Re: [PATCH v4 2/2] can: m_can: add Bosch M_CAN controller support

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 




On 07/14/2014 05:10 PM, Dong Aisheng wrote:

(...)

diff --git a/drivers/net/can/m_can/Makefile b/drivers/net/can/m_can/Makefile
new file mode 100644
index 0000000..a6aae67
--- /dev/null
+++ b/drivers/net/can/m_can/Makefile
@@ -0,0 +1,7 @@
+#
+#  Makefile for the Bosch M_CAN controller drivers.
+#
+
+obj-$(CONFIG_CAN_M_CAN) += m_can.o
+
+ccflags-$(CONFIG_CAN_DEBUG_DEVICES) := -DDEBUG

I think this will enable the debugging for all the time ?????

diff --git a/drivers/net/can/m_can/m_can.c b/drivers/net/can/m_can/m_can.c
new file mode 100644
index 0000000..8e48213
--- /dev/null
+++ b/drivers/net/can/m_can/m_can.c
@@ -0,0 +1,1189 @@
+/*
+ * CAN bus driver for Bosch M_CAN controller
+ *
+ * Copyright (C) 2014 Freescale Semiconductor, Inc.
+ *	Dong Aisheng <b29396@xxxxxxxxxxxxx>
+ *
+ * Bosch M_CAN user manual can be obtained from:
+ * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
+ * mcan_users_manual_v302.pdf
+ *
+ * This file is licensed under the terms of the GNU General Public
+ * License version 2. This program is licensed "as is" without any
+ * warranty of any kind, whether express or implied.
+ */
+
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/netdevice.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+
+#include <linux/can/dev.h>
+
+/* napi related */
+#define M_CAN_NAPI_WEIGHT	64
+
+/* message ram configuration data length */
+#define MRAM_CFG_LEN	8
+
+/* registers definition */
+enum m_can_reg {
+	M_CAN_CREL	= 0x0,
+	M_CAN_ENDN	= 0x4,
+	M_CAN_CUST	= 0x8,
+	M_CAN_FBTP	= 0xc,
+	M_CAN_TEST	= 0x10,
+	M_CAN_RWD	= 0x14,
+	M_CAN_CCCR	= 0x18,
+	M_CAN_BTP	= 0x1c,
+	M_CAN_TSCC	= 0x20,
+	M_CAN_TSCV	= 0x24,
+	M_CAN_TOCC	= 0x28,
+	M_CAN_TOCV	= 0x2c,
+	M_CAN_ECR	= 0x40,
+	M_CAN_PSR	= 0x44,
+	M_CAN_IR	= 0x50,
+	M_CAN_IE	= 0x54,
+	M_CAN_ILS	= 0x58,
+	M_CAN_ILE	= 0x5c,
+	M_CAN_GFC	= 0x80,
+	M_CAN_SIDFC	= 0x84,
+	M_CAN_XIDFC	= 0x88,
+	M_CAN_XIDAM	= 0x90,
+	M_CAN_HPMS	= 0x94,
+	M_CAN_NDAT1	= 0x98,
+	M_CAN_NDAT2	= 0x9c,
+	M_CAN_RXF0C	= 0xa0,
+	M_CAN_RXF0S	= 0xa4,
+	M_CAN_RXF0A	= 0xa8,
+	M_CAN_RXBC	= 0xac,
+	M_CAN_RXF1C	= 0xb0,
+	M_CAN_RXF1S	= 0xb4,
+	M_CAN_RXF1A	= 0xb8,
+	M_CAN_RXESC	= 0xbc,
+	M_CAN_TXBC	= 0xc0,
+	M_CAN_TXFQS	= 0xc4,
+	M_CAN_TXESC	= 0xc8,
+	M_CAN_TXBRP	= 0xcc,
+	M_CAN_TXBAR	= 0xd0,
+	M_CAN_TXBCR	= 0xd4,
+	M_CAN_TXBTO	= 0xd8,
+	M_CAN_TXBCF	= 0xdc,
+	M_CAN_TXBTIE	= 0xe0,
+	M_CAN_TXBCIE	= 0xe4,
+	M_CAN_TXEFC	= 0xf0,
+	M_CAN_TXEFS	= 0xf4,
+	M_CAN_TXEFA	= 0xf8,
+};
+
+/* m_can lec values */
+enum m_can_lec_type {
+	LEC_NO_ERROR = 0,
+	LEC_STUFF_ERROR,
+	LEC_FORM_ERROR,
+	LEC_ACK_ERROR,
+	LEC_BIT1_ERROR,
+	LEC_BIT0_ERROR,
+	LEC_CRC_ERROR,
+	LEC_UNUSED,
+};
+
+enum m_can_mram_cfg {
+	MRAM_SIDF = 0,
+	MRAM_XIDF,
+	MRAM_RXF0,
+	MRAM_RXF1,
+	MRAM_RXB,
+	MRAM_TXE,
+	MRAM_TXB,
+	MRAM_CFG_NUM,
+};
+
+/* Test Register (TEST) */
+#define TEST_LBCK	BIT(4)
+
+/* CC Control Register(CCCR) */
+#define CCCR_TEST	BIT(7)
+#define CCCR_MON	BIT(5)
+#define CCCR_CCE	BIT(1)
+#define CCCR_INIT	BIT(0)
+
+/* Bit Timing & Prescaler Register (BTP) */
+#define BTR_BRP_MASK		0x3ff
+#define BTR_BRP_SHIFT		16
+#define BTR_TSEG1_SHIFT		8
+#define BTR_TSEG1_MASK		(0x3f << BTR_TSEG1_SHIFT)
+#define BTR_TSEG2_SHIFT		4
+#define BTR_TSEG2_MASK		(0xf << BTR_TSEG2_SHIFT)
+#define BTR_SJW_SHIFT		0
+#define BTR_SJW_MASK		0xf
+
+/* Error Counter Register(ECR) */
+#define ECR_RP			BIT(15)
+#define ECR_REC_SHIFT		8
+#define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
+#define ECR_TEC_SHIFT		0
+#define ECR_TEC_MASK		0xff
+
+/* Protocol Status Register(PSR) */
+#define PSR_BO		BIT(7)
+#define PSR_EW		BIT(6)
+#define PSR_EP		BIT(5)
+#define PSR_LEC_MASK	0x7
+
+/* Interrupt Register(IR) */
+#define IR_ALL_INT	0xffffffff
+#define IR_STE		BIT(31)
+#define IR_FOE		BIT(30)
+#define IR_ACKE		BIT(29)
+#define IR_BE		BIT(28)
+#define IR_CRCE		BIT(27)
+#define IR_WDI		BIT(26)
+#define IR_BO		BIT(25)
+#define IR_EW		BIT(24)
+#define IR_EP		BIT(23)
+#define IR_ELO		BIT(22)
+#define IR_BEU		BIT(21)
+#define IR_BEC		BIT(20)
+#define IR_DRX		BIT(19)
+#define IR_TOO		BIT(18)
+#define IR_MRAF		BIT(17)
+#define IR_TSW		BIT(16)
+#define IR_TEFL		BIT(15)
+#define IR_TEFF		BIT(14)
+#define IR_TEFW		BIT(13)
+#define IR_TEFN		BIT(12)
+#define IR_TFE		BIT(11)
+#define IR_TCF		BIT(10)
+#define IR_TC		BIT(9)
+#define IR_HPM		BIT(8)
+#define IR_RF1L		BIT(7)
+#define IR_RF1F		BIT(6)
+#define IR_RF1W		BIT(5)
+#define IR_RF1N		BIT(4)
+#define IR_RF0L		BIT(3)
+#define IR_RF0F		BIT(2)
+#define IR_RF0W		BIT(1)
+#define IR_RF0N		BIT(0)
+#define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
+#define IR_ERR_LEC	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
+#define IR_ERR_BUS	(IR_ERR_LEC | IR_WDI | IR_ELO | IR_BEU | IR_BEC \
+			| IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L \
+			| IR_RF0L)
+#define IR_ERR_ALL	(IR_ERR_STATE | IR_ERR_BUS)
+
+/* Interrupt Line Select (ILS) */
+#define ILS_ALL_INT0	0x0
+#define ILS_ALL_INT1	0xFFFFFFFF
+
+/* Interrupt Line Enable (ILE) */
+#define ILE_EINT0	BIT(0)
+#define ILE_EINT1	BIT(1)
+
+/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
+#define RXFC_FWM_OFF	24
+#define RXFC_FWM_MASK	0x7f
+#define RXFC_FWM_1	(1 << RXFC_FWM_OFF)
+#define RXFC_FS_OFF	16
+#define RXFC_FS_MASK	0x7f
+
+/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
+#define RXFS_RFL	BIT(25)
+#define RXFS_FF		BIT(24)
+#define RXFS_FPI_OFF	16
+#define RXFS_FPI_MASK	0x3f0000
+#define RXFS_FGI_OFF	8
+#define RXFS_FGI_MASK	0x3f00
+#define RXFS_FFL_MASK	0x7f
+
+/* Tx Buffer Configuration(TXBC) */
+#define TXBC_NDTB_OFF	16
+#define TXBC_NDTB_MASK	0x3f
+
+/* Tx Buffer Element Size Configuration(TXESC) */
+#define TXESC_TBDS_8BYTES	0x0
+/* Tx Buffer Element */
+#define TX_BUF_XTD	BIT(30)
+#define TX_BUF_RTR	BIT(29)
+
+/* Rx Buffer Element Size Configuration(TXESC) */
+#define M_CAN_RXESC_8BYTES	0x0
+/* Tx Buffer Element */
+#define RX_BUF_ESI	BIT(31)
+#define RX_BUF_XTD	BIT(30)
+#define RX_BUF_RTR	BIT(29)
+
+/* Tx Event FIFO Con.guration (TXEFC) */
+#define TXEFC_EFS_OFF	16
+#define TXEFC_EFS_MASK	0x3f
+
+/* Message RAM Configuration (in bytes) */
+#define SIDF_ELEMENT_SIZE	4
+#define XIDF_ELEMENT_SIZE	8
+#define RXF0_ELEMENT_SIZE	16
+#define RXF1_ELEMENT_SIZE	16
+#define RXB_ELEMENT_SIZE	16
+#define TXE_ELEMENT_SIZE	8
+#define TXB_ELEMENT_SIZE	16

Alignment for all the includes

+
+/* address offset and element number for each FIFO/Buffer in the Message RAM */
+struct mram_cfg {
+	u16 off;
+	u8  num;
+};
+
+/* m_can private data structure */
+struct m_can_priv {
+	struct can_priv can;	/* must be the first member */
+	struct napi_struct napi;
+	struct net_device *dev;
+	struct device *device;
+	struct clk *hclk;
+	struct clk *cclk;
+	void __iomem *base;
+	u32 irqstatus;
+
+	/* message ram configuration */
+	void __iomem *mram_base;
+	struct mram_cfg mcfg[MRAM_CFG_NUM];
+};
+
+static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
+{
+	return readl(priv->base + reg);
+}
+
+static inline void m_can_write(const struct m_can_priv *priv,
+			       enum m_can_reg reg, u32 val)
+{
+	writel(val, priv->base + reg);
+}
+
+static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
+				  u32 fgi, unsigned int offset)
+{
+	return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
+				fgi * RXF0_ELEMENT_SIZE + offset);

Here alignment should match the open parenthesis.
...
return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
	     fgi * RXF0_ELEMENT_SIZE + offset);

+}
+
+static inline void m_can_config_endisable(const struct m_can_priv *priv,
+					  bool enable)
+{
+	u32 cccr = m_can_read(priv, M_CAN_CCCR);
+	u32 timeout = 10;
+	u32 val = 0;
+
+	if (enable) {
+		/* enable m_can configuration */
+		m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
+		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
+		m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
+	} else {
+		m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
+	}
+
+	/* there's a delay for module initialization */
+	if (enable)
+		val = CCCR_INIT | CCCR_CCE;
+
+	while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE))
+				!= val)

Ditto..

  {
+		if (timeout == 0) {
+			netdev_warn(priv->dev, "Failed to init module\n");
+			return;
+		}
+		timeout--;
+		udelay(1);
+	}
+}
+
+static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
+{
+	m_can_write(priv, M_CAN_ILE, ILE_EINT0 | ILE_EINT1);
+}
+
+static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
+{
+	m_can_write(priv, M_CAN_ILE, 0x0);
+}
+
+static void m_can_read_fifo(const struct net_device *dev, struct can_frame *cf,
+			    u32 rxfs)
+{
+	struct m_can_priv *priv = netdev_priv(dev);
+	u32 flags, fgi;
+
+	/* calculate the fifo get index for where to read data */
+	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_OFF;
+	flags = m_can_fifo_read(priv, fgi, 0x0);
+	if (flags & RX_BUF_XTD)
+		cf->can_id = (flags & CAN_EFF_MASK) | CAN_EFF_FLAG;
+	else
+		cf->can_id = (flags >> 18) & CAN_SFF_MASK;
+
+	if (flags & RX_BUF_RTR) {
+		cf->can_id |= CAN_RTR_FLAG;
+	} else {
+		flags = m_can_fifo_read(priv, fgi, 0x4);
+		cf->can_dlc = get_can_dlc((flags >> 16) & 0x0F);
+		*(u32 *)(cf->data + 0) = m_can_fifo_read(priv, fgi, 0x8);
+		*(u32 *)(cf->data + 4) = m_can_fifo_read(priv, fgi, 0xC);
+	}
+
+	/* acknowledge rx fifo 0 */
+	m_can_write(priv, M_CAN_RXF0A, fgi);
+}
+
+static int m_can_do_rx_poll(struct net_device *dev, int quota)
+{
+	struct m_can_priv *priv = netdev_priv(dev);
+	struct net_device_stats *stats = &dev->stats;
+	struct sk_buff *skb;
+	struct can_frame *frame;
+	u32 pkts = 0;
+	u32 rxfs;
+
+	rxfs = m_can_read(priv, M_CAN_RXF0S);
+	if (!(rxfs & RXFS_FFL_MASK)) {
+		netdev_dbg(dev, "no messages in fifo0\n");
+		return 0;
+	}
+
+	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
+		if (rxfs & RXFS_RFL)
+			netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
+
+		skb = alloc_can_skb(dev, &frame);
+		if (!skb) {
+			stats->rx_dropped++;
+			return 0;
+		}
+
+		m_can_read_fifo(dev, frame, rxfs);
+
+		stats->rx_packets++;
+		stats->rx_bytes += frame->can_dlc;
+
+		netif_receive_skb(skb);
+
+		quota--;
+		pkts++;
+		rxfs = m_can_read(priv, M_CAN_RXF0S);
+	};
+
+	if (pkts)
+		can_led_event(dev, CAN_LED_EVENT_RX);
+
+	return pkts;
+}
+
+static int m_can_handle_lost_msg(struct net_device *dev)
+{
+	struct net_device_stats *stats = &dev->stats;
+	struct sk_buff *skb;
+	struct can_frame *frame;
+
+	netdev_err(dev, "msg lost in rxf0\n");
+
+	stats->rx_errors++;
+	stats->rx_over_errors++;
+
+	skb = alloc_can_err_skb(dev, &frame);
+	if (unlikely(!skb))
+		return 0;
+
+	frame->can_id |= CAN_ERR_CRTL;
+	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
+
+	netif_receive_skb(skb);
+
+	return 1;
+}
+
+static int m_can_handle_lec_err(struct net_device *dev,
+				enum m_can_lec_type lec_type)
+{
+	struct m_can_priv *priv = netdev_priv(dev);
+	struct net_device_stats *stats = &dev->stats;
+	struct can_frame *cf;
+	struct sk_buff *skb;
+
+	/* early exit if no lec update */
+	if (lec_type == LEC_UNUSED)
+		return 0;
+
+	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
+		return 0;
+
+	priv->can.can_stats.bus_error++;
+	stats->rx_errors++;
+
+	/* propagate the error condition to the CAN stack */
+	skb = alloc_can_err_skb(dev, &cf);
+	if (unlikely(!skb))
+		return 0;
+
+	/* check for 'last error code' which tells us the
+	 * type of the last error to occur on the CAN bus
+	 */
+	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
+	cf->data[2] |= CAN_ERR_PROT_UNSPEC;
+
+	switch (lec_type) {
+	case LEC_STUFF_ERROR:
+		netdev_dbg(dev, "stuff error\n");
+		cf->data[2] |= CAN_ERR_PROT_STUFF;
+		break;
+	case LEC_FORM_ERROR:
+		netdev_dbg(dev, "form error\n");
+		cf->data[2] |= CAN_ERR_PROT_FORM;
+		break;
+	case LEC_ACK_ERROR:
+		netdev_dbg(dev, "ack error\n");
+		cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
+				CAN_ERR_PROT_LOC_ACK_DEL);
+		break;
+	case LEC_BIT1_ERROR:
+		netdev_dbg(dev, "bit1 error\n");
+		cf->data[2] |= CAN_ERR_PROT_BIT1;
+		break;
+	case LEC_BIT0_ERROR:
+		netdev_dbg(dev, "bit0 error\n");
+		cf->data[2] |= CAN_ERR_PROT_BIT0;
+		break;
+	case LEC_CRC_ERROR:
+		netdev_dbg(dev, "CRC error\n");
+		cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
+				CAN_ERR_PROT_LOC_CRC_DEL);
+		break;
+	default:
+		break;
+	}
+
+	stats->rx_packets++;
+	stats->rx_bytes += cf->can_dlc;
+	netif_receive_skb(skb);
+
+	return 1;
+}
+
+static int m_can_get_berr_counter(const struct net_device *dev,
+				  struct can_berr_counter *bec)
+{
+	struct m_can_priv *priv = netdev_priv(dev);
+	unsigned int ecr;
+	int err;
+
+	err = clk_prepare_enable(priv->hclk);
+	if (err)
+		return err;
+
+	err = clk_prepare_enable(priv->cclk);
+	if (err) {
+		clk_disable_unprepare(priv->hclk);
+		return err;
+	}
+
+	ecr = m_can_read(priv, M_CAN_ECR);
+	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
+	bec->txerr = ecr & ECR_TEC_MASK;
+
+	clk_disable_unprepare(priv->cclk);
+	clk_disable_unprepare(priv->hclk);
+
+	return 0;
+}
+
+static int m_can_handle_state_change(struct net_device *dev,
+				     enum can_state new_state)
+{
+	struct m_can_priv *priv = netdev_priv(dev);
+	struct net_device_stats *stats = &dev->stats;
+	struct can_frame *cf;
+	struct sk_buff *skb;
+	struct can_berr_counter bec;
+	unsigned int ecr;
+
+	switch (new_state) {
+	case CAN_STATE_ERROR_ACTIVE:
+		/* error warning state */
+		priv->can.can_stats.error_warning++;
+		priv->can.state = CAN_STATE_ERROR_WARNING;
+		break;
+	case CAN_STATE_ERROR_PASSIVE:
+		/* error passive state */
+		priv->can.can_stats.error_passive++;
+		priv->can.state = CAN_STATE_ERROR_PASSIVE;
+		break;
+	case CAN_STATE_BUS_OFF:
+		/* bus-off state */
+		priv->can.state = CAN_STATE_BUS_OFF;
+		m_can_disable_all_interrupts(priv);
+		can_bus_off(dev);
+		break;
+	default:
+		break;
+	}
+
+	/* propagate the error condition to the CAN stack */
+	skb = alloc_can_err_skb(dev, &cf);
+	if (unlikely(!skb))
+		return 0;
+
+	m_can_get_berr_counter(dev, &bec);
+
+	switch (new_state) {
+	case CAN_STATE_ERROR_ACTIVE:
+		/* error warning state */
+		cf->can_id |= CAN_ERR_CRTL;
+		cf->data[1] = (bec.txerr > bec.rxerr) ?
+			CAN_ERR_CRTL_TX_WARNING :
+			CAN_ERR_CRTL_RX_WARNING;
+		cf->data[6] = bec.txerr;
+		cf->data[7] = bec.rxerr;
+		break;
+	case CAN_STATE_ERROR_PASSIVE:
+		/* error passive state */
+		cf->can_id |= CAN_ERR_CRTL;
+		ecr = m_can_read(priv, M_CAN_ECR);
+		if (ecr & ECR_RP)
+			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
+		if (bec.txerr > 127)
+			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
+		cf->data[6] = bec.txerr;
+		cf->data[7] = bec.rxerr;
+		break;
+	case CAN_STATE_BUS_OFF:
+		/* bus-off state */
+		cf->can_id |= CAN_ERR_BUSOFF;
+		break;
+	default:
+		break;
+	}
+
+	stats->rx_packets++;
+	stats->rx_bytes += cf->can_dlc;
+	netif_receive_skb(skb);
+
+	return 1;
+}
+
+static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
+{
+	struct m_can_priv *priv = netdev_priv(dev);
+	int work_done = 0;
+
+	if ((psr & PSR_EW) &&
+	    (priv->can.state != CAN_STATE_ERROR_WARNING)) {
+		netdev_dbg(dev, "entered error warning state\n");
+		work_done += m_can_handle_state_change(dev,
+				CAN_STATE_ERROR_WARNING);

Ditto

+	}
+
+	if ((psr & PSR_EP) &&
+	    (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
+		netdev_dbg(dev, "entered error warning state\n");
+		work_done += m_can_handle_state_change(dev,
+				CAN_STATE_ERROR_PASSIVE);
+	}
+

Ditto

+	if ((psr & PSR_BO) &&
+	    (priv->can.state != CAN_STATE_BUS_OFF)) {
+		netdev_dbg(dev, "entered error warning state\n");
+		work_done += m_can_handle_state_change(dev,
+				CAN_STATE_BUS_OFF);

Ditto

+	}
+
+	return work_done;
+}
+
+static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
+{
+	if (irqstatus & IR_WDI)
+		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
+	if (irqstatus & IR_BEU)
+		netdev_err(dev, "Error Logging Overflow\n");
+	if (irqstatus & IR_BEU)
+		netdev_err(dev, "Bit Error Uncorrected\n");
+	if (irqstatus & IR_BEC)
+		netdev_err(dev, "Bit Error Corrected\n");
+	if (irqstatus & IR_TOO)
+		netdev_err(dev, "Timeout reached\n");
+	if (irqstatus & IR_MRAF)
+		netdev_err(dev, "Message RAM access failure occurred\n");
+}
+
+static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
+				   u32 psr)
+{
+	int work_done = 0;
+
+	if (irqstatus & IR_RF0L)
+		work_done += m_can_handle_lost_msg(dev);
+
+	/* handle lec errors on the bus */
+	if (psr & LEC_UNUSED)
+		work_done += m_can_handle_lec_err(dev,
+				psr & LEC_UNUSED);

Ditto

+
+	/* other unproccessed error interrupts */
+	m_can_handle_other_err(dev, irqstatus);
+
+	return work_done;
+}
+
+static int m_can_poll(struct napi_struct *napi, int quota)
+{
+	struct net_device *dev = napi->dev;
+	struct m_can_priv *priv = netdev_priv(dev);
+	int work_done = 0;
+	u32 irqstatus, psr;
+
+	irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
+	if (!irqstatus)
+		goto end;
+
+	psr = m_can_read(priv, M_CAN_PSR);
+	if (irqstatus & IR_ERR_STATE)
+		work_done += m_can_handle_state_errors(dev, psr);
+
+	if (irqstatus & IR_ERR_BUS)
+		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
+
+	if (irqstatus & IR_RF0N)
+		work_done += m_can_do_rx_poll(dev, (quota - work_done));
+
+	if (work_done < quota) {
+		napi_complete(napi);
+		m_can_enable_all_interrupts(priv);
+	}
+
+end:
+	return work_done;
+}
+
+static irqreturn_t m_can_isr(int irq, void *dev_id)
+{
+	struct net_device *dev = (struct net_device *)dev_id;
+	struct m_can_priv *priv = netdev_priv(dev);
+	struct net_device_stats *stats = &dev->stats;
+	u32 ir;
+
+	ir = m_can_read(priv, M_CAN_IR);
+	if (!ir)
+		return IRQ_NONE;
+
+	/* ACK all irqs */
+	if (ir & IR_ALL_INT)
+		m_can_write(priv, M_CAN_IR, ir);
+
+	/* schedule NAPI in case of
+	 * - rx IRQ
+	 * - state change IRQ
+	 * - bus error IRQ and bus error reporting
+	 */
+	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL)) {
+		priv->irqstatus = ir;
+		m_can_disable_all_interrupts(priv);
+		napi_schedule(&priv->napi);
+	}
+
+	/* transmission complete interrupt */
+	if (ir & IR_TC) {
+		stats->tx_bytes += can_get_echo_skb(dev, 0);
+		stats->tx_packets++;
+		can_led_event(dev, CAN_LED_EVENT_TX);
+		netif_wake_queue(dev);
+	}
+
+	return IRQ_HANDLED;
+}
+
+static const struct can_bittiming_const m_can_bittiming_const = {
+	.name = KBUILD_MODNAME,
+	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
+	.tseg1_max = 64,
+	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
+	.tseg2_max = 16,
+	.sjw_max = 16,
+	.brp_min = 1,
+	.brp_max = 1024,
+	.brp_inc = 1,
+};
+
+static int m_can_set_bittiming(struct net_device *dev)
+{
+	struct m_can_priv *priv = netdev_priv(dev);
+	const struct can_bittiming *bt = &priv->can.bittiming;
+	u16 brp, sjw, tseg1, tseg2;
+	u32 reg_btp;
+
+	brp = bt->brp - 1;
+	sjw = bt->sjw - 1;
+	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
+	tseg2 = bt->phase_seg2 - 1;
+	reg_btp = (brp << BTR_BRP_SHIFT) | (sjw << BTR_SJW_SHIFT) |
+			(tseg1 << BTR_TSEG1_SHIFT) | (tseg2 << BTR_TSEG2_SHIFT);
+	m_can_write(priv, M_CAN_BTP, reg_btp);
+	netdev_dbg(dev, "setting BTP 0x%x\n", reg_btp);
+
+	return 0;
+}
+
+/* Configure M_CAN chip:
+ * - set rx buffer/fifo element size
+ * - configure rx fifo
+ * - accept non-matching frame into fifo 0
+ * - configure tx buffer
+ * - configure mode
+ * - setup bittiming
+ */
+static void m_can_chip_config(struct net_device *dev)
+{
+	struct m_can_priv *priv = netdev_priv(dev);
+	u32 cccr, test;
+
+	m_can_config_endisable(priv, true);
+
+	/* RX Buffer/FIFO Element Size 8 bytes data field */
+	m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_8BYTES);
+
+	/* Accept Non-matching Frames Into FIFO 0 */
+	m_can_write(priv, M_CAN_GFC, 0x0);
+
+	/* only support one Tx Buffer currently */
+	m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_OFF) |
+			priv->mcfg[MRAM_TXB].off);
+
+	/* only support 8 bytes firstly */
+	m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_8BYTES);
+
+	m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_OFF) |
+			priv->mcfg[MRAM_TXE].off);
+
+	/* rx fifo configuration, blocking mode, fifo size 1 */
+	m_can_write(priv, M_CAN_RXF0C,
+		    (priv->mcfg[MRAM_RXF0].num << RXFC_FS_OFF) |
+		    RXFC_FWM_1 | priv->mcfg[MRAM_RXF0].off);
+
+	m_can_write(priv, M_CAN_RXF1C,
+		    (priv->mcfg[MRAM_RXF1].num << RXFC_FS_OFF) |
+		    RXFC_FWM_1 | priv->mcfg[MRAM_RXF1].off);
+
+	cccr = m_can_read(priv, M_CAN_CCCR);
+	cccr &= ~(CCCR_TEST | CCCR_MON);
+	test = m_can_read(priv, M_CAN_TEST);
+	test &= ~TEST_LBCK;
+
+	if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
+		cccr |= CCCR_MON;
+
+	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
+		cccr |= CCCR_TEST;
+		test |= TEST_LBCK;
+	}
+
+	m_can_write(priv, M_CAN_CCCR, cccr);
+	m_can_write(priv, M_CAN_TEST, test);
+
+	/* enable interrupts */
+	m_can_write(priv, M_CAN_IR, IR_ALL_INT);
+	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
+		m_can_write(priv, M_CAN_IE, IR_ALL_INT & ~IR_ERR_LEC);
+	else
+		m_can_write(priv, M_CAN_IE, IR_ALL_INT);
+
+	/* route all interrupts to INT0 */
+	m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
+
+	/* set bittiming params */
+	m_can_set_bittiming(dev);
+
+	m_can_config_endisable(priv, false);
+}
+
+static void m_can_start(struct net_device *dev)
+{
+	struct m_can_priv *priv = netdev_priv(dev);
+
+	/* basic m_can configuration */
+	m_can_chip_config(dev);
+
+	priv->can.state = CAN_STATE_ERROR_ACTIVE;
+
+	m_can_enable_all_interrupts(priv);
+}
+
+static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
+{
+	switch (mode) {
+	case CAN_MODE_START:
+		m_can_start(dev);
+		netif_wake_queue(dev);
+		break;
+	default:
+		return -EOPNOTSUPP;
+	}
+

I think for single we don't need switch case...

+	return 0;
+}
+
+static void free_m_can_dev(struct net_device *dev)
+{
+	free_candev(dev);
+}
+
+static struct net_device *alloc_m_can_dev(void)
+{
+	struct net_device *dev;
+	struct m_can_priv *priv;
+
+	dev = alloc_candev(sizeof(*priv), 1);
+	if (!dev)
+		return NULL;
+
+	priv = netdev_priv(dev);
+	netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
+
+	priv->dev = dev;
+	priv->can.bittiming_const = &m_can_bittiming_const;
+	priv->can.do_set_mode = m_can_set_mode;
+	priv->can.do_get_berr_counter = m_can_get_berr_counter;
+	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
+					CAN_CTRLMODE_LISTENONLY |
+					CAN_CTRLMODE_BERR_REPORTING;
+
+	return dev;
+}
+
+static int m_can_open(struct net_device *dev)
+{
+	struct m_can_priv *priv = netdev_priv(dev);
+	int err;
+
+	err = clk_prepare_enable(priv->hclk);
+	if (err)
+		return err;
+
+	err = clk_prepare_enable(priv->cclk);
+	if (err)
+		goto exit_disable_hclk;
+
+	/* open the can device */
+	err = open_candev(dev);
+	if (err) {
+		netdev_err(dev, "failed to open can device\n");
+		goto exit_disable_cclk;
+	}
+
+	/* register interrupt handler */
+	err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
+			  dev);
+	if (err < 0) {
+		netdev_err(dev, "failed to request interrupt\n");
+		goto exit_irq_fail;
+	}
+
+	/* start the m_can controller */
+	m_can_start(dev);
+
+	can_led_event(dev, CAN_LED_EVENT_OPEN);
+	napi_enable(&priv->napi);
+	netif_start_queue(dev);
+
+	return 0;
+
+exit_irq_fail:
+	close_candev(dev);
+exit_disable_cclk:
+	clk_disable_unprepare(priv->cclk);
+exit_disable_hclk:
+	clk_disable_unprepare(priv->hclk);
+	return err;
+}
+
+static void m_can_stop(struct net_device *dev)
+{
+	struct m_can_priv *priv = netdev_priv(dev);
+
+	/* disable all interrupts */
+	m_can_disable_all_interrupts(priv);
+
+	clk_disable_unprepare(priv->hclk);
+	clk_disable_unprepare(priv->cclk);
+
+	/* set the state as STOPPED */
+	priv->can.state = CAN_STATE_STOPPED;
+}
+
+static int m_can_close(struct net_device *dev)
+{
+	struct m_can_priv *priv = netdev_priv(dev);
+
+	netif_stop_queue(dev);
+	napi_disable(&priv->napi);
+	m_can_stop(dev);
+	free_irq(dev->irq, dev);
+	close_candev(dev);
+	can_led_event(dev, CAN_LED_EVENT_STOP);
+
+	return 0;
+}
+
+static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
+				    struct net_device *dev)
+{
+	struct m_can_priv *priv = netdev_priv(dev);
+	struct can_frame *cf = (struct can_frame *)skb->data;
+	u32 flags = 0, id;
+	void __iomem *fifo_addr;
+
+	if (can_dropped_invalid_skb(dev, skb))
+		return NETDEV_TX_OK;
+
+	netif_stop_queue(dev);
+
+	if (cf->can_id & CAN_RTR_FLAG)
+		flags |= TX_BUF_RTR;
+
+	if (cf->can_id & CAN_EFF_FLAG) {
+		id = cf->can_id & CAN_EFF_MASK;
+		flags |= TX_BUF_XTD;
+	} else {
+		id = ((cf->can_id & CAN_SFF_MASK) << 18);
+	}
+
+	/* message ram configuration */
+	fifo_addr = priv->mram_base + priv->mcfg[MRAM_TXB].off;
+	writel(id | flags, fifo_addr);
+	writel(cf->can_dlc << 16, fifo_addr + 0x4);
+	writel(*(u32 *)(cf->data + 0), fifo_addr + 0x8);
+	writel(*(u32 *)(cf->data + 4), fifo_addr + 0xc);
+
+	can_put_echo_skb(skb, dev, 0);
+
+	/* enable first TX buffer to start transfer  */
+	m_can_write(priv, M_CAN_TXBTIE, 0x1);
+	m_can_write(priv, M_CAN_TXBAR, 0x1);
+
+	return NETDEV_TX_OK;
+}
+
+static const struct net_device_ops m_can_netdev_ops = {
+	.ndo_open = m_can_open,
+	.ndo_stop = m_can_close,
+	.ndo_start_xmit = m_can_start_xmit,
+};
+
+static int register_m_can_dev(struct net_device *dev)
+{
+	dev->flags |= IFF_ECHO;	/* we support local echo */
+	dev->netdev_ops = &m_can_netdev_ops;
+
+	return register_candev(dev);
+}
+
+static const struct of_device_id m_can_of_table[] = {
+	{ .compatible = "bosch,m_can", .data = NULL },
+	{ /* sentinel */ },
+};
+MODULE_DEVICE_TABLE(of, m_can_of_table);
+

Move this device ids before the platform_driver struct ...

No need to include .data=NULL

+static int m_can_of_parse_mram(struct platform_device *pdev,
+			       struct m_can_priv *priv)
+{
+	struct device_node *np = pdev->dev.of_node;
+	struct resource *res;
+	void __iomem *addr;
+	u32 out_val[MRAM_CFG_LEN];
+	int ret;
+
+	/* message ram could be shared */
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
+	if (!res)
+		return -ENODEV;
+
+	addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
+	if (!addr)
+		return -ENOMEM;
+
+	/* get message ram configuration */
+	ret = of_property_read_u32_array(np, "bosch,mram-cfg",
+					 out_val, sizeof(out_val) / 4);
+	if (ret) {
+		dev_err(&pdev->dev, "can not get message ram configuration\n");
+		return -ENODEV;
+	}
+
+	priv->mram_base = addr;
+	priv->mcfg[MRAM_SIDF].off = out_val[0];
+	priv->mcfg[MRAM_SIDF].num = out_val[1];
+	priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
+			priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
+	priv->mcfg[MRAM_XIDF].num = out_val[2];
+	priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
+			priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
+	priv->mcfg[MRAM_RXF0].num = out_val[3] & RXFC_FS_MASK;
+	priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
+			priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
+	priv->mcfg[MRAM_RXF1].num = out_val[4] & RXFC_FS_MASK;
+	priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
+			priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
+	priv->mcfg[MRAM_RXB].num = out_val[5];
+	priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
+			priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
+	priv->mcfg[MRAM_TXE].num = out_val[6];
+	priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
+			priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
+	priv->mcfg[MRAM_TXB].num = out_val[7] & TXBC_NDTB_MASK;
+
+	dev_dbg(&pdev->dev, "mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
+		priv->mram_base,
+		priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
+		priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
+		priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
+		priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
+		priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
+		priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
+		priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
+
+	return 0;
+}
+
+static int m_can_plat_probe(struct platform_device *pdev)
+{
+	struct net_device *dev;
+	struct m_can_priv *priv;
+	struct resource *res;
+	void __iomem *addr;
+	struct clk *hclk, *cclk;
+	int irq, ret;
+
+	hclk = devm_clk_get(&pdev->dev, "hclk");
+	cclk = devm_clk_get(&pdev->dev, "cclk");
+	if (IS_ERR(hclk) || IS_ERR(cclk)) {
+		dev_err(&pdev->dev, "no clock find\n");
+		return -ENODEV;
+	}
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
+	addr = devm_ioremap_resource(&pdev->dev, res);
+	irq = platform_get_irq_byname(pdev, "int0");
+	if (IS_ERR(addr) || irq < 0)
+		return -EINVAL;
+
+	/* allocate the m_can device */
+	dev = alloc_m_can_dev();
+	if (!dev)
+		return -ENOMEM;
+
+	priv = netdev_priv(dev);
+	dev->irq = irq;
+	priv->base = addr;
+	priv->device = &pdev->dev;
+	priv->hclk = hclk;
+	priv->cclk = cclk;
+	priv->can.clock.freq = clk_get_rate(cclk);
+
+	ret = m_can_of_parse_mram(pdev, priv);
+	if (ret)
+		goto failed_free_dev;
+
+	platform_set_drvdata(pdev, dev);
+	SET_NETDEV_DEV(dev, &pdev->dev);
+
+	ret = register_m_can_dev(dev);
+	if (ret) {
+		dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
+			KBUILD_MODNAME, ret);
+		goto failed_free_dev;
+	}
+
+	devm_can_led_init(dev);
+
+	dev_info(&pdev->dev, "%s device registered (regs=%p, irq=%d)\n",
+		 KBUILD_MODNAME, priv->base, dev->irq);
+
+	return 0;
+
+failed_free_dev:
+	free_m_can_dev(dev);
+	return ret;
+}
+
+static __maybe_unused int m_can_suspend(struct device *dev)
+{
+	struct net_device *ndev = dev_get_drvdata(dev);
+	struct m_can_priv *priv = netdev_priv(ndev);
+
+	if (netif_running(ndev)) {
+		netif_stop_queue(ndev);
+		netif_device_detach(ndev);
+	}
+
+	/* TODO: enter low power */
+
+	priv->can.state = CAN_STATE_SLEEPING;
+
+	return 0;
+}
+
+static __maybe_unused int m_can_resume(struct device *dev)
+{
+	struct net_device *ndev = dev_get_drvdata(dev);
+	struct m_can_priv *priv = netdev_priv(ndev);
+
+	/* TODO: exit low power */
+
+	priv->can.state = CAN_STATE_ERROR_ACTIVE;
+
+	if (netif_running(ndev)) {
+		netif_device_attach(ndev);
+		netif_start_queue(ndev);
+	}
+
+	return 0;
+}
+
+static void unregister_m_can_dev(struct net_device *dev)
+{
+	unregister_candev(dev);
+}
+
+static int m_can_plat_remove(struct platform_device *pdev)
+{
+	struct net_device *dev = platform_get_drvdata(pdev);
+
+	unregister_m_can_dev(dev);
+	platform_set_drvdata(pdev, NULL);
+
+	free_m_can_dev(dev);
+
+	return 0;
+}
+
+static const struct dev_pm_ops m_can_pmops = {
+	SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
+};
+

Give the device ids here. So that we can see the of_match_table directly...

Every driver follows the same concept...

+static struct platform_driver m_can_plat_driver = {
+	.driver = {
+		.name = KBUILD_MODNAME,
+		.of_match_table = of_match_ptr(m_can_of_table),

This driver will always populate through the dts files. So no need to
use 'of_match_ptr'.

+		.pm     = &m_can_pmops,
+	},
+	.probe = m_can_plat_probe,
+	.remove = m_can_plat_remove,
+};
+
+module_platform_driver(m_can_plat_driver);
+
+MODULE_AUTHOR("Dong Aisheng <b29396@xxxxxxxxxxxxx>");
+MODULE_LICENSE("GPL v2");
+MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");


--
Regards,
Varka Bhadram.

--
To unsubscribe from this list: send the line "unsubscribe devicetree" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at  http://vger.kernel.org/majordomo-info.html




[Index of Archives]     [Device Tree Compilter]     [Device Tree Spec]     [Linux Driver Backports]     [Video for Linux]     [Linux USB Devel]     [Linux PCI Devel]     [Linux Audio Users]     [Linux Kernel]     [Linux SCSI]     [XFree86]     [Yosemite Backpacking]
  Powered by Linux