * @mem_map_ver: Memory map version of DCC hardware
+ * @ram_cfg: Used for address limit calculation for dcc
+ * @ram_start: Starting address of DCC SRAM
+ * @sram_dev: Miscellaneous device equivalent of dcc SRAM
+ * @cfg_head: Points to the head of the linked list of addresses
+ * @dbg_dir: The dcc debugfs directory under which all the
debugfs files are placed
+ * @nr_link_list: Total number of linkedlists supported by the DCC
configuration
+ * @loopoff: Loop offset bits range for the addresses
+ * @enable_bitmap: Bitmap to capture the enabled status of each
linked list of addresses
+ */
+struct dcc_drvdata {
+ void __iomem *base;
+ void __iomem *ram_base;
+ struct device *dev;
+ struct mutex mutex;
+ size_t ram_size;
+ size_t ram_offset;
+ int mem_map_ver;
+ unsigned int ram_cfg;
+ unsigned int ram_start;
+ struct miscdevice sram_dev;
+ struct list_head *cfg_head;
+ struct dentry *dbg_dir;
+ size_t nr_link_list;
+ u8 loopoff;
+ unsigned long *enable_bitmap;
+};
+
+struct dcc_cfg_attr {
+ u32 addr;
+ u32 prev_addr;
+ u32 prev_off;
+ u32 link;
+ u32 sram_offset;
+};
+
+struct dcc_cfg_loop_attr {
+ u32 loop_cnt;
+ u32 loop_len;
+ u32 loop_off;
+ bool loop_start;
+};
+
+static inline u32 dcc_list_offset(int version)
+{
+ return version == 1 ? 0x1c : (version == 2 ? 0x2c : 0x34);
No need for the parentheses in the line above.
Ack
+}
+
+static inline void dcc_list_writel(struct dcc_drvdata *drvdata,
+ u32 ll, u32 val, u32 off)
+{
+ u32 offset = dcc_list_offset(drvdata->mem_map_ver) + off;
+
+ writel(val, drvdata->base + ll * 0x80 + offset);
+}
+
+static inline u32 dcc_list_readl(struct dcc_drvdata *drvdata, u32 ll,
u32 off)
+{
+ u32 offset = dcc_list_offset(drvdata->mem_map_ver) + off;
+
+ return readl(drvdata->base + ll * 0x80 + offset);
+}
+
+static void dcc_sram_write_auto(struct dcc_drvdata *drvdata,
+ u32 val, u32 *off)
+{
+ /* If the overflow condition is met increment the offset
+ * and return to indicate that overflow has occurred
+ */
+ if (unlikely(*off > (drvdata->ram_size - 4))) {
Parentheses around the subtraction above are not required.
Ack
+ *off += 4;
+ return;
+ }
+
+ writel(val, drvdata->ram_base + *off);
+
+ *off += 4;
+}
. . .
+static const struct file_operations trigger_fops = {
+ .write = trigger_write,
+ .open = simple_open,
+ .llseek = generic_file_llseek,
+};
+
+static int dcc_config_add(struct dcc_drvdata *drvdata, unsigned int
addr,
+ unsigned int len, bool apb_bus, int curr_list)
+{
+ int ret = 0;
+ struct dcc_config_entry *entry, *pentry;
+ unsigned int base, offset;
+
+ mutex_lock(&drvdata->mutex);
+
+ if (!len || len > drvdata->ram_size / DCC_WORD_SIZE) {
+ dev_err(drvdata->dev, "DCC: Invalid length\n");
+ ret = -EINVAL;
+ goto out_unlock;
+ }
+
+ base = addr & DCC_ADDR_RANGE_MASK;
Last time I reviewed this, I said this about the above line
(and the range check above it):
Maybe:
base = round_down(addr, DCC_WORD_SIZE);
Then you don't even need DCC_ADDR_RANGE_MASK.
And then:
len += base - addr;
And if necessary:
len = round_up(addr, DCC_WORD_SIZE);
And finally:
if (len > drvdata->ram_size / DCC_WORD_SIZE)
return -EINVAL;
To which you responded:
Ack.
My suggestion improved the one line you had in these ways:
- Eliminated this, the only use of DCC_ADDR_RANGE_MASK
by rounding down to the nearest DCC_WORD_SIZE multiple
instead. (The effect should be the same.)
- If the base address *did* get rounded down, it extended
the length to ensure the original bytes are included
- Then ensured the length is rounded up to a multiple of
the word size
...all before doing the range check.
In other words, I suggest this instead (note I corrected
an error in what I suggested):
base = round_down(addr, DCC_WORD_SIZE);
len = round_up(len + addr - base, DCC_WORD_SIZE);
if (!len || len > drvdata->ram_size / DCC_WORD_SIZE)
return -EINVAL;
If you don't agree this helps, I guess I'll accept that.
Ack. Sticking to the original offset calculation as this
might introduce some differences that the existing
implementation.
For example base = round_down(addr, DCC_WORD_SIZE) is not similar
to base = addr & DCC_ADDR_RANGE_MASK where DCC_ADDR_RANGE_MASK is
GENMASK(31, 4). We are maintaining a 16 byte aligned address as
mentioned before, rounding down to the word size changes that which
is not as per the sram programming specifications.
+
+ if (!list_empty(&drvdata->cfg_head[curr_list])) {
+ pentry = list_last_entry(&drvdata->cfg_head[curr_list],
+ struct dcc_config_entry, list);
+
+ if (pentry->desc_type == DCC_READ_TYPE &&
+ addr >= (pentry->base + pentry->offset) &&
+ addr <= (pentry->base + pentry->offset + MAX_DCC_OFFSET)) {
+ /* Re-use base address from last entry */
+ base = pentry->base;
+
+ if ((pentry->len * 4 + pentry->base + pentry->offset)
+ == addr) {
+ len += pentry->len;
+
+ if (len > MAX_DCC_LEN)
+ pentry->len = MAX_DCC_LEN;
+ else
+ pentry->len = len;
+
+ addr = pentry->base + pentry->offset +
+ pentry->len * 4;
+ len -= pentry->len;
+ }
+ }
+ }
+
+ offset = addr - base;
+
+ while (len) {
+ entry = kzalloc(sizeof(*entry), GFP_KERNEL);
+ if (!entry) {
+ ret = -ENOMEM;
+ goto out_unlock;
+ }
+
+ entry->base = base;
+ entry->offset = offset;
+ entry->len = min_t(u32, len, MAX_DCC_LEN);
+ entry->desc_type = DCC_READ_TYPE;
+ entry->apb_bus = apb_bus;
+ INIT_LIST_HEAD(&entry->list);
+ list_add_tail(&entry->list,
+ &drvdata->cfg_head[curr_list]);
+
+ len -= entry->len;
+ offset += MAX_DCC_LEN * 4;
+ }
+
+out_unlock:
+ mutex_unlock(&drvdata->mutex);
+ return ret;
+}
. . .
+static ssize_t dcc_config_add_loop(struct dcc_drvdata *drvdata, char
*buf, int curr_list)
The above line is pretty long. You could but the function name on a
new line and it would look better.
Ack
+{
+ int ret, i = 0;
+ char *token, *input;
+ char delim[2] = " ";
+ unsigned int val[MAX_LOOP_ADDR];
+
+ input = buf;
+
+ token = strsep(&input, delim);
+ while (token) {
+ if (i < MAX_LOOP_ADDR) {
+ ret = kstrtoint(token, 0, &val[i++]);
+ if (ret)
+ return ret;
+ } else {
+ dev_err(drvdata->dev, "Max limit of loop address exceeded");
+ return -EINVAL;
+ }
I suggest:
while ((token = strsep(&input, delim)) && i < MAX_LOOP_ADDR) {
ret = kstrtoint(token, &val[i++];
if (ret)
return ret;
}
if (token) {
dev_err(drvdata->dev, "Max limit %u of loop address exceeded",
MAX_LOOP_ADDR);
return -EINVAL;
}
But what you have is OK.
Ack
+
+ token = strsep(&input, delim);
+ }
+
+ if (val[1] < 1 || val[1] > 8)
+ return -EINVAL;
+
+ ret = dcc_add_loop(drvdata, val[0], curr_list);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < val[1]; i++)
+ dcc_config_add(drvdata, val[i + 2], 1, false, curr_list);
+
+ return dcc_add_loop(drvdata, 1, curr_list);
+}
+
. . .
+static ssize_t config_write(struct file *filp,
+ const char __user *user_buf, size_t count,
+ loff_t *ppos)
+{
+ int ret, curr_list;
+ char *token, buf[50];
+ char *bufp = buf;
+ char *delim = " ";
+ struct dcc_drvdata *drvdata = filp->private_data;
+
+ if (count > sizeof(buf) || count == 0)
+ return -EINVAL;
+
+ ret = copy_from_user(buf, user_buf, count);
+ if (ret)
+ return -EFAULT;
+
+ curr_list = dcc_filp_curr_list(filp);
+ if (curr_list < 0)
+ return curr_list;
+
+ if (buf[count - 1] == '\n')
+ buf[count - 1] = '\0';
+ else
+ return -EINVAL;
I still don't understand why a newline is required on
your input, but that's OK.
The '\0' needs to be set at the end of the bufp passed to
srtsep. Even though strsep doesn't need that to do it's work,
it is required for further string operations as the token
is passed to the functions.
+
+ token = strsep(&bufp, delim);
+
+ if (!strcmp("R", token)) {
+ ret = dcc_config_add_read(drvdata, bufp, curr_list);
+ } else if (!strcmp("W", token)) {
+ ret = dcc_config_add_write(drvdata, bufp, curr_list);
+ } else if (!strcmp("RW", token)) {
+ ret = dcc_config_add_read_write(drvdata, bufp, curr_list);
+ } else if (!strcmp("L", token)) {
+ ret = dcc_config_add_loop(drvdata, bufp, curr_list);
+ } else {
+ dev_err(drvdata->dev, "%s is not a correct input\n", token);
+ return -EINVAL;
+ }
+
+ if (ret)
+ return ret;
+
+ return count;
+}
+
+static const struct file_operations config_fops = {
+ .open = config_open,
+ .read = seq_read,
+ .write = config_write,
+ .llseek = seq_lseek,
+ .release = single_release,
+};
+
+static void dcc_delete_debug_dir(struct dcc_drvdata *dcc)
Here and in the next function, please use "drvdata" as the name
of the symbol rather than "dcc", as is used everywhere else.
... OR ...
Change the name of "struct dcc_drvdata" to be just "struct dcc",
and rename *all* variables of that type to be "dcc".
I like the second suggestion, but at this point I guess the
first is easiest.
Ack. Will go with the first.
+{
+ debugfs_remove_recursive(dcc->dbg_dir);
+};
+
+static void dcc_create_debug_dir(struct dcc_drvdata *dcc)
+{
+ int i;
+ char list_num[10];
+ struct dentry *list;
+ struct device *dev = dcc->dev;
+
+ dcc->dbg_dir = debugfs_create_dir(dev_name(dev), NULL);
+ if (IS_ERR(dcc->dbg_dir)) {
+ pr_err("can't create debugfs dir\n");
+ return;
+ }
+
+ for (i = 0; i <= dcc->nr_link_list; i++) {
+ sprintf(list_num, "%d", i);
+ list = debugfs_create_dir(list_num, dcc->dbg_dir);
+ debugfs_create_file("enable", 0600, list, dcc, &enable_fops);
+ debugfs_create_file("config", 0600, list, dcc, &config_fops);
+ }
+
+ debugfs_create_file("trigger", 0200, dcc->dbg_dir, dcc,
&trigger_fops);
+ debugfs_create_file("ready", 0400, dcc->dbg_dir, dcc, &ready_fops);
+ debugfs_create_file("config_reset", 0200, dcc->dbg_dir,
+ dcc, &config_reset_fops);
As I mentioned last time, any of the debugfs_create_file() calls
could fail. And I *think* the failure of any one of them is
enough to make the driver functionality unusable.
So I think you should check for errors, and if any occur, just
give up completely and return an error to the caller (dcc_probe()),
and fail entirely.
As mentioned by Bjorn, there are cases where the DCC driver might be
loaded just to configure addresses during boot-time statically, in such
cases we wouldn't want the driver to fail even if there are issues while
creating debugfs interface. Patch series to do the same will be
introduced subsequently. Currently dropped the error handling here as
per Bjorn's suggestion on version 17 of the patch.
+}
+
+static ssize_t dcc_sram_read(struct file *file, char __user *data,
+ size_t len, loff_t *ppos)
+{
+ unsigned char *buf;
+ struct dcc_drvdata *drvdata = container_of(file->private_data,
+ struct dcc_drvdata,
+ sram_dev);
The indentation above is bad. But I think this would look better
anyway:
struct dcc_drvdata *drvdata;
drvdata = container_of(file->private_data, struct dcc_drvdata,
sram_dev);
Ack
+ /* EOF check */
+ if (*ppos >= drvdata->ram_size)
+ return 0;
+
+ if ((*ppos + len) > drvdata->ram_size)
+ len = (drvdata->ram_size - *ppos);
+
+ buf = kzalloc(len, GFP_KERNEL);
+ if (!buf)
+ return -ENOMEM;
+
+ memcpy_fromio(buf, drvdata->ram_base + *ppos, len);
+
+ if (copy_to_user(data, buf, len)) {
+ kfree(buf);
+ return -EFAULT;
+ }
+
+ *ppos += len;
+
+ kfree(buf);
+
+ return len;
+}
+
+static const struct file_operations dcc_sram_fops = {
+ .owner = THIS_MODULE,
+ .read = dcc_sram_read,
+ .llseek = no_llseek,
+};
+
+static int dcc_sram_dev_init(struct dcc_drvdata *drvdata)
+{
+ drvdata->sram_dev.minor = MISC_DYNAMIC_MINOR;
+ drvdata->sram_dev.name = DCC_SRAM_NODE;
+ drvdata->sram_dev.fops = &dcc_sram_fops;
+
+ return misc_register(&drvdata->sram_dev);
+}
+
+static void dcc_sram_dev_exit(struct dcc_drvdata *drvdata)
+{
+ misc_deregister(&drvdata->sram_dev);
+}
+
+static int dcc_probe(struct platform_device *pdev)
+{
+ u32 val;
+ int ret = 0, i;
+ struct device *dev = &pdev->dev;
+ struct dcc_drvdata *dcc;
Please name the "dcc" variable "drvdata" as used everywhere else.
Ack
+ struct resource *res;
+
+ dcc = devm_kzalloc(dev, sizeof(*dcc), GFP_KERNEL);
+ if (!dcc)
+ return -ENOMEM;
+
+ dcc->dev = &pdev->dev;
+ platform_set_drvdata(pdev, dcc);
+
+ dcc->base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(dcc->base))
+ return PTR_ERR(dcc->base);
+
+ dcc->ram_base = devm_platform_get_and_ioremap_resource(pdev, 1,
&res);
+ if (IS_ERR(dcc->ram_base))
+ return PTR_ERR(dcc->ram_base);
+
+ dcc->ram_size = resource_size(res);
+
+ dcc->ram_offset = (size_t)of_device_get_match_data(&pdev->dev);
+
+ val = readl(dcc->base + DCC_HW_INFO);
+
+ if (FIELD_GET(DCC_VER_INFO_MASK, val)) {
+ dcc->mem_map_ver = 3;
+ dcc->nr_link_list = readl(dcc->base + DCC_LL_NUM_INFO);
+ if (dcc->nr_link_list == 0)
This is more typical kernel coding style:
if (!dcc->nr_link_list)
Same comment on the condition in the next block.
Ack
+ return -EINVAL;
+ } else if ((val & DCC_VER_MASK2) == DCC_VER_MASK2) {
I don't know what's actually possible here. But DCC_VER_MASK2
is actually fewer bits (5) than DCC_VERSION_MASK_1 (6). That
means DCC_VER_MASK2 could fit inside DCC_VER_MASK1. Is it
guaranteed that the 6-bit DCC_VER_MASK1 will never have value
0x1f?
Anyway, I presume this is just fine...
Yes. This is as per the hardware specifications for setting the
memory map version.
+ dcc->mem_map_ver = 2;
+ dcc->nr_link_list = readl(dcc->base + DCC_LL_NUM_INFO);
+ if (dcc->nr_link_list == 0)
+ return -EINVAL;
+ } else {
+ dcc->mem_map_ver = 1;
+ dcc->nr_link_list = DCC_MAX_LINK_LIST;
+ }
+
+ /* Either set the fixed loop offset or calculate
+ * it from the total number of words in dcc_sram.
+ * Max consecutive addresses dcc can loop is
+ * equivalent to the words in dcc_sram.
+ */
+ if (val & DCC_LOOP_OFFSET_MASK)
+ dcc->loopoff = DCC_FIX_LOOP_OFFSET;
+ else
+ dcc->loopoff = get_bitmask_order((dcc->ram_size +
+ dcc->ram_offset) / 4 - 1);
Every time I see this, I say something. Even with your added
comments, it's just not clear why you are getting the *order*
of the end offset of the SRAM used for DCC, rather than just
something directly related linearly to that offset.
Looking at the code elsewhere now, I see the "loopoff" field
is actually used in dcc_emit_loop() as a *shift* amount. The
loop count is encoded in a 32-bit value with its low-order bit
positioned at loopoff. And *that* explains the use of get_bitmask_order().
* So I guess I personally would find a different name more
understandable (like, loop_shift?).
Based on my assumed "offset, not shift" I also thought that
dcc->ram_offset shouldn't be included in the calculation.
But I suppose the encoded loop count offset is a offset into
a larger memory space (not just the SRAM range). (Maybe
that doesn't make sense, but I think I get it now.)
* As I suggested before, please use DCC_SRAM_WORD_LENGTH
instead of 4 here.
* Also I think "offset + size" is slightly better than
"size + offset" but it's really a minor thing.
Ack
+ mutex_init(&dcc->mutex);
+
+ dcc->enable_bitmap = devm_kcalloc(dev,
BITS_TO_LONGS(dcc->nr_link_list),
+ sizeof(*dcc->enable_bitmap), GFP_KERNEL);
+ if (!dcc->enable_bitmap)
+ return -ENOMEM;
+
+ dcc->cfg_head = devm_kcalloc(dev, dcc->nr_link_list,
+ sizeof(*dcc->cfg_head), GFP_KERNEL);
+ if (!dcc->cfg_head)
+ return -ENOMEM;
+
+ for (i = 0; i < dcc->nr_link_list; i++)
+ INIT_LIST_HEAD(&dcc->cfg_head[i]);
+
+ ret = dcc_sram_dev_init(dcc);
+ if (ret) {
+ dev_err(dcc->dev, "DCC: sram node not registered.\n");
+ return ret;
+ }
+
+ dcc_create_debug_dir(dcc);
+
+ return 0;
+}
+
+static int dcc_remove(struct platform_device *pdev)
+{
+ struct dcc_drvdata *drvdata = platform_get_drvdata(pdev);
+
+ dcc_delete_debug_dir(drvdata);
+ dcc_sram_dev_exit(drvdata);
+ dcc_config_reset(drvdata);
+
+ return 0;
+}
+
+static const struct of_device_id dcc_match_table[] = {
+ { .compatible = "qcom,sc7180-dcc", .data = (void *)0x6000 },
+ { .compatible = "qcom,sc7280-dcc", .data = (void *)0x12000 },
+ { .compatible = "qcom,sdm845-dcc", .data = (void *)0x6000 },
+ { .compatible = "qcom,sm8150-dcc", .data = (void *)0x5000 },
+ { }
+};
+MODULE_DEVICE_TABLE(of, dcc_match_table);
+
+static struct platform_driver dcc_driver = {
+ .probe = dcc_probe,
+ .remove = dcc_remove,
+ .driver = {
+ .name = "qcom-dcc",
+ .of_match_table = dcc_match_table,
+ },
+};
+
+module_platform_driver(dcc_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("Qualcomm Technologies Inc. DCC driver");
+
There should be blank line at end of file (that might just get
cleaned up automatically when the patch is applied).
Ack
--
2.7.4